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ABSTRACT: In this communication, the quantitative structure�property relationship (QSPR) strategy is applied to present two
molecular models for determination of the structure H (sH) hydrate dissociation conditions with methane as help gas. Twenty-one
water “insoluble” hydrocarbon promoters are examined. To propose reliable models, almost all of the available literature data are
studied. Two mathematical methods including the genetic-algorithm-based multivariate linear regression (GA-MLR) and the least
square support vector machines (LSSVM) are applied for determination (selection) of the model parameters. As a result, two
reliable models are developed: (1) QSPR-GA-MLR linear model and (2) QSPR-LSSVM nonlinear model with satisfactory results
quantified by the following statistical parameters: absolute average deviations (AAD) of the represented/predicted hydrate
dissociation pressures from existing experimental values: about 9%, and squared correlation coefficient: 0.956 in the case of using the
first model, and about 4% and 0.992 through applying the second model, respectively. These results demonstrate much better
accuracy through the QSPR-LSSVM nonlinear model than applying the QSPR-MLR linear one.

1. INTRODUCTION

Gas hydrates (or clathrate hydrates) are crystalline solid
compounds composed of water and small molecules like CO2,
N2, methane (CH4), hydrogen (H2), etc. under suitable condi-
tions of low temperatures and high pressures.1�7 They are a
subset of compounds known as clathrates (originating from the
Greek word “khlatron”) or inclusion compounds.1,7 A clathrate
compound is one, in which a molecule or molecules of one/
several components (guest molecules) is/are enclosed in a
structure built from molecules of another component (host
molecules).1,7 The majority of gas hydrates are known to form
three typical hydrate crystal structures: structure I (sI), structure
II (sII), and structure H (sH).1�7 The type of crystal structure
generally depends on the size of the guest molecule(s).1,7

Formation of gas hydrates was found to be one of the reasons
for blockage of transportation pipelines in the natural gas
industry in early 1930s.1,7,8 Therefore, this phenomenon results
in a reduction of the pipelines cross sectional area and conse-
quently excess pressure drop during transportation of natural
gases, leading to high production/processing/transportation
costs and low production/processing/transportation rates, and
also fouling in pipelines leading to restricted flow.1,7,8 In contrast
to the mentioned disadvantages, there are many positive applica-
tions of clathrate hydrates, e.g. in CO2 capture and sequestration,
gas storage, air-conditioning systems in the form of hydrate
slurry, water desalination/treatment technology, concentration
of dilute aqueous solutions, separation of different gases from flue
gas streams, etc., which have been reported, especially in recent
years.1�4,9

Several studies show that the gas hydrate structures have
considerable potential for storage of various gases. For instance,
they can be used for natural gas/hydrogen storage and trans-
portation,10�37 as cool storagemedia in air conditioning systems,
etc.38�41 Storage and transportation in the form of gas hydrates
have the advantages of safety of the corresponding processes,
much lower required space, and lower production costs com-
pared with conventional storage methods like liquefaction.10�37

It has been demonstrated that it is not suitable to use liquefied
natural gas or pipeline transportation for a medium or small scale
natural gas field, where the natural gas hydrate formation process
is a more economical approach.10

However, slow gas hydrate formation rates and high pressure/
low temperature conditions for industrial applications of clath-
rate hydrate storage processes are among the factors that have
been subjects of many studies recently. Gas hydrate promoters
have been generally considered as additives to the hydrate
crystallization (formation) processes to greatly reduce the required
hydrate formation pressure and increase the formation rate and/or
temperature along with modification of the selectivity of hydrate
cages for absorption of various gas molecules in the water cages or
increase in the storage capacity of these structures.42�74

The common gas hydrate formation promoters can
be categorized into two distinct groups: (1) water “soluble”
and (2) water “insoluble”. The first group can consist of mainly
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two branches of substances including those that do not take part
in the structures of the hydrate cages, e.g., tetrahydrofuran
(THF), 1,4-dioxane, 1,3-dioxalane, acetone, etc.,42�47 which
normally form structure II of clathrate hydrates in the pre-
sence/absence of gas molecules42�47 and the ones that take part
in the structures of the hydrate cages such as tetra-n-butylam-
monium halides (TBAX) especially tetra-n-butylammonium
bromide (TBAB) and other halides like tetrabutyl phosphonium
bromide (TBPB),48�74 which form semiclathrate hydrates. THF
from the first and TBAB from the latter categories are the well-
known water-soluble thermodynamic promoters that have been
well-investigated in the past decade.42�74

The thermodynamic models presented in the literature deal-
ing with the representation/prediction of the clathrate hydrate
phase equilibria of the systems containing water-soluble organic
promoters (first category) are generally based on the equality of
fugacities/chemical potentials of the components in the phases
present.47,75�79 The van der Waals�Platteeuw80 (vdW-P) mod-
el is applied for evaluation of the fugacity/chemical potential of
water in the hydrate phase. For instance, Kamran-Pirzaman
et al.81 and Illbeigi et al.82 have recently proposed a thermo-
dynamic model to calculate/estimate the phase equilibria of
corresponding systems containing THF applying the UNIFAC
group contribution model to evaluate the activity coefficient of
water and THF in the aqueous phase. They obtained acceptable
results in comparison with the literature data. Another approach
for this purpose has been reported by Mohammadi and co-
workers,83,84 who successfully studied the use of the well-known
artificial neural networks (ANNs) mathematical tool. However,
very few models have been presented in the literature regarding
the phase behaviors of semiclathrate hydrates (second category).
Mohammadi et al.,85 investigated the application of ANNs for
acceptable representation/prediction of the semiclathrate hy-
drate of hydrogen dissociation conditions for the systems
including TBAB aqueous solutions before the stoichiometric
ratio. Recently, Paricaud86 proposed a thermodynamic model
based on the use of the statistical associating fluid theory with
variable range for electrolytes (SAFT-VRE)87 dealing with aqu-
eous phase and vdW-P80 for solid (hydrate) phase. He reported
acceptable agreement between the predicted dissociation tem-
peratures of the system of hydrates formed in the carbon dioxide
+ TBAB aqueous solution and corresponding experimental data.
New scientific projects are currently in progress to present
simpler models and also generate required experimental phase
equilibrium data for this issue.88 All of the aforementioned
models have been developed for special systems and they still
require extension to all water-soluble hydrate formers.

Water “insoluble” promoters could be some heavy hydrocar-
bons like cyclopentane, cylohexane, methyl cyclohexane,
etc.,1,18,82 which normally form structure H (cyclopentane and
cyclohexane form structure II).1,18,82 Structure H hydrate for-
mers occupy the large cages of hydrate structure andmay be used
to increase gas storage capacity of clathrate hydrates.

Several experimental studies have been made to determine the
effect of water insoluble hydrate formers on hydrate dissociation
conditions of various gases especially methane.18,89�96 For in-
stance, it has been shown that the presence of methyl cyclohexane
can considerably increase the hydrate dissociation temperature or
decrease the hydrate dissociation pressure of the methane + water
system.89 However, methyl cyclohexane does not have strong
promotion effects on the hydrogen sulfide+water system.89 Similar
effects have been previously reported regarding the cyclopentane/

cyclohexane + hydrogen sulfide + water system, though the
promotion effect of cyclopentane or cyclohexane is considerable
compared with the methyl cyclohexane promoter.90,91

Very limited experimental data for the systems containing
heavy hydrocarbon promoters + ethane/carbon dioxide/nitro-
gen are available.92,93 It was argued that the ethane molecule may
competitively occupy the large cages of sII hydrate with cyclo-
pentane or cyclohexane and may consequently occupy large
cages competitively with methyl cyclohexane in sH clathrate
hydrate.93 Experimental measurements show that the promotion
effects of heavy hydrocarbon promoters on the systems contain-
ing carbon dioxide clathrate hydrates are not as considerable as
the effects on the methane clathrate hydrates. However, these
effects on the nitrogen clathrate hydrates are high but may not be
of great interest in gas storage processes as natural gases generally
do not contain high amounts of nitrogen.92,93 Moreover, experi-
mental studies have proven that benzene can shift the hydrate
dissociation conditions of the methane + water system, but
toluene and dimethylbenzenes have almost little or no effect
on the dissociation conditions of methane hydrates.96

The theoretical efforts to model the phase equilibria of the
aforementioned water “insoluble” hydrate formers are almost
similar to those ones performed on the systems containing water-
soluble promoters. For instance, the thermodynamic models are
generally based on equality of fugacities of the components
throughout all present phases. However, the presence of the
fourth phase may lead to divergence of the flash calculations
algorithms in these kinds of models because they are literally
dependent on the initial guess for the initial amounts of the
fourth phase, e.g., liquid hydrate former-rich phase. Furthere-
more, the corresponding solubility data in water required to tune
the especially adopted thermodynamic models are limited. This
fact indicates another limitation of the related algorithms. An-
other point is that most of the reported thermodynamic models
have been checked for especial kinds of promoters and their
capabilities to account for the effects of other heavy hydrocarbon
hydrate formers on gas hydarte dissociation conditions have not
been examined yet. On the other hand, applications of the
traditional numerical methods like ANNs may be conservative
for this purpose because the physical properties such as critical
pressure, temperature, and acentric factors, which can be used to
identify the kind of hydrate promoter, may not guaranty to
acceptably train these networks for representation/prediction of
dissociation conditions of sH clathrate hydrates.

Therefore, there is still a need to develop accurate, predictive
and reliable models for this purpose. In this study, we propose
novel approaches based on the quantitative structure�property
relationship (QSPR) strategy to determine the dissociation
conditions of structure H clathrate hydrates in the systems
containing water “insoluble” hydrocarbon promoter + methane +
water. This is the first time that this kind of molecular model is
applied to gas hydrate modeling.

2. EXPERIMENTAL DATA AND MATHEMATICAL
METHODS

2.1. Experimental Database. Accuracy and reliability of the
models generally depends on the validity/comprehensiveness of
the employed data set for their development.97�128 In this work,
we tried to apply most of the available experimental data
regarding the structure H hydrate dissociation conditions for the
water “insoluble” hydrocarbon promoter + methane + water
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systems.129�145 The chemical structures and other information
about the investigated clathrate hydrate promoters (21
promoters) are reported in Table 1.
2.2. Determination of Molecular Descriptors. Molecular

descriptors are defined as numerical characteristics associated
with chemical structures.98,103,116�128,146�148 They are basic
molecular properties of a compound and normally determined
from the chemical structure. Each type of molecular descriptors is
related to a specific type of interactions between chemical groups
in a particular molecule.98,103,116�128,146�148 Several software
packages are generally used for the computation of molecular
descriptors of a large number of chemical structures. A review of
these software packages can be found in the work of Todeschini
and Consonni.146 In this study, one of the most widely used
software packages, “Dragon”,147 has been employed. This soft-
ware is able to calculatemore than 3000molecular descriptors for
any desired chemical structure. So far, these molecular descrip-
tors have been determined for about 234 000 pure compounds
usingDragon software, which is freely available148 (many of these
compounds have not been synthesized up to now). Since the
values of many descriptors are related to the bond lengths, bond
angles, etc., each chemical structure is generally optimized before

calculation of its molecular descriptors. For this purpose, chemi-
cal structures of all 21 promoters have been sketched in
Hyperchem software149 and optimized using the MM+ (the
classical molecular dynamics) molecular mechanics force field.
Finally, the molecular descriptors have been determined using
the Dragon software.147

2.3. Developing the Models. Having calculated the molec-
ular descriptors from the optimized chemical structures of all
investigated promoters, a linear equation is presented, which is
able to represent/predict the desired parameter (hydrate dis-
sociation pressure) with the smallest number of variables as well
as the highest accuracy.98,103,116�128,146�148 In other words, the
objective is to find a subset of variables (most statistically effec-
tive molecular descriptors on the dissociation conditions) from
all available variables (all molecular descriptors) that are able to
represent/predict the hydrate dissociation pressure with the
lowest possible deviation from the experimental values. A gene-
rally accepted method for this purpose is using the genetic
algorithm-based multivariate linear regression (GA-MLR).150,151

In this method, the genetic algorithm is applied to select the best
subset of variables based on an objective function, as first
performed by Leardi et al.152 in 1992. Fitness functions such as

Table 1. Chemical Structures of the Studied Water “Insoluble” Hydrocarbon Promoters along with Other Information
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R2, adjusted R2, Q2, “Akaike” information content (measure of
the goodness of fit of an estimated statistical model), etc. are
normally applied as objective functions inGA-MLR technique.150,151

The “RQK” fitness function is a novel one proposed to avoid
undesired model properties such as chance correlation, presence
of noisy variables in the models, and other model pathologies
causing lack of model prediction capability.150 Moreover, RQK is
a constrained fitness function based on Q2

LOO statistics (leave-
one-out cross validated variance) and other four tests that must
be fulfilled contemporarily. The detailed description of this
function is presented in the Supporting Information.
In this study, the RQK function is used as the fitness function.

The results of application of GA-MLR with RQK fitness function
have been satisfactory in the previous works.98,103,116�128,146�148

In order to use the GA-MLR algorithm, a computer program has
been written in MATLAB environment.
The main data set is generally divided into two subdata sets

before pursuing the GA-MLR150,151 computational steps includ-
ing the “Training” set and the “Test (prediction)” set. In this
paper, these sets are defined as follows: the “Training” set is used
to generate the model and the “Test” set is used to test the
prediction capability of the obtained model. The process of
division of the main data set into two subdata sets is performed
randomly. For this purpose, about 80% and 20% of the main data
set are randomly selected for the “Training” set (about 238 data),
and the “Test” set (about 60 data). The effect of the allocation
percent of the two subdata sets from the data of main data set on
the accuracy of the model has been already discussed.155

Several validation techniques are generally used to obtain a
valid and reliable model. In this work, the methods recom-
mended by Todeschini et al.153 including the bootstrapping,
y-scrambling, and external validation techniques have been
applied, well-established in the Supporting Information.
Having selected the most proper molecular descriptors, and

consequently derived a linear correlation between these descrip-
tors and hydrate dissociation pressure of the investigated sys-
tems, they have been further treated as the input variables of a
mathematical algorithm for developing the nonlinear QSPR
model, i.e., the nonlinear relations between the desired output
and the selected molecular descriptors. For this purpose, we have
investigated the use of the least-squares support vector machine
(LSSVM) strategy.155

Although ANNmodels have been generally proven to provide
high accuracy for different problems,83,84,97�102,156 they have the
disadvantages of random initialization of the networks and
variation of the stopping criteria during optimization of the
model parameters.156�159 The support vector machine (SVM)
is a well-known strategy developed from the machine-learning
community.156�159 The advantages of the SVM methods over
the traditional ANNs are as follows:156�161

1. More probability for convergence to the global optimum;
2. Normally find a solution that can be quickly obtained by a

standard algorithm (quadratic programming);
3. Need not to determine the network topology in advance;

which can be automatically determined as the training
process ends;

4. There may be generally less probability of the SVM strategy
to be faced with overfitting problem.

The SVM outstanding performance makes it perhaps superior
to the traditional empirical risk minimization principles. Further-
more, as a result of their specific formulation, sparse solutions can

be found and both linear and nonlinear regressions can be
performed.156,158,161

Suykens and Vandewalle161 have reported a modification to
the original SVM to overcome the difficulty of the previous algo-
rithm in finding the final solution because it requires the solution
of a set of nonlinear equations (quadratic programming). Their
method, named as least-squares SVM (LSSVM),161 encompasses
the advantages similar to those of SVM though it requires solving
a set of only linear equations (linear programming), which is
much easier and more rapid compared to the traditional SVM
method.156,158,161

In the LSSVM161 approach, the regression error is defined as
the difference between the represented/predicted property
values and experimental ones, which is considered as an addition
to the constraints of the optimization problem. In traditional
SVM method, the value of the regression error is generally
optimized during the calculations while in the LSSVM,161 the
error is mathematically defined.156,158,161 The detailed descrip-
tions of the LSSVM161 equations and computational steps of the
applied algorithm are presented as Supporting Information.

3. RESULTS AND DISCUSSION

Application of several mathematical strategies was investigated
in order to obtain the best linear model. For this purpose, the
selected molecular descriptors and their quadratic values were
considered as the inputs of themodel. In addition, several function
transforms of the hydrate dissociation pressure (P) were treated as
the output parameters such as log(P), log(P + 1), (P + 0.5)2, P�0.5,
1/P, and 1/(P + 1).152 These function transforms are the most-
widely used ones, which have been normally used in QSPR
methods to model the nearly linear problems.152 As a result,
P�0.5 transform was founded to contribute to the more accurate
results than the others. Therefore, an accurate linear equation
between P�0.5 and the pool of molecular descriptors was obtained
using the GA-MLR150 computational procedure. For obtaining
this equation, the best linear two-molecular descriptor model was

Figure 1. Comparison between the represented (Rep)/predicted
(Pred) results of the first developed GA-MLR150 linear model (eq 1)
and experimental values129�145 of hydrate dissociation conditions of
the investigated systems. P, pressure (MPa). *, Training set; O, test
(prediction) set. The straight curve represents the unity of squared
correlation coefficient.
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determined.98,103,116�128,146�148 This procedure was repeated to
develop the most accurate three, four, five, etc. molecular descrip-
tors linear models.

Figure 1 depicts the represented/predicted hydrate dissocia-
tion conditions applying the primary obtained model vs experi-
mental data.129�145 However, it can be observed from these
results that four of the represented values have much higher
deviations from experimental values129�145 than the other ones.
In order to further investigate the reliability of these four
experimental values, we developed another linear model, con-
sidering them in the test (prediction) set instead of the training
set. Figure 2 shows the subsequent deviations of the hydrate
dissociation pressure values, calculated/estimated by the second
linear model. It is inferred that the corresponding deviations for
these four points have been again much higher than the rest of
the points and also their relative deviations in comparison with
the other represented/predicted points are almost the same as
determined by the first model. Therefore, we may conclude that
these four data points are erroneous or at least they can be
regarded as the outliers of the developed linear model. As a
consequence, a new (third) linear model has been developed
applying all of the experimental data129�145 except those four
points. It was demonstrated that the most accurate GA-MLR150

linear model contains five parameters because further increase in
the number of molecular descriptors does not lead to any
considerable effects on the accuracy of the obtained model.
The final equation is presented as follows:

P�1=2 ¼ � 06164½E�ijð ( 0:00508Þ � 0:19452Mor12vð ( 0:02823Þ
þ 0:70527E1uð ( 0:07074Þ
þ 0:15301HATS4u2ð ( 0:00499Þ
� 0:00006T2 þ 4:06466ð ( 0:06332Þ ð1Þ

The numbers of digits of the reported coefficient values of eq 1
are generally in agreement with the results of conventional
computer algorithms using GA-MLR150 models. In eq 1
• “E” is the seventh eigenvalue from “edge adjacency” matrix
weighted by dipole moment. The “edge adjacency matrix”

or the “bond matrix” is derived from the molecular graph
denoted information about the connectivity of the graph
edges. It is a square symmetric matrix of dimension B � B,
where B is the number of bonds and is generally derived
from the Hydorgen-depleted molecular graph. It is defined
as146

½E�ij ¼
1 if ði, jÞ are adjacent bonds
0 otherwise

(
ð2Þ

The “edge adjacencymatrix”, weighted by dipolemoment, is
defined based on the “edge adjacency matrix”, in which the
diagonal elements are the dipole moments of the corre-
sponding bond. It is somehow a measure of the polarity of
the molecule;

• “Mor12v” is a “3D-MORSE descriptor” (3D-molecule re-
presentation of structures based on electron diffraction),
which is weighted by “van der Waals volume”. It is defined
as146

Mor12v ¼ ∑
nAT � 1

i¼ 1
∑
nAT

j¼ i þ 1
vivj

sinð12rijÞ
12rij

ð3Þ

where nAT, v, and rij are the total number of atoms, van der
Waals volume of a specific atom, and the distance between
the ith and jth atoms in a molecule. It is a measure of
molecular size and shape.

• “E1u” is a directional “WHIM” descriptor. It is the result of
performing “principal component analysis” on the centered
“Cartesian” coordinates of a molecule. The covariance
between the jth and kth coordinates is defined as follows:146

sjk ¼ ∑
nAT

i¼ 1
ðqij�q̅jÞðqik � q̅kÞ ð4Þ

where qij and qik represent the jth and kth coordinates (j and
k = x, y, z) of ith atom, respectively, and q is the correspond-
ing average value. “E1u” is calculated as follows:146

E1u ¼ λ1
2nAT

∑tj12
ð5Þ

where λ1 is the first eigenvalue of the covariance matrix of
the atomic coordinates, which refers to atomic coordinates
with respect to the k axes, and tj1 is the value of the members
of a definite row of the covariance matrix. It is a measure of
molecular size.

• “HATS4u” is a “GATAWAY” descriptor. It is defined as146

HATS4u ¼ ∑
nAT

i¼ 1
∑
nAT

j g i
hihjδðdij; 1Þ ð6Þ

where δ(dij;1) is “Dirac delta” function, which is equal to 1
when the topological distance between atoms i and j is equal
to 1, and it is equal to 0, otherwise. “hi” is the leverage of the
ith atom. These leverages are diagonal elements of the
molecular influence matrix (H) which is defined as146

H ¼ M� ðMT �MÞ�1 �MT ð7Þ
where M is the molecular matrix formed by the centered
“Cartesian” coordinates x, y, z of themolecule atoms (including
hydrogen) in a chosen conformation. Atomic coordinates are

Figure 2. Comparison between the represented (Rep)/predicted
(Pred) results of the second developed GA-MLR150 linear model
(eq 1) and experimental values129�145 of hydrate dissociation conditions
of the investigated systems. P, pressure (MPa). *, Training set; +, test
(prediction) set. The straight curve represents the unity of squared
correlation coefficient.
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assumed to be calculatedwith respect to the geometrical center
of the molecule to obtain translational invariance. The molec-
ular influence matrix is a symmetric nAT � nAT matrix.

The traditional statistical parameters of the developed linear
model are as follows

ntraining ¼ 235, ntest ¼ 59, Rtraining
2 ¼ 0:9720,

Rtest
2 ¼ 0:9331, RMS ¼ 0:042, F ¼ 1587:1

where ntrainiing and ntest are the numbers of experimental hydrate
dissociation data treated in training set and test set, respectively,
Rtraining

2 and Rtest
2 are the squared correlation coefficients of the

training set and test set results, respectively, RMS is the root mean
squared error of the representations/predictions of the model
compared with the experimental values,129�145 and F is the F-ratio
of the obtained GA-MLR150 linear equation (eq 1), which is
defined as the ratio between the model summation of squares
(MSS) and the residual summation of squares (RSS):156,162

F ¼ MSS=dfM
RSS=dfE

ð8Þ

where dfM and dfE refer to the degrees of freedom of the model
and the overall error, respectively. It is a comparison between the
model explained variance and the residual variance. It should be
noted that high values of the F-ratio tests indicate high reliability
of the developed models.

For internal validation of the model, leave-one-out cross
validation technique was initially used. The corresponding para-
meter is normally calculated as follows:98,103,116�128,146�148,156

Q Loo
2 ¼ 1�

∑
n

i¼1
ðyi � ŷicÞ2

∑
n

i¼1
ðyi � y̅Þ2

ð9Þ

where yi is the hydrate dissociation pressure for ith system, y is
mean value of hydrate dissociation pressure for all of the
investigated systems, and ŷic is response of ith object repre-
sented/predicted by the obtainedmodel ignoring the value of the
related object (ith experimental hydrate dissociation pressure).
The smallest absolute difference between this value and the R2

parameter shows the highest reliability of the model. The
evaluated leave-one-out cross validation parameter of the ob-
tained linear model is 0.9650.

Another statistical parameter for internal validation of the
QSPR linear model is the adjusted-R2 parameter, which is
defined as follows:98,103,116�128,146�148,156

Radj
2 ¼ 1� ð1� R2Þ n� 1

n� p0

 !
ð10Þ

where n is the number of experimental values and p0 is the
number of model parameters. The smallest absolute difference
between this value and the R2 parameter indicates the highest
reliability of the model. The evaluated adjusted-R2 parameter of
the obtained linear model is 0.9713.

As mentioned earlier, for testing the validity of the first
developed model, we have used several validation techniques
including, bootstrap technique, y-scrambling, and external vali-
dation techniques, which are explained in detail in the Supporting
Information file.98,103,116�128,146�148,156 Consequently, the value
ofQ boot

2 parameter (bootstrap parameter) of the obtained model

was evaluated to be 0.9629, the value of intercept a (y-scrambling
parameter) was calculated as �0.015 for the developed linear
model, and the evaluated Qext

2 (external validation parameter) of
the obtained linear model was determined to be 0.973.

Figure 3 depicts the represented/predicted hydrate dissocia-
tion conditions by eq 1 vs experimental data.129�145 The devia-
tions of these results in comparison with the experimental
values129�145 have been better interpreted in Figure 4. All of
the calculated/estimated hydrate dissociation pressure values by
eq 1, and the corresponding deviations from experimental
values,129�145 accompanied with the detailed allocation of the
molecular descriptors in each organic promoter are extensively
presented as Supporting Information.

The selected molecular descriptors were later treated using the
LSSVM161 mathematical method to develop a more accurate and
reliable model. The selected molecular descriptors by the GA-
MLR150,151 model were considered as the input parameters of the
LSSVM161 strategy. The twomain parameters of this algorithm are
σ2 and γ, which are supposed to be optimized using a proper
optimization method. However, selecting the best optimization
procedure for this purpose is still a challenge. To select the most
efficient optimization method, the following characteristics of the
corresponding algorithm should be taken into account:156,164�172

1. Ability to handle nondifferentiable, nonlinear, and multi-
modal cost functions;

2. No requirement of extensive problem formulation. In tradi-
tional methods (such as integer programming, geometric
programming, branch and bound methods, etc.) special math-
ematical formulation is necessary to determine a problem;

3. Ease of use, i.e., few control variables to steer the mini-
mization. These variables should also be robust and easy to
choose;

4. No sensitivity to starting point;
5. Good convergence properties, i.e., consistent convergence

to the global optimum in consecutive independent trials.
Due to the preceding characteristics and the high nonlinear-

ity of the SVM algorithm, application of nonpopulation based

Figure 3. Comparison between the represented (Rep)/predicted
(Pred) results of the final (third) developed GA-MLR150 linear model
(eq 1) and experimental values129�145 of hydrate dissociation conditions
of the investigated systems. P, pressure (MPa). *, Training set; O, test
(prediction) set. The straight curve represents the unity of squared
correlation coefficient.
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optimization methods such as simplex simulated annealing
algorithm (M-SIMPSA),173 and Levenberg�Marquardt (LM)174

may be conservative.156

In this work, we have modified the optimization part of the
LSSVM161 algorithm developed by Pelckmans et al.162 and
Suykens and Vandewalle161 to use the robust hybrid genetic
algorithm (H-GA) method.167,168 This modification not only
results in quicker computational steps but also leads the optimi-
zation procedure to be insensitive to the starting points. For this
purpose, the traditional genetic algorithm151 has been hybridized
with pattern-search method to perform the local optimization
more accurate and faster than the traditional genetic algorithm
method.151 Therefore, the optimization toolbox of MATLAB
software has been implemented, which is able to perform parallel
computations. This feature may effectively decrease the required
time of the optimization process to converge to the global
optimum. The number of populations of the optimization
algorithm applied in this work was set to 1000. In order to
ensure that the value of the final solution was very close to the
global optimum of the problem, the optimization procedure was
repeated for several times. In the next step, the database is divided
into three subdata sets including the “Training” set, the “Valida-
tion (Optimization)” set, and the “Test” set. In this study, the
“Training” set is used to generate the model structure, the
“Validation (Optimization)” set is applied for optimization of the
model, and the “Test (prediction)” set is used to investigate the
prediction capability and validity of the proposed model. The
division of the database into three subdata sets is normally
performed randomly. For this purpose, about 80%, 10%, and
10% of the main data set are randomly selected for the “Training”
set (206 data points), the “Optimization” set (44 data points), and
the “Test” set (44 data points).

Results of a particular computational route to achieve the
optimum parameters of the LSSVM161 model are shown in
Figure 5. The value of the probable global optimum of the
problem (although determination of the real global optimum of
the problem may not be generally easy); that is, a compromise
between all of the local optima can be well-interpreted in the

figure. A large difference between the values of the LSSVM161

parameters leads to us not being able to show all of the local optima
of the problem during the optimization procedure. However, it is
possible to observe these values by scaling-up the presented figure.
The optimized values of the parameters of the LSSVM161 algorithm
were calculated as follows: γ = 1000 and σ2 = 10.935. The numbers
of the reported digits of the two aforementioned parameters are
normally obtained by sensitivity analysis of the overall errors of the
optimization procedure to the corresponding values.

The determined hydrate dissociation conditions and their
deviations using the developed QSPR-LSSVM model vs the
experimental values,129�145 are reported in Figures 6 and 7,
respectively. Moreover, the statistical parameters of this model
are shown in Table 2. All of the determined pressure values by the
developed QSPR-LSSVM nonlinear model, the corresponding
deviations from experimental values,129�145 and the detailed
allocation of the molecular descriptors in each organic promoters
are extensively presented as Supporting Information. The mat
files (MATLAB file format) of the obtained model (developed as
software) is also presented as Supporting Information file and the
instructions for running the developed computer program is well
indicated in the Appendix. Therefore, anyone can easily apply the
software (by running the program) to reproduce all of our results
and predict phase equilibria of the investigated systems at
temperature conditions of interest. All of the required parameters
as inputs of the computer program for any kind of heavy
hydrocarbon hydrate formers (studied in this work) can be easily
observed in the Supporting Information XLS file.

Careful investigation of the Figures and Table 3 shows that the
absolute deviations of the calculated/estimated hydrate dissocia-
tion conditions from experimental values129�145 do not pursue
similar trends by increasing the experimental values regarding the
two developed models (QSPR-GA-MLR and QSPR-LSSVM).
Furthermore, the corresponding absolute relative deviations for a
particular hydrate dissociation pressure may be so different
applying each of the developed models. This is mainly due to the

Figure 5. Contour route of the H-GA167,168 optimization algorithm in
LSSVM161 mathematical approach: * along with dashed line, the
computational route to converge to the global optimum of the problem;
g, the probable global optimum of the problem. σ2 and γ are the
parameters of the LSSVM161 model.

Figure 4. Deviations of the determined hydrate dissociation pressure
values of the studied systems by eq 1 from experimental values.129�145 P,
pressure (MPa). *, Training set; O, test (prediction) set. The straight
curve represents the unity of squared correlation coefficient.
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following factors: 1. The different mathematical basis of these
models. For instance, the GA-MLR150,151 linear model leads the
absolute deviations to increase linearly in comparison with the
experimental values129�145 because this model has been developed
based on solutions of a system of linear equations as explained
before. However, the aforementioned trend is different for the
QSPR-LSSVM nonlinear model, which depends on the radial
basis of the support vector machine method;161 2. The random
allocations of the data through subdata sets may result in different
trends for representation/prediction of the hydrate dissociation

conditions. Therefore, one datummay be used in training set in the
first model while it may be applied in validation or test sets in the
second one; 3. In this work, we are dealing with a parameter
(hydrate dissociation pressure) that we are almost confident about
its nonlinear relationship with the physical properties of the
promoters such as critical temperature and critical pressure (the
previously proposed nonlinear thermodynamic models for this
purpose demonstrate this fact). Therefore, itmay be concluded that
a nonlinear relationship between the hydrate dissociation pressure
and physicochemical characteristics (molecular descriptors) may
lead tomuch better accuracy of the results especially for the hydrate
dissociation pressures with more different behaviors as function of
temperatures than the others; 4. Finally and perhaps the most
importantly is the fact that in linear regression procedures, the
accumulation of most of the points, used in regression, defines the
general trend of the results obtained from the final relation between
inputs and outputs of the calculation procedure. However, in
algorithms such as LSSVM,161 accumulations of the data points
are distributed in a continuous feasible region. Therefore, the
trends of the results are not defined only by a single accumulation
of the input data. As a result, the QSPR-LSSVM model may
occasionally lead to very different hydrate dissociation values in
comparison with the linear QSPR-GA-MLR model.

On the other hand, the deviations of the calculated/estimated
hydrate dissociation pressures generally increase with increasing
the temperature. Furthermore, we may not be able to define a

Figure 7. Deviations of the determined hydrate dissociation pressure
values of the studied systems by the QSPR-LSSVM model from
experimental values.129�145 P, pressure (MPa). O, Training set; +,
validation (optimization) set; Δ, test (prediction) set. The straight
curve represents the unity of squared correlation coefficient.

Table 2. Statistical Parameters of the QSPR-LSSVM Non-
linear Modela

statistical parameter value

Training Set

R2 0.992

absolute average relative deviationb, % 3.4

standard deviation error 0.22

root mean square error 0.22

Nc 206

Validation Set

R2 0.993

absolute average relative deviation, % 6.8

standard deviation error 0.24

root mean square error 0.24

N 44

Test Set

R2 0.994

absolute average relative deviation, % 5.0

standard deviation error 0.21

root mean square error 0.21

N 44

Training + Validation + Test Set

R2 0.992

absolute average relative deviation, % 3.9

standard deviation error 0.08

root mean square error 0.22

N 294
a R2 = squared correlation coefficient. b%AARD = (100/(N � n))
∑i
N((|Rep.(i)/Pred.(i)� Exp.(i)|)/(Exp.(i))), where n is the number of

the model parameters. cNumber of experimental data.

Figure 6. Comparison between the represented (Rep)/predicted
(Pred) results of the developed QSPR-LSSVMmodel and experimental
values129�145 of hydrate dissociation conditions of the investigated
systems. P, pressure (MPa). O, Training set; +, validation (optimization)
set; Δ, test (prediction) set. The straight curve represents the unity of
squared correlation coefficient.
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Table 3. Determined Hydrate Dissociation Conditions and Absolute Relative Deviations of the Obtained Results Using the Final
Two Developed Models from Experimental Values129�145

QSPR-GA-MLR linear model QSPR-LSSVM nonlinear model

promoter Pa/MPa Tb/K PRep./Pred./MPa ARD %c P Rep./Pred./MPa ARD %

2-methylbutane 2.654 275.2 2.49 6.2 2.678 0.9

2.978 276.2 2.747 7.8 2.982 0.1

3.64 277.8 3.262 10 3.560 2.2

4.15 279 3.738 9.9 4.085 1.6

2.241 274 2.229 0.5 2.359 5.3

2.955 276.2 2.748 7.0 2.982 0.9

3.501 277.4 3.114 11 3.403 2.8

2,2-dimethylpropane 0.4 276.6 0.801 100 0.732 83

1.014 282.9 0.996 1.8 1.021 0.7

1.593 286 1.166 27 1.935 21

2.944 289.9 1.479 50 3.557 21

4.861 292.8 2.133 56 4.859 0.0

2,2-dimethylbutane 1.598 276 1.615 1.1 1.605 0.4

2.028 278 1.898 6.4 2.048 1.0

2.391 279.2 2.105 12 2.385 0.3

3.339 282.2 2.813 16 3.502 4.9

5.22 285.4 4.086 22 5.198 0.4

7.51 288.2 6.043 20 7.129 5.1

1.415 275 1.498 5.9 1.432 1.2

1.805 276.8 1.719 4.8 1.766 2.2

2.601 279.9 2.243 14 2.609 0.3

3.75 282.8 3.009 20 3.778 0.7

0.332 244.8 0.354 6.6 0.351 5.7

0.447 251.4 0.441 1.3 0.412 7.8

0.626 258.8 0.595 5.0 0.664 6.1

1.241 274 1.394 12 1.287 3.7

0.509 254.4 0.494 2.9 0.516 1.4

0.548 255.9 0.525 4.2 0.570 4.0

0.597 257.85 0.57 4.5 0.636 6.5

0.623 258.85 0.595 4.5 0.666 6.9

0.678 260.85 0.653 3.7 0.717 5.8

0.751 263.35 0.737 1.9 0.764 1.7

0.882 267.35 0.912 3.4 0.835 5.3

0.966 269.65 1.046 8.3 0.916 5.2

1.025 271.35 1.165 14 1.019 0.6

1.095 272.85 1.284 17 1.152 5.2

2,3-dimethylbutane 2.078 275.9 1.998 3.8 2.133 2.6

2.482 277.4 2.289 7.8 2.497 0.6

3.088 279.2 2.716 12 3.101 0.4

3.795 280.8 3.237 15 3.826 0.8

4.95 282.6 3.975 20 4.895 1.1

8.19 286.4 6.885 16 8.161 0.4

2,2,3-trimethylbutane 1.475 275.6 1.605 8.8 1.618 9.7

1.84 277.4 1.855 0.8 1.874 1.8

2.247 279.5 2.231 0.7 2.248 0.0

2.702 280.9 2.549 5.7 2.573 4.8

5.94 288 6.185 4.1 6.185 4.1

7.55 289.4 7.824 3.6 7.416 1.8

2,2-dimethylpentane 3.287 275.9 2.383 28 2.602 21

3.819 277.4 2.763 28 3.297 14

4.556 279.2 3.356 26 4.114 9.7
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Table 3. Continued

QSPR-GA-MLR linear model QSPR-LSSVM nonlinear model

promoter Pa/MPa Tb/K PRep./Pred./MPa ARD %c P Rep./Pred./MPa ARD %

5.14 280.31 3.825 26 4.611 10

5.832 281.34 4.355 25 5.073 13

6.195 282.2 4.916 21 5.468 12

6.691 282.8 5.353 20 5.751 14

3.79 286.6 eliminated eliminated

5.7 288.2 eliminated eliminated

7.15 290 eliminated eliminated

1.734 274.8 2.18 26 2.092 21

2.264 277 2.68 18 3.112 37

3.009 279.2 3.385 12 4.114 37

3.93 281.3 4.368 11 5.055 29

3.62 280.6 3.995 10 4.740 31

5.42 283.6 6.049 12 6.144 13

7.28 286.4 9.926 36 7.752 6.5

methylcyclopentane 2.199 276.5 2.444 11 2.225 1.2

2.578 277.8 2.779 7.8 2.646 2.6

3.195 279.5 3.335 4.4 3.296 3.2

3.812 280.8 3.884 1.9 3.895 2.2

3.22 279.2 3.222 0.1 3.172 1.5

3.94 281.3 4.136 5.0 4.153 5.4

4.7 282.6 4.914 4.6 4.913 4.5

6.14 284.8 6.86 12 6.531 6.4

7.44 286 8.46 14 7.614 2.3

8.69 287.2 10.715 23 8.842 1.7

10.01 287.8 12.191 22 9.510 5.0

2.635 278.2 2.897 9.9 2.788 5.8

2.937 278.6 3.019 2.8 2.936 0.0

2.965 279 3.155 6.4 3.091 4.2

3.289 279.7 3.412 3.7 3.382 2.8

3.737 280.35 3.678 1.6 3.676 1.6

4.606 282.2 4.649 0.9 4.665 1.3

4.999 283 5.198 4.0 5.174 3.5

5.295 283.2 5.346 1.0 5.310 0.3

6.653 285.2 7.336 10 6.876 3.4

8.625 287 10.273 19 8.628 0.0

1.75 274.28 2 14 1.619 7.5

1.98 275.25 2.173 9.7 1.869 5.6

2.22 276.2 2.374 6.9 2.136 3.8

2.48 277.08 2.583 4.2 2.406 3.0

2.77 277.99 2.83 2.2 2.712 2.1

3.08 278.88 3.112 1.0 3.044 1.2

3.47 279.78 3.441 0.8 3.417 1.5

3.88 280.67 3.822 1.5 3.830 1.3

4.29 281.48 4.229 1.4 4.251 0.9

4.75 282.27 4.693 1.2 4.707 0.9

5.25 283.06 5.239 0.2 5.214 0.7

5.79 283.86 5.9 1.9 5.784 0.1

6.44 284.66 6.691 3.9 6.414 0.4

7.12 285.43 7.627 7.1 7.081 0.5

7.92 286.21 8.79 11 7.818 1.3

8.57 286.77 9.802 14 8.385 2.2

9.34 287.4 11.171 20 9.061 3.0
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Table 3. Continued

QSPR-GA-MLR linear model QSPR-LSSVM nonlinear model

promoter Pa/MPa Tb/K PRep./Pred./MPa ARD %c P Rep./Pred./MPa ARD %

methylcyclohexane 1.599 275.6 1.851 16 1.763 10

2.137 277.6 2.198 2.9 2.197 2.8

2.688 279.4 2.608 3.0 2.678 0.4

3.357 281.2 3.149 6.2 3.289 2.0

3 280.2 2.829 5.7 2.930 2.3

3.2 280.6 2.95 7.8 3.067 4.2

6 285.6 5.526 7.9 5.768 3.9

10.2 289.6 11.306 11 9.889 3.0

11.2 290.4 13.566 21 10.941 2.3

3.99 282.6 3.701 7.2 3.895 2.4

4.62 284.2 4.539 1.8 4.781 3.5

6.47 286.45 6.303 2.6 6.478 0.1

7.61 287.4 7.38 3.0 7.377 3.1

8.82 289.2 10.406 18 9.389 6.5

10.5 290.25 13.042 24 10.739 2.3

2.041 277.1 2.1 2.9 2.080 1.9

2.951 279.9 2.742 7.1 2.832 4.0

3.937 282.2 3.528 10 3.708 5.8

4.606 283.4 4.089 11 4.309 6.4

7.391 287.1 7.01 5.2 7.081 4.2

2.65 279.48 2.629 0.8 2.702 2.0

2.93 280.49 2.919 0.4 3.029 3.4

3.17 281.43 3.235 2.1 3.380 6.6

3.87 282.42 3.623 6.4 3.809 1.6

4.37 283.39 4.081 6.6 4.304 1.5

4.81 284.44 4.689 2.5 4.936 2.6

5.2 284.95 5.034 3.2 5.283 1.6

5.5 285.44 5.401 1.8 5.644 2.6

5.96 285.95 5.832 2.1 6.050 1.5

6.34 286.49 6.348 0.1 6.514 2.7

6.75 286.96 6.853 1.5 6.946 2.9

7.34 287.46 7.461 1.6 7.437 1.3

8.33 288.4 8.852 6.3 8.445 1.4

9.13 288.97 9.908 8.5 9.110 0.2

1.42 274.09 1.64 15 1.493 5.1

1.54 274.78 1.73 12 1.611 4.6

1.66 275.28 1.801 8.5 1.702 2.5

1.75 275.79 1.876 7.2 1.801 2.9

1.87 276.26 1.953 4.4 1.896 1.4

1.99 276.79 2.044 2.7 2.010 1.0

2.11 277.26 2.131 1.0 2.116 0.3

2.25 277.8 2.238 0.5 2.245 0.2

2.39 278.3 2.344 1.9 2.372 0.8

2.7 279.25 2.568 4.9 2.634 2.4

3.05 280.26 2.847 6.7 2.950 3.3

3.45 281.27 3.174 8.0 3.316 3.9

3.9 282.28 3.563 8.6 3.744 4.0

4.43 283.29 4.029 9.1 4.249 4.1

5.03 284.3 4.601 8.5 4.845 3.7

5.72 285.29 5.28 7.7 5.531 3.3

6.5 286.28 6.133 5.6 6.329 2.6

7.42 287.25 7.191 3.1 7.227 2.6
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Table 3. Continued

QSPR-GA-MLR linear model QSPR-LSSVM nonlinear model

promoter Pa/MPa Tb/K PRep./Pred./MPa ARD %c P Rep./Pred./MPa ARD %

8.48 288.29 8.666 2.2 8.322 1.9

0.519 251.5 0.48 7.5 0.525 1.2

0.559 253.15 0.512 8.4 0.539 3.6

0.619 255.7 0.57 7.9 0.634 2.4

0.686 258.1 0.634 7.6 0.745 8.6

0.774 261 0.729 5.8 0.832 7.5

0.873 264 0.853 2.3 0.852 2.4

0.984 267 1.012 2.8 0.872 11

1.063 269.05 1.15 8.2 0.945 11

1.145 271 1.309 14 1.091 4.7

1.213 272.6 1.467 21 1.273 4.9

cis-1,2-dimethylcyclohexane 1.871 275.8 1.861 0.5 1.899 1.5

2.237 277.4 2.136 4.5 2.308 3.2

2.816 279.4 2.579 8.4 2.932 4.1

3.433 281 3.049 11 3.553 3.5

4 282 3.403 15 4.017 0.4

5.29 284.4 4.601 13 5.449 3.0

6.81 286.2 5.955 13 6.895 1.2

7.63 287.4 7.257 4.9 8.064 5.7

9.67 288.8 9.369 3.1 9.636 0.4

11.32 290 12.065 6.6 11.151 1.5

1.57 274.18 1.634 4.1 1.552 1.1

1.67 274.65 1.695 1.5 1.646 1.4

1.8 275.25 1.778 1.2 1.774 1.4

2.03 276.22 1.926 5.1 2.000 1.5

2.29 277.18 2.096 8.5 2.248 1.8

2.57 278.14 2.283 11 2.523 1.8

2.89 279.1 2.501 13 2.829 2.1

3.28 280.1 2.765 16 3.188 2.8

3.93 281.58 3.243 17 3.814 3.0

4.71 283.04 3.849 18 4.576 2.8

5.66 284.53 4.671 17 5.541 2.1

6.83 285.99 5.765 16 6.708 1.8

7.75 286.93 6.691 14 7.586 2.1

8.89 287.96 7.993 10 8.666 2.5

2,3-dimethyl-1-butene 2.53 275.7 2.751 8.7 2.576 1.8

3.275 277.8 3.438 5.0 3.217 1.8

4.088 279.53 4.23 3.5 4.042 1.1

4.805 280.78 4.996 4.0 4.839 0.7

3,3-dimethyl-1-butene 2.016 276.2 2.009 0.3 2.027 0.6

2.423 277.6 2.273 6.2 2.359 2.6

2.933 279.2 2.659 9.3 2.891 1.4

3.871 281.42 3.357 13 3.909 1.0

3,3-dimethyl-1-butyne 2.851 275.8 2.725 4.4 2.852 0.0

3.216 276.9 3.053 5.1 3.278 1.9

3.878 278.4 3.641 6.1 3.935 1.5

4.133 278.9 3.824 7.5 4.170 0.9

4.567 279.6 4.162 8.9 4.510 1.2

cycloheptene 2.106 275.1 1.984 5.8 2.164 2.8

2.671 277.7 2.524 5.5 2.629 1.6

3.051 279.2 2.941 3.6 3.014 1.2

3.809 281 3.597 5.6 3.655 4.0
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Table 3. Continued

QSPR-GA-MLR linear model QSPR-LSSVM nonlinear model

promoter Pa/MPa Tb/K PRep./Pred./MPa ARD %c P Rep./Pred./MPa ARD %

cis-cyclooctene 2.082 276.9 2.683 29 1.999 4.0

2.562 278.5 3.16 23 2.484 3.0

3.009 280 3.766 25 3.073 2.1

3.561 281.3 4.419 24 3.719 4.4

adamantane 1.779 275.1 1.738 2.3 1.598 10

2.165 276.9 2.02 6.7 2.103 2.9

2.51 278.4 2.315 7.8 2.544 1.4

3.001 280.2 2.761 8.0 3.106 3.5

1.79 275.2 1.752 2.1 1.625 9.2

1.941 275.9 1.855 4.4 1.819 6.3

2.3 277.6 2.149 6.6 2.307 0.3

2.709 279.1 2.473 8.7 2.757 1.8

ethylcyclopentane 3.59 280.2 3.565 0.7 3.607 0.5

4.02 281.2 4.024 0.1 4.044 0.6

5.16 283.2 5.263 2.0 5.181 0.4

6.39 284.8 6.722 5.2 6.404 0.2

7.93 286.4 8.932 13 7.954 0.3

9.13 287.4 10.921 20 9.099 0.3

1,1-dimethylcyclohexane 2 280.2 2.179 8.9 2.266 13

2.34 281 2.346 0.3 2.471 5.6

2.82 282.4 2.693 4.5 2.855 1.2

3.34 283.6 3.057 8.5 3.235 3.1

4.3 285.8 3.96 7.9 4.150 3.5

5.51 287.8 5.196 5.7 5.347 3.0

6.06 288.8 6.043 0.3 6.106 0.8

7.53 290.6 8.22 9.2 7.760 3.1

9.07 291.8 10.413 15 9.053 0.2

10.13 292.6 12.416 23 9.985 1.4

11.53 293.2 14.24 24 10.714 7.1

1.07 274.67 1.398 31 0.848 21

1.37 276.67 1.619 18 1.370 0.0

1.76 278.65 1.9 8.0 1.877 6.6

2.19 280.63 2.265 3.4 2.376 8.5

2.9 282.61 2.751 5.1 2.918 0.6

3.74 284.57 3.412 8.8 3.597 3.8

4.75 286.53 4.351 8.4 4.540 4.4

6.08 288.51 5.773 5.0 5.874 3.4

6.77 289.31 6.558 3.1 6.538 3.4

cis-1,4-dimethylcyclohexane 1.62 274.13 1.856 15 1.602 1.1

1.76 274.75 1.959 11 1.727 1.9

1.88 275.3 2.053 9.2 1.849 1.6

2.03 275.98 2.181 7.4 2.014 0.8

2.24 276.79 2.348 4.8 2.233 0.3

2.46 277.55 2.524 2.6 2.459 0.0

2.79 278.57 2.795 0.2 2.797 0.3

3.14 279.53 3.095 1.4 3.155 0.5

3.53 280.5 3.451 2.2 3.561 0.9

3.93 281.44 3.858 1.8 4.002 1.8

4.22 281.97 4.121 2.3 4.275 1.3

4.45 282.45 4.384 1.5 4.539 2.0

5.01 283.43 5.009 0.0 5.130 2.4

5.62 284.3 5.685 1.2 5.720 1.8
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branch of hydrate promoters, for which the developed models
lead to obtaining poorer or better results in comparison with
other groups of the investigated heavy hydrocarbon promoters.
However, consistent experimental clathrate hydrate dissociation
data generally shows a straight line behavior in semilogarith-
mic pressure�temperature diagram. Consequently, we may
doubt some of the experimental data regarding 2,2-dimethyl-
pentane hydrate former based on this phenomenon. These plots
are reported in Supporting Information excel file. Our developed
models also show high deviations for the corresponding hydrate
dissociation data.

Another element to consider is that we have tried to use
almost all of available corresponding experimental data129�145

in open literature. However, several error sources in experi-
mental measurements including calibration of pressure trans-
ducers, temperature probes, and possible errors during the
measurements of phase equilibria such as improper design of
the equipment, insufficient experimental time to pass the
metastable region, etc.175�177 may lead to generate unreliable
experimental data and consequently contribute to decrease
the accuracy and prediction capability of the developed
models.

Table 3. Continued

QSPR-GA-MLR linear model QSPR-LSSVM nonlinear model

promoter Pa/MPa Tb/K PRep./Pred./MPa ARD %c P Rep./Pred./MPa ARD %

6.32 285.3 6.649 5.2 6.482 2.6

6.78 285.72 7.13 5.2 6.831 0.8

7.16 286.15 7.673 7.2 7.206 0.6

8.04 286.97 8.927 11 7.974 0.8

8.53 287.49 9.889 16 8.497 0.4

9.13 287.95 10.871 19 8.983 1.6

ethylcyclohexane 6.3 283.6 6.387 1.4 6.423 2.0

8.9 286 9.784 9.9 8.659 2.7

cycloheptane 3.39 281.4 3.043 10 3.110 8.3

4.62 284.1 4.187 9.4 4.490 2.8

5.15 285 4.72 8.3 5.099 1.0

6.54 286.8 6.148 6.0 6.598 0.9

7.79 288.2 7.781 0.1 8.043 3.2

9.15 289.2 9.381 2.5 9.227 0.8

10.93 290.4 12.073 10 10.801 1.2

cyclooctane 4.21 282.4 4.156 1.3 4.225 0.4

5.36 284.4 5.469 2.0 5.433 1.4

6.29 285.8 6.803 8.2 6.507 3.4

6.63 286.4 7.56 14 7.031 6.0

7.55 287.4 eliminated eliminated

9.65 289 9.089 5.8 7.994 17

11.65 290.4 12.728 9.3 9.762 16

1.6 274.08 1.8 13 1.665 4.1

1.84 275.16 1.962 6.6 1.858 1.0

2.03 276.17 2.147 5.8 2.069 1.9

2.29 277.15 2.346 2.4 2.302 0.5

2.53 278 2.545 0.6 2.529 0.0

2.79 278.83 2.765 0.9 2.776 0.5

3.14 279.78 3.054 2.7 3.094 1.5

3.57 280.96 3.487 2.3 3.551 0.5

4.13 282.13 4.016 2.8 4.088 1.0

4.64 283.07 4.539 2.2 4.591 1.1

5.28 284.11 5.241 0.7 5.235 0.9

5.83 284.9 5.897 1.1 5.793 0.6

6.59 285.9 6.914 4.9 6.592 0.0

7.5 286.91 8.272 10 7.508 0.1

8.53 287.87 9.908 16 8.485 0.5

8.84 288.13 10.5 19 8.767 0.8

9.33 288.57 11.538 24 9.260 0.8

overall 9.0 3.9
a P = pressure. b T = temperature. c%ARD = 100∑i

N((|Rep.(i))/(Pred.(i) � Exp.(i)|))/(Exp.(i)).
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4. CONCLUSION

Two novel molecular models have been presented for deter-
mination of hydrate phase equilibria of the systems containing
water “insoluble” hydrocarbon promoter + methane + water.
Twenty-one promoters were examined for this purpose. The
experimental data129�145 reported in open literature were ap-
plied for developing and testing the models. The genetic-algo-
rithm-based multivariate linear regression150,151 (GA-MLR) was
used to select themost appropriatemodel parameters (molecular
descriptors) from a domain of descriptors. The required para-
meters of the linear model are the numbers of 5 molecular
descriptors in each investigated molecule (promoter). The least-
squares support vector machines161 (LSSVM)mathematical tool
was applied to present a more accurate nonlinear model.
Furthermore, the pattern search hybrid genetic algorithm (H-
GA)167,168 optimization method was implemented to optimize
the LSSVM161 model performance. The statistical parameters of
the obtained models show that they are reliable, comprehensive,
and predictive tools in order to represent/predict the sH hydrate
dissociation conditions for the methane + water “insoluble”
hydrocarbon promoter + water system, which are especially
applicable in gas storage processes. Another issue to point out is
the effect of uncertainties of the experimental data, applied for
developing the model, on the obtained predicted results that
cannot be ignored. It is undoubtedly possible to develop more
accurate and predictive methods in the case of availability of more
reliable phase equilibrium data.

’APPENDIX A. INSTRUCTION FOR RUNNING THE
PROGRAM

To run the program, developed based on the QSPR-LSSVM
model, the LSSVM toolbox developed for MATLAB is
required.162 First, one should insert the directory of the toolbox
as the main directory in MATLAB. Later, it is required to drag and
drop the model .mat file into the MATLAB workspace.

Example:
Calculation of the clathrate hydrate dissociation pressure of

2-methylbutane at 275.2 K
First, calculate and enter the molecular descriptors for

2-methylbutane at 275.2 (see the Supporting Information XLS
file). The set of molecular descriptors are as follows:

EEig07d ([E]ij) Mor12v E1u T∧2 HATS4u∧2
0 �0.49 0.514 75735.04 1.990921

The hydrate dissociation pressure is then calculated simply
using the below command line:

P_calc=simlssvm({trainV.P',trainV.T',type,gam,sig2,'RBF_kernel',
'preprocess’},{alpha,b},[0 �0.49 0.514 75735.04 1.990921])
The output result of the model will be 2.61 MPa. The

corresponding experimental value is 2.65 MPa.

’ASSOCIATED CONTENT

bS Supporting Information. Detailed results of the two final
developed models accompanied with the molecular descriptors
present in each organic promoter in XLS format, the detailed
equations of the applied mathematical algorithms in DOC
format, and the developed computer program in MAT format.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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