JOURNAL OF CHEMICAL & ENGINEERING DATA

Comment on "Excess Enthalpies of Binary and Ternary Mixtures Containing Dibutyl Ether, Cyclohexane, and 1-Butanol at 298.15 K"

B. I. Bhatt*

Aavishkar Consultancy Services 1/7, Tirthnagar Society, Ahmedabad 380061, India

I refer to the article "Excess Enthalpies of Binary and Ternary Mixtures Containing Dibutyl Ether, Cyclohexane, and 1-Butanol at 298.15 K" by Aguilar et al. in *J. Chem. Eng. Data*, **2009**, *54*, 1672–1679 and Corrections in *J. Chem. Eng. Data*, **2009**, *54*, 2341–2342.

I used the Redlich–Kister eq 1 with constants given in Table 4 of the original paper, to calculate the excess enthalpy of a binary $(H^{\rm E})$. I found that eq 1 is incorrect. It should read as below.

$$H^{\rm E} = x(1-x) \cdot \left[\sum_{i=0}^{n} A_i (2x-1)^i\right]$$
(1)

With the use of the above eq 1 and the constants given in Table 4, the values of H_{12}^E , H_{13}^E , and H_{23}^E match with values listed in Tables 3 (original paper) and 5 (correction).

For the calculation of H_{123}^{E} , I used eqs 6 and 8 with constants, given in Table 6 (correction). Values so calculated did not match with values, given in Table 5 (correction). I therefore used the following equation for the calculation of H_{123}^{E} .

$$H_{123}^{\rm E} = (x_1 + x_2)H_{12}^{\rm E} + (x_2 + x_3)H_{23}^{\rm E} + (x_1 + x_3)H_{13}^{\rm E} \pm x_1x_2x_3\Delta H_{123}^{\rm E}$$
(6)

In the above eq 6, if the excess enthalpy of the ternary system $(H_{123}^{\rm E})$ is endothermic, the last term will have negative sign and vice versa. I used the above eq 6 and calculated $H_{123}^{\rm E}$ for the following two compositions in Table 1.

Table 1

			calculated <i>H</i> ^E for binary			_	calculated	reported
			H_{12}^{E}	H_{23}^{E}	$H_{13}^{\rm E}$			
x_1	<i>x</i> ₂	<i>x</i> ₃		$J \cdot mol^{-1}$		$\Delta H_{123}^{\rm E}$	$H_{123}^{\rm E}$ using above eq 6	$H_{123}^{\rm E}$ in corrected Table 5
0.06	0.6996	0.24	111.2	602.2	444.1	9621.9	686.9	690.7
0.16	0.6002	0 2398	220.4	610.1	764.3	0/73 1	774 7	803.8

I found that calculated values of H_{123}^{E} match well with those reported in the corrected Table 5.

I did not check the other four correlations for calculating excess enthalpies of binaries $(H^{\rm E})$. Also I did not check the calculations of $\Delta H^{\rm E}_{123}$ with eq 7.

AUTHOR INFORMATION

Corresponding Author

*E-mail: b_bhatt26@hotmail.com.

 Received:
 April 29, 2011

 Accepted:
 July 16, 2011

 Published:
 August 11, 2011

