JOURNAL OF CHEMICAL & ENGINEERING DATA

Reply to "Comment on 'Excess Enthalpies of Binary and Ternary Mixtures Containing Dibutyl Ether, Cyclohexane, and 1-Butanol at 298.15 K'''

Fernando Aguilar,[†] Fatima E. M. Alaoui,[†] Cristina Alonso-Tristán,[†] José J. Segovia,[‡] Miguel A. Villamañán,[‡] and Eduardo A. Montero^{*,†}

[†]Departamento de Ingeniería Electromecánica, Escuela Politécnica Superior, Universidad de Burgos, E-09006 Burgos, Spain [‡]Grupo de Termodinámica y Calibración TERMOCAL, ETS de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid, Spain

In response to the Comment sent by B. I. Bhatt related to "Excess Enthalpies of Binary and Ternary Mixtures Containing Dibutyl Ether, Cyclohexane, and 1-Butanol at 298.15 K" (*J. Chem. Eng. Data* **2009**, *54*, 1672–1679), which was our first article on the validation of the experimental technique and new data on $H^{\rm E}$ measurements, we can add the following clarifying comments.

With respect to the first statement that eq 1 is incorrect to calculate the excess enthalpy of binary systems with the constants given in Table 4 of the original paper, we agree with Mr. Bhatt that there is misleading information about the A_i coefficients. When eq 1 was introduced first to validate the experimental technique with literature references (Table 2), A_i coefficients started with i = 1, 2, etc.; then the same eq 1 was used to fit the new experimental binary data reported in Table 4, but we started with i = 0, 1, 2, etc. Obviously, the A_i parameters in eq 1 should be corrected to A^{i-1} .

The second statement is that, for the calculation of H^{E}_{123} with eqs 6 and 8 with the constants given in Table 6 (correction; see *J. Chem. Eng. Data* **2009**, *54*, 2341–2342), the calculated values did not match the experimental values given in Table 5 (corrected).

the binary systems has been used to calculate eq	e binai	nary systems has b	een used to	calculate eq	16
--	---------	--------------------	-------------	--------------	----

$$H_{12}^{\rm E} = x_1 \cdot x_2 \cdot \sum_{i=1}^{n} A_{i-1} \cdot (x_1 - x_2)^{i-1}$$
(6)

Although the Redlich–Kister equation, eq 1, was used to validate the apparatus, eq 1 is not the only equation or model we have used to fit the new data of the binary systems, as commented in the Results and Discussion section of the original paper (*J. Chem. Eng. Data* **2009**, *54*, 1672–1679). In fact, when fitting the ternary data H^{E}_{123} , eq 6, the H^{E}_{13} representation by the Redlich–Kister equation is used (as it is used that for the calculation of eq 5). But for the H^{E}_{12} and H^{E}_{23} binary systems, the respective best fits (eqs 1 and 2) have been used, and the fitting parameters are those presented in Table 6 (correction; *J. Chem. Eng. Data* **2009**, *54*, 2341–2342). Even by using eq 1 for the fitting of H^{E}_{23} , the agreement is quite similar.

As an example we show our partial calculations with eqs 6 and 8, using the coefficients of Table 6 (correction), for the same mole fractions used by Mr. Bhatt in his letter, in Table 1.

Table 1											
			calculated $H^{\rm E}$ for binary								
			$H^{\rm E}_{12}$	H^{E}_{23}	H^{E}_{13}		calculated	reported			
x_1	<i>x</i> ₂	<i>x</i> ₃		$J \cdot mol^{-1}$		$x_1 x_2 x_3 \Delta H^{E}_{123}$	$H^{\rm E}_{123}$ using eqs 6 and 8	$H_{123}^{\rm E}$ Table 5 (corrected)			
0.0600	0.6996	0.2404	57.4	501.0	46.2	97.1	701.8	690.7			
0.1600	0.6002	0.2398	119.0	361.9	127.3	218.11	826.39	803.84			
	<i>x</i> ₁ 0.0600 0.1600	x ₁ x ₂ 0.0600 0.6996 0.1600 0.6002	x1 x2 x3 0.0600 0.6996 0.2404 0.1600 0.6002 0.2398	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$\begin{array}{c} \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Here we have to clarify that the form of eq 1 is correct for the calculation of binary systems $(x_1 + x_2 = 1)$, where $(1 - x)^*$ is undoubtedly $x_2 = (1 - x_1)$. For ternary systems when calculating the terms H_{12}^{E} , H_{13}^{E} , and H_{23}^{E} in eq 6, with $x_1 + x_2 + x_3 = 1$, the calculation of, for example, H_{12}^{E} , refers to the x_1 and x_2 mole fractions of species 1 and 2 in the ternary mixture and not to x_1 and $(1 - x_1 = x_2 + x_3)$. Therefore, the following explicit form of eq 1 for

The agreement between the calculated and the experimental data match well enough. The same procedure is followed with eqs 6 and 7. The results obtained are the ones reported in Table 6 (correction).

AUTHOR INFORMATION

Corresponding Author *E-mail: emontero@ubu.es.

 Received:
 June 30, 2011

 Accepted:
 July 5, 2011

 Published:
 August 11, 2011

