Comment on "Excess Enthalpies of Binary and Ternary Mixtures Containing Dibutyl Ether, Cyclohexane, and 1-Butanol at 298.15 K"

B. I. Bhatt*

Aavishkar Consultancy Services 1/7, Tirthnagar Society, Ahmedabad 380061, India
Trefer to the article "Excess Enthalpies of Binary and Ternary
—Mixtures Containing Dibutyl Ether, Cyclohexane, and 1Butanol at 298.15 K" by Aguilar et al. in J. Chem. Eng. Data, 2009, 54, 1672-1679 and Corrections in J. Chem. Eng. Data, 2009, 54, 2341-2342.

I used the Redlich-Kister eq 1 with constants given in Table 4 of the original paper, to calculate the excess enthalpy of a binary $\left(H^{\mathrm{E}}\right)$. I found that eq 1 is incorrect. It should read as below.

$$
\begin{equation*}
H^{\mathrm{E}}=x(1-x) \cdot\left[\sum_{i=0}^{n} A_{i}(2 x-1)^{i}\right] \tag{1}
\end{equation*}
$$

With the use of the above eq 1 and the constants given in Table 4, the values of $H_{12}^{\mathrm{E}}, H_{13}^{\mathrm{E}}$, and H_{23}^{E} match with values listed in Tables 3 (original paper) and 5 (correction).

For the calculation of H_{123}^{E}, I used eqs 6 and 8 with constants, given in Table 6 (correction). Values so calculated did not match with values, given in Table 5 (correction). I therefore used the following equation for the calculation of H_{123}^{E}.

$$
\begin{align*}
H_{123}^{\mathrm{E}}= & \left(x_{1}+x_{2}\right) H_{12}^{\mathrm{E}}+\left(x_{2}+x_{3}\right) H_{23}^{\mathrm{E}} \\
& +\left(x_{1}+x_{3}\right) H_{13}^{\mathrm{E}} \pm x_{1} x_{2} x_{3} \Delta H_{123}^{\mathrm{E}} \tag{6}
\end{align*}
$$

In the above eq 6, if the excess enthalpy of the ternary system $\left(H_{123}^{\mathrm{E}}\right)$ is endothermic, the last term will have negative sign and vice versa. I used the above eq 6 and calculated H_{123}^{E} for the following two compositions in Table 1.

Table 1

x_{1}	x_{2}	x_{3}	calculated H^{E} for binary			$\Delta H_{123}^{\mathrm{E}}$	calculated	reported
			H_{12}^{E}	H_{23}^{E}	H_{13}^{E}			
				$\mathrm{J} \cdot \mathrm{mol}^{-1}$			H_{123}^{E} using above eq 6	H_{123}^{E} in corrected Table 5
0.06	0.6996	0.24	111.2	602.2	444.1	9621.9	686.9	690.7
0.16	0.6002	0.2398	220.4	619.1	764.3	9473.1	774.7	803.8

I found that calculated values of H_{123}^{E} match well with those reported in the corrected Table 5.

I did not check the other four correlations for calculating excess enthalpies of binaries $\left(H^{\mathrm{E}}\right)$. Also I did not check the calculations of $\Delta H_{123}^{\mathrm{E}}$ with eq 7 .

AUTHOR INFORMATION

Corresponding Author

*E-mail: b_bhatt26@hotmail.com.

Received:	April 29, 2011
Accepted:	July 16, 2011
Published:	August 11, 2011

