JOURNAL OF **CHEMICAL &** ENGINEERING DATA

Isobaric Vapor-Liquid Equilibria for the 1-Propanol + Ethylene Glycol Monopropyl Ether and 1-Butanol + Ethylene Glycol Monopropyl **Ether Systems**

Seonghoon Hyeong,[†] Sunghyun Jang,[†] Chang Jun Lee,[‡] and Hwayong Kim^{*,†}

⁺School of Chemical and Biological Engineering, Seoul National University, Daehak-dong, Kwanak-gu, Seoul 151-744, Korea [‡]Samsung Corning Precision Materials, Myeongam-ri, Tangjeong-myeon, Asan-city, Chungcheongnam-do 336-725, Korea

ABSTRACT: Vapor-liquid equilibria (VLE) for 1-propanol + ethylene glycol monopropyl ether and 1-butanol + ethylene glycol monopropyl ether systems were investigated. The systems studied are isobaric VLE of the highly associating fluid mixtures, and the measurements were carried out at several pressures (60 kPa, 80 kPa, and 100 kPa) using Fischer VLE 602 equipment. A consistency test with respect to the experimental data was conducted using Fredenslud and Wisniak methods. Correlations of the experimental data were carried out using a two-term virial equation for vapor-phase fugacity coefficients and the three suffix Margules, Wilson, NRTL, and UNIQUAC models for liquid-phase activity coefficients. The results show good agreements with the experimental data at the C3E1 rich region but not at the alcohol rich region due to the strong and complex association of these systems. Additionally there are no azeotrope points.

1. INTRODUCTION

In these days, surfactants are used to improve various valueadded industrial processes, including fiber, pharmaceutical, cosmetics, food, agrichemicals, and petrochemical industries. It is therefore important to accurately measure the phase behavior data (i.e., vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE)) of surfactants and their mixtures. In particular, ethoxylated alcohol, a nonionic surfactant, and its mixtures with hydrocarbons or alcohols exhibit strong association, due to the participation in both intermolecular and intramolecular associations resulting from the coexistence of ether (O) and hydroxyl (OH) groups in the same molecule. In order to quantify the phase behavior we have performed isothermal VLE¹ and isobaric VLE^{2,3} experiments of nonionic surfactants and hydrocarbon mixture systems. However, in contrast to the abundance of phase equilibrium data for water + surfactant⁴⁻⁷ measured at atmospheric pressure, few data have been collected for nonionic surfactant + hydrocarbon^{8,9} and alcohol¹⁰ systems.

Our previous studies have investigated the branch effect of a surfactant (C3E1 and iC3E1) mainly in mixtures with linear hydrocarbons, using isothermal VLE of *n*-hexane + C3E1 and *n*-heptane + C3E1,¹ isobaric VLE of *n*-hexane + *i*C3E1 and *n*-heptane + *i*C3E1,² and isobaric VLE of *n*-heptane + C3E1 and *n*-octane + C3E1.³ In this study we measured VLE of both the ethoxylated alcohol and normal alcohol systems, which are 1-propanol + ethylene glycol monopropyl ether (C3E1) and 1-butanol + ethylene glycol monopropyl ether (C3E1), respectively, at several different pressures (60 kPa to 100 kPa). A consistency test of the experimental data was carried out using Fredenslud and Wisniak methods, and correlations were conducted using the two-term virial equation for vapor-phase fugacity coefficients¹¹ and the three suffix Margules equation,¹² Wilson,¹³ NRTL,¹⁴ and UNIQUAC¹⁵ models for liquid-phase activity coefficients.

2. EXPERIMENTAL SECTION

2.1. Materials. 1-Propanol and 1-butanol were supplied by Aldrich (U.S.A.), and the minimum purities are 99.9 % and 99.7 % (GC grade), respectively. Ethylene glycol monopropyl ether (C3E1) was supplied by Aldrich (U.S.A), and the minimum purity is 99.4 % (GC grade). We used these materials without further pre-experimental purification, because there were no other notable peaks detected in the preliminary GC analysis.

2.2. Apparatus and Procedures. The apparatus and procedures are exactly the same as described in a previous paper.^{2,3} Thus, they are summarized below, and for any detailed description please refer to the original paper.^{2,7}

The apparatus used in this work was Labodest VLE 602 (Fischer), which circulates both vapor and liquid phases to achieve fast phase equilibrium.

The pressure and heating rate controller was set at the desirable value which makes about 2 drops per second of vapor circulating speed, and the feed was heated at the isobaric condition. Following that, the feed was boiled in the feed reservoir and transported into the equilibrium cell as an overheated vapor. The feed under the equilibrium condition circulated through both the top- and the bottom-side of the glass tube simultaneously. It is assumed that the composition of the flow circulating through the top-side of the tube is vapor composition and through the bottom-side liquid stream is liquid phase composition. The key point is that the vapor circulating speed should not exceed 2 drops per second to ensure the stable equilibrium state. The system is considered to be under equilibrium conditions, when the temperature in the equilibrium cell remains

Special Issue: Kenneth N. Marsh Festschrift

Received:	August 9, 2011
Accepted:	October 11, 2011
Published:	October 28, 2011

Table 1. Experimental Vapor-Liquid Equilibrium Data and Activity Coefficients for the Binary System 1-Propanol (1) + Ethylene Glycol Monopropyl Ether (2) at 60 kPa, 80 kPa, and 100 kPa

Р	T						
(kPa)	(K)		y_1	standard deviation of T	standard deviation of x_1	standard deviation of y_1	$\ln(\gamma_1/\gamma_2)$
100.0	422.75	0.00000	0.00000				
$(0.19)^{a}$	420.34	0.02056	0.08769	0.042	0.00120	0.00045	-0.10630
	416.78	0.04923	0.20814	0.042	0.00191	0.00049	-0.02026
	413.60	0.07865	0.31235	0.028	0.00062	0.00144	0.01165
	410.47	0.10999	0.40520	0.035	0.00212	0.00219	0.03246
	406.78	0.15358	0.50186	0.042	0.00038	0.00356	0.02315
	402.13	0.21230	0.60424	0.014	0.00163	0.00323	0.02321
	397.11	0.28264	0.69849	0.092	0.00064	0.00197	0.03949
	391.32	0.38637	0.79505	0.090	0.00229	0.00135	0.06224
	385.77	0.51085	0.87160	0.012	0.00354	0.00115	0.09321
	379.85	0.66334	0.93110	0.042	0.00018	0.00086	0.12360
	374.44	0.83141	0.97112	0.057	0.00544	0.00158	0.09672
	372.20	0.90913	0.98609	0.014	0.00013	0.00016	0.12636
	370.00	1.00000	1.00000				
80.0	415.30	0.00000	0.00000				
$(0.16)^{a}$	412.82	0.01807	0.08974	0.056	0.00061	0.00258	0.02250
	410.05	0.03939	0.18435	0.036	0.00064	0.00307	0.03857
	406.80	0.07233	0.30538	0.059	0.00562	0.00146	0.04619
	403.81	0.10376	0.39140	0.035	0.00300	0.00057	0.01840
	399.34	0.15837	0.51175	0.122	0.00704	0.00322	0.00205
	394.86	0.21568	0.62045	0.064	0.00275	0.00410	0.04826
	390.96	0.27204	0.69788	0.228	0.00446	0.00580	0.07145
	385.66	0.37833	0.78720	0.088	0.00532	0.00043	0.03351
	379.43	0.51059	0.87831	0.042	0.00840	0.00132	0.13798
	374.01	0.66614	0.93019	0.007	0.00045	0.00336	0.08177
	369.10	0.81573	0.96897	0.035	0.00138	0.00050	0.11748
	366.12	0.91970	0.98793	0.023	0.00225	0.00062	0.11891
	364.20	1.00000	1.00000				
60.0	406.15	0.00000	0.00000				
$(0.13)^{a}$	403.59	0.01805	0.10223	0.014	0.00011	0.00066	0.13414
	401.09	0.03923	0.19481	0.057	0.00020	0.00316	0.07905
	397.97	0.07247	0.29272	0.028	0.00035	0.00215	-0.04579
	394.73	0.10588	0.39100	0.000	0.00102	0.00052	-0.03578
	391.12	0.14869	0.50005	0.007	0.00279	0.00223	0.00394
	386.96	0.20718	0.61116	0.113	0.00175	0.00559	0.03601
	382.88	0.27958	0.70070	0.035	0.00081	0.00254	0.02273
	377.49	0.38693	0.79214	0.064	0.00632	0.00536	0.00271
	371.95	0.51977	0.87121	0.000	0.00519	0.00202	0.01560
	366.61	0.65621	0.93091	0.379	0.00951	0.00276	0.11652
	362.02	0.79713	0.96687	0.014	0.00130	0.00001	0.14961
	358.84	0.91872	0.98911	0.035	0.00151	0.00004	0.21579
	357.10	1.00000	1.00000				
Standard de	viation of P:	99.7 kPa to 1	00.2 kPa at 1	00 kPa; 79.8 kPa to 80.2 kF	°a at 80 kPa; 59.9 kPa to 60	.2 kPa at 60 kPa.	

constant for at least 30 min. Then, the condensed vapor and liquid composition from the circulating glass tube were sampled by syringe respectively where the samples were analyzed by GC.

3. RESULTS AND DISCUSSION

3.1. Vapor—Liquid Equilibria Measurements. The isobaric vapor—liquid equilibrium data for the binary systems of 1-propanol

(1) + ethylene glycol monopropyl ether (C3E1) (2) and 1-butanol (1) + ethylene glycol monopropyl ether (C3E1) (2) measured at 60 kPa, 80 kPa, and 100 kPa are presented in Tables 1 and 2, respectively. The vapor pressure of each pure component was calculated from the Antoine equation. The constants A, B, and C of the pure components listed in Table 3 were obtained from NIST Web data. Also, the physical properties of the pure components are indicated in Table 3.

where P_i^{sat} is the vapor pressure of the pure i^{th} component.

The fugacity of the vapor, f_i^V , and the liquid, f_i^L , was calculated by the following equation

$$f_i^V = \gamma_i P \phi_i^V = f_i^L = x_i \gamma_i f_i^O \tag{1}$$

where x_i and y_i are the liquid and vapor phase compositions, respectively, P is the total pressure, ϕ_i^V is the fugacity coefficient of the vapor, γ_i is the activity coefficient, and f_i^O is the fugacity of the pure *i* component.

The activity coefficients, γ_i , in Tables 1 and 2 were calculated from

$$\gamma_{i} = \frac{y_{i} P \phi_{i}^{V}}{x_{i} f_{i}^{O}} = \frac{y_{i} P}{x_{i} P_{i}^{sat}} \exp\left[\frac{(B_{ii} - v_{i}^{L})(P - P_{i}^{sat}) + (1 - y_{i})^{2} P \delta_{ij}}{RT}\right]$$
(2)

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{3}$$

where the fugacity coefficient, ϕ_i^V , was calculated from the twoterm virial equation of state, and v_i^L is the molar volume of the *i*-component obtained from appendix 1 (1.3) in ref 16. The second virial coefficients B_{ij} , B_{jj} , and B_{ij} were calculated using a method developed by Hayden and O'Connell's empirical correlation.¹¹ According to Hayden and O'Connell, the total virial coefficient can be taken as the sum of several contributions represented by the following equation

$$B_{total} = B_{free} + B_{metastable} + B_{bound} + B_{chem}$$
(4)

The detailed method and program for the total virial coefficients are explained in appendix 1 (1.1) in ref 16. The constants, i.e. mean radius of gyration (RD), dipole moments (DMU), and association and solvation parameters (ETA), used in this correlation are listed in Table 3. These constants were obtained from ref 16 for 1-propanol and 1-butanol, and those for ethylene glycol monopropyl ether were determined in our previous work.³

3.2. Thermodynamic Consistency Test. The thermodynamic consistency of the measured data was checked using the methods proposed by Van Ness in ref 16, with the third-order Legendre polynomials,¹⁶ expressed as

$$\ln \gamma_1 = g + x_2 g' \qquad g \equiv G^E / RT$$

$$\ln \gamma_2 = g - x_1 g' \qquad g' \equiv (dg/dx_1)_\sigma$$
(5)

$$g = \frac{G^E}{RT} = x_1(1-x_1) \sum_{k=1}^{k} a_k L_k(x_1) k = 0, 1, ..., n$$
 (6)

$$L_{k}(x_{1}) = \{(2k-1)(2x_{1}-1)L_{k-1}(x_{1}) - (k-1)L_{k-2}(x_{1})\}/k$$

$$L_{0}(x_{1}) = 1$$

$$L_{1}(x_{1}) = 2x_{1} - 1$$
(7)

where the subscript σ denotes "along the saturation line", $L_k(x_1)$ is the expressions for Legendre polynomials, and a_k is the parameter of Legendre polynomials. The values of a_k presented in Table 4 were obtained by regression.

Although this method is more robust for isothermal data, the isobaric experimental data can be considered as thermodynamically consistent when the average absolute deviation of the vapor phase composition (AADy) is less than 0.01. The AADy and its pressure (AADP) are included in Table 4. As shown in Table 4, the AADy values of the 1-propanol + C3E1 systems are 0.0141-0.0161, and for the 1-butanol + C3E1 systems are 0.0115-0.0127. The relatively higher AADy values are primarily due to the strong association between C3E1 and alcohol. As aforementioned, C3E1 is a self-associating fluid containing both the ether (-O-) and the hydroxyl (-OH-) group in the same molecule. Thus, from such a molecular structure, 5 different types of intermolecular and one intramolecular hydrogen bonding can potentially occur for C3E1 and its alcohol mixture. In addition, we neglect the dT term in the Gibbs–Duhem equation (dG = $-SdT + VdP + \sum x_i d\mu_i$ because of the difficulty in measuring the excess enthalpy, which could possibly lead to a discrepancy in the experiment and calculation. Accordingly, the temperature dependency of the isobaric VLE data, ranging in approximately 50K to 70K in this work, is considered to be the account for the consistency test results, which is intractable without the excess enthalpy in this method.

In order to deal with the temperature dependency, we performed an additional thermodynamic consistency test proposed by Wisniak^{17,18} expressed as

$$D_W = 100 \frac{|L - W|}{L + W} \tag{8}$$

where L and W are defined as

$$L = \int_{0}^{1} L_{n} dx_{i} = \int_{0}^{1} W_{n} dx_{i} = W$$
(9)

$$L_{n} = \frac{T_{i}^{BP} x_{i,n} \Delta S_{i,n}^{0} + T_{j}^{BP} x_{j,n} \Delta S_{j,n}^{0}}{x_{i,n} \Delta S_{i,n}^{0} + x_{j,n} \Delta S_{j,n}^{0}} - T_{n}$$
(10)

$$W_{n} = \frac{RT_{n}[(x_{i,n}\ln\gamma_{i,n} + x_{j,n}\ln\gamma_{j,n}) - w_{n}]}{x_{i,n}\Delta S_{i,n}^{0} + x_{j,n}\Delta S_{j,n}^{0}}$$
(11)

where T_n is the experimental temperature at each data point, T_i^{BP} and T_j^{BP} are normal boiling points, and $\Delta S_{i,n}^0$ and $\Delta S_{j,n}^0$ are entropy of vaporization of pure components *i* and *j*, respectively. The w_n and $\Delta S_{i,n}^0$ are defined as

$$w_n = x_{i,n} \ln\left(\frac{y_{i,n} \phi_{i,n}^V}{x_{i,n} \phi_{i,n}^{sat} C_{poyn}}\right) + x_{j,n} \ln\left(\frac{y_{j,n} \phi_{j,n}^V}{x_{j,n} \phi_{j,n}^{sat} C_{poyn}}\right) \quad (12)$$

$$\Delta S_{i,n}^{0} = \frac{\Delta H_{i}^{BP}}{T_{i}^{BP}} \tag{13}$$

where $\phi_{i,n}^V$ is the vapor fugacity coefficient calculated by the twoterm virial equation, $\phi_{i,n}^{sat}$ is the pure component fugacity coefficient, C_{poyn} is the poynting correction factor. In addition ΔH_i^{BP} is the heat of vaporization, obtained from DIPPR,¹⁹ at the boiling points of components *i*.

According to the Wisniak area test, the data can be considered as thermodynamically consistent when D_w is less than ~ 3 to 5. The strength of Wisniak test is that it can be performed as an area test and a point test simultaneously by calculating not only *L* and *W* but also L_n and W_n at each data point. In this work, D_w is less than 2 and the maximum D_{wi} is less than 2.5 for each experimental system. It suggests, though all AADy of the measured data are slightly higher than 0.01 by Van Ness test, the experimental data of this work can still be treated as thermodynamically consistent with sufficiently small values of D_w for all systems.

Table 2. Experimental Vapor-Liquid Equilibrium Data and Activity Coefficients for the Binary System 1-Butanol (1) + Ethylene Glycol Monopropyl Ether (2) at 60 kPa, 80 kPa, and 100 kPa

Р	Т	_					
(kPa)	(K)	x_1	y_1	standard deviation of T	standard deviation of x_1	standard deviation of y_1	$\ln(\gamma_1/\gamma_2)$
100.0	422.75	0.00000	0.00000				
$(0.19)^{a}$	420.72	0.03962	0.10713	0.014	0.00028	0.00044	0.08375
	418.46	0.08188	0.20298	0.014	0.00010	0.00031	0.05807
	415.82	0.13267	0.30908	0.040	0.00065	0.00139	0.07360
	413.29	0.18868	0.40387	0.000	0.00034	0.00091	0.06213
	410.76	0.24735	0.49212	0.055	0.00331	0.00051	0.06695
	408.33	0.31407	0.57840	0.014	0.00058	0.00137	0.07599
	405.45	0.39892	0.65736	0.006	0.00111	0.00244	0.03320
	402.24	0.49940	0.74857	0.057	0.00065	0.00147	0.05711
	399.28	0.59756	0.82571	0.007	0.00066	0.00222	0.11700
	396.34	0.70498	0.88626	0.007	0.00156	0.00020	0.13290
	393.88	0.80445	0.93486	0.042	0.00116	0.00079	0.19568
	392.33	0.88513	0.96288	0.078	0.00069	0.00184	0.15718
	391.06	0.95789	0.98874	0.093	0.00176	0.00125	0.29155
	390.28	1.00000	1.00000				
80.0	415.30	0.00000	0.00000				
$(0.16)^{a}$	413.19	0.04552	0.11257	0.042	0.00044	0.00085	-0.01724
	411.12	0.08825	0.21358	0.057	0.00044	0.00146	0.02992
	408.61	0.13887	0.31861	0.000	0.00030	0.00007	0.05595
	406.29	0.18842	0.40795	0.007	0.00151	0.00377	0.07336
	404.10	0.24334	0.48992	0.030	0.00171	0.00024	0.07415
	401.47	0.31307	0.58036	0.057	0.00184	0.00211	0.08388
	398.54	0.40302	0.67335	0.064	0.00006	0.00383	0.08358
	395.79	0.49784	0.75512	0.042	0.00049	0.00003	0.09622
	392.95	0.60674	0.82205	0.042	0.00021	0.00163	0.05305
	390.56	0.70294	0.87709	0.007	0.00033	0.00356	0.05599
	387.91	0.80876	0.92965	0.000	0.00849	0.00156	0.08734
	385.75	0.91768	0.97121	0.030	0.00392	0.00327	0.05194
	384.28	1.00000	1.00000				
60.0	406.15	0.00000	0.00000				
$(0.13)^{a}$	404.19	0.04614	0.11387	0.071	0.00018	0.00020	-0.02997
	402.25	0.08733	0.20964	0.042	0.00069	0.00064	0.00791
	399.78	0.13939	0.31646	0.085	0.00054	0.00156	0.03323
	397.64	0.18846	0.40196	0.042	0.00290	0.00426	0.04132
	395.40	0.24786	0.49402	0.028	0.00222	0.00287	0.06002
	393.05	0.31280	0.57940	0.099	0.00349	0.00122	0.07679
	390.20	0.40741	0.67880	0.042	0.00085	0.00437	0.08711
	387.67	0.49787	0.75345	0.014	0.00511	0.00054	0.08570
	385.05	0.59811	0.81585	0.042	0.00212	0.00046	0.04740
	382.71	0.69388	0.87353	0.007	0.00099	0.00112	0.06749
	380.12	0.80483	0.93120	0.028	0.00332	0.00284	0.13849
	378.14	0.91151	0.97161	0.007	0.00104	0.00022	0.14837
	376.78	1.00000	1.00000				
Standard de	viation of P· (99.7 kPa to 1	00.2 kPa at 1	00 kPa: 79 8 kPa to 80 2 kF	Pa at 80 kPa: 59 9 kPa to 60	2 kPa at 60 kPa	

The parameters used in the Wisniak test and subsequently the results obtained from the point and area test are presented in Table 5.

3.3. Correlations. The correlation of the data was performed by the two-term virial equation for the fugacity coefficient and four activity models (three suffix Margules, Wilson, NRTL, and UNIQUAC) for the activity coefficients. The parameters (mean radius of gyration (RD), dipole moments (DMU), and association and salvation parameter (ETA)) of the two-term virial equation are shown in Table 3 which were obtained from the ref 16 data for 1-propanol and 1-butanol, and the literature^{20–22} for ethylene glycol monopropyl ether. The α_{12} used in NRTL was fixed at 0.47 for all measurements because the systems, including mixtures of a self-associating substance, belong to

	$P_c^{\ a}$	$T_c^{\ a}$		$10^{10} R_D$	$10^{30}\mu$			Antoine constant	s ^a
component	(bar)	(K)	$Z_c^{\ b}$	(m)	(Cm)	ETA	А	В	С
1-propanol	52.00	536.9	0.254	2.736 ^c	1.68 ^c	1.40	4.87601	1441.629	-74.299
1-butanol	45.00	562.0	0.264	3.225 °	1.66 ^c	2.20	4.50393	1313.878	-98.789
C3E1	36.50	615.2	0.248	3.871 ^d	2.00 ^e	1.20 ^f	4.37505	1504.960	-78.744
^{<i>a</i>} NIST Chemist	ry Webbook. ^{23 b}	DIPPR. ^{19 c} V	apor—liquid e	quilibria using U	NIFAC. ^{16 d} Tec	hniques of ch	emistry. ²² ^e Co	mputer calculation	ons. ^{21 f} Group

Table 3. Parameters for the Two-Term Virial Equation of State and Antoine Constants

contribution, Joback method.

Table 4. Legendre Polynomials Parameters^{*a*} and Average Absolute Deviations in Vapor Phase Composition^{*b*} and in Pressure^{*c*} for the Consistency Test of the Studied Systems

	Р					AADP ^b	
system	(kPa)	$A_0^{\ a}$	$A_1{}^a$	A_2^{a}	$A_3^{\ a}$	(%)	$AADy_i^c$
1-propanol + C3E1	100	-0.09109	0.00536	-0.00160	0.08098	0.681	0.01412
	80	-0.11871	-0.06540	-0.03309	0.06453	0.472	0.01654
	60	-0.10687	-0.03917	0.02767	0.08860	0.365	0.01375
1-butanol + C3E1	100	0.03486	0.18504	0.10461	0.14160	0.423	0.01266
	80	-0.02692	0.09061	-0.02321	0.08816	0.268	0.01212
	60	-0.02326	0.14706	0.02269	0.11543	0.257	0.01153
^{<i>a</i>} Legendre polynomials p	parameter. ^b Ave	rage absolute deviat	ion of pressure. ^{<i>c</i>} A	werage absolute dev	viation of vapor co	mposition.	

Table 5. Heat of Vaporization and the Wisniak Consistency Test Results

	Р	$\Delta h_k^{~o}~(\mathrm{kJ/mol})^a$		Wisniak point test		Wisniak area test		
system	(kPa)	1-propanol and 1-butanol	C3E1	min. D_{wi}	max. D _{wi}	L	D	D_w
1-propanol + C3E1	100	41.690	43.052	0.879	2.484	6.244	6.474	1.811
	80	42.199	43.681	0.421	2.100	6.053	6.225	1.403
	60	42.812	44.433	0.023	1.663	5.840	5.956	0.986
1-butanol + C3E1	100	43.152	43.052	0.041	0.940	2.696	2.710	0.264
	80	43.887	43.681	0.051	0.742	2.366	2.356	0.205
	60	44.767	44.433	0.044	1.311	2.280	2.255	0.556
^a DIPPR. ¹⁹								

type 4 according to the literature.¹⁴ The pure parameters q (area parameter) and r (volume parameter) were calculated via the method of Abrams and Prausnitz,¹⁵ and the van der Waals area and volume were obtained from the DIPPR Database.¹⁹ The parameters q, r, and α_{12} are presented in Table 6.

The objective function (*OBJ*) used to quantify the excess Gibbs free energy of the liquid phase is listed as follows

$$OBJ = \sum_{i=1}^{N} \left| \frac{T_i^{\exp} - T_i^{cal}}{T_i^{\exp}} \right| + |y_i^{\exp} - y_i^{cal}|$$
(14)

where T_i^{exp} , T_i^{cal} , y_i^{exp} , and y_i^{cal} represent experimental temperature, calculated temperature, experimental vapor phase composition, and calculated vapor phase composition, respectively. Table 7 contains the parameters for each activity model and the average absolute deviations of the temperature (AAD*T*) and AAD*y*. According to Table 7, all AAD*y* values for each activity model are less than 1 % and AAD*T* values are within 0.187 % to 0.42 %. Therefore it is illustrated that the experimental vapor phase composition shows reasonably good agreements with calculated values; however, the calculated lines deviate about 0.7K to 1.5K from

Table 6. Parameters for the Correlation by NRTL andUNIQUAC

component	area parameter (q)	volume parameter (<i>r</i>)	system	$lpha_{12}$ in NRTL
1-propanol	2.512	2.7798	1-propanol + C3E1	0.47
1-butanol	3.048	3.4542	1-butanol + C3E1	0.47
C3E1	3.832	4.3718		

the measured data. Furthermore, not only dew temperature lines but also bubble temperature lines are shifted as shown in Figures 1 and 2. So, it is reasonable to postulate that the difference between measured data and calculated lines is, in major, caused by T, not y. The reason is that the binary parameters of the activity models do not consider the temperature dependency explicitly. Also, the systems has strong association because of a variety of inter- and intramolecular hydrogen bonds, which also contributes to the difference between the experimental and the calculated values.

Figures 1 and 2 are the vapor—liquid phase equilibrium diagrams, which compare the experimental data to the calculated lines based

Table 7. Interaction Parameters for the Activity Models and Absolute Average Deviations for Temperature and Vapor Phase Composition

	parai	meters ^a	AAD <i>T</i>	
model	A ₁₂	A ₂₁	(%)	AADy _i
1-Propanol (1) + Ethylene G	lycol Monopropy	vl Ether (2) a	t 100 kPa
NRTL	6743.724	-3766.314	0.333	0.00350
UNIQUAC	528.633	-281.498	0.391	0.00264
Wilson	-1731.050	9173.809	0.420	0.00245
Margules	-0.020	0.213	0.299	0.00447
1-Propanol (1	l) + Ethylene (Glycol Monoprop	yl Ether (2) a	at 80 kPa
NRTL	4710.632	-2997.728	0.300	0.00484
UNIQUAC	428.098	-246.700	0.357	0.00391
Wilson	-1444.875	6032.528	0.377	0.00395
Margules	0.041	0.178	0.326	0.00508
1-Propanol	(1) + Ethylene	Glycol Monopro	pyl Ether (2)	60 kPa
NRTL	4237.967	-2978.636	0.187	0.00673
UNIQUAC	240.972	-169.709	0.207	0.00656
Wilson	-915.130	2542.123	0.207	0.00664
Margules	-0.009	0.127	0.265	0.00613
1-Butanol (1)	+ Ethylene Gl	ycol Monopropy	l Ether (2) at	100 kPa
NRTL	5761.476	-3333.462	0.216	0.00696
UNIQUAC	369.761	-232.807	0.224	0.00641
Wilson	-1849.370	5040.444	0.237	0.00645
Margules	0.052	0.228	0.191	0.00794
1-Butanol (1) + Ethylene G	lycol Monopropy	rl Ether (2) at	t 80 kPa
NRTL	6977.357	-3746.208	0.295	0.00387
UNIQUAC	456.050	-265.455	0.322	0.00373
Wilson	-2118.429	6693.267	0.332	0.00394
Margules	-0.024	0.307	0.258	0.00445
1-Butanol (1) + Ethylene G	lycol Monopropy	rl Ether (2) at	t 60 kPa
NRTL	6734.014	-3696.594	0.251	0.00366
UNIQUAC	446.469	-263.370	0.254	0.00408
Wilson	-2221.210	7141.162	0.277	0.00412
Margules	-0.061	0.283	0.207	0.00401
^{<i>a</i>} NRTL $A_{12} = \Delta$ Margules $A_{12} = A$	<i>g</i> ₁₂ ; UNIQU	JAC $A_{12} = \Delta u$	12; Wilson	$A_{12} = \Delta \lambda_{12};$

on NRTL and UNIQUAC. To enhance the visual readability, calculated lines by Wilson and Margules are omitted. As can be seen in Figures 1 and 2, all calculated lines are shifted downward. Moreover, NRTL exhibits better results than UNIQUAC. These results which are summarized in Table 7 can be explained by the temperature dependency above.

In order to evaluate the performance of each activity model, AADy and AADT should be considered simultaneously. However, comparing the AADT is more effective in our evaluation since the AADy values are similar for each activity model. According to our correlations, NRTL and Margules tend to have a better agreement than UNIQUAC and Wilson. It reveals that NRTL and Margules models are more suitable for the normal alcohols (i.e., 1-propanol, and 1-butanol) + C3E1 system. Additionally, NRTL performance is better than Margules for 1-propanol + C3E1, with Margules is better for 1-butanol + C3E1 as a comparison. Generally, NRTL tends to

Figure 1. Experimental data for the system of 1-propanol (1) + ethylene glycol monopropyl ether (2) at 60 kPa, 80 kPa, and 100 kPa: •, 100 kPa; Δ , 80 kPa; gray box, 60 kPa; solid curves, NRTL model; medium-dashed curves, UNIQUAC model.

Figure 2. Experimental data for the system of 1-butanol (1) + ethylene glycol monopropyl ether (2) at 60 kPa, 80 kPa, and 100 kPa: ●, 100 kPa; Δ , 80 kPa; gray box, 60 kPa; solid curves, NRTL model; medium-dashed curves, UNIQUAC model.

show the best agreements between the results than the others including UNIQUAC, Wilson, and Margules.

4. CONCLUSIONS

The isobaric VLE data for the 1-propanol + ethylene glycol monopropyl ether and 1-butanol + ethylene glycol monopropyl ether systems were measured at 60 kPa, 80 kPa, and 100 kPa. Data correlation was performed by four activity coefficient models: NRTL, UNIQUAC, Wilson, and three suffix Margules.

For the Van Ness consistency test results, AADP of all the measured systems are less than 1 %, except AADy. Although all AADy are bigger than 1 %, the experimental data are very comparable, attributed to the lack of the enthalpy term in the Gibbs-Duhem equation and the strong association between alcohol and surfactant molecules. In order to supplement this result, the Wisniak consistency test, which considered the excess enthalpy, was performed. Importantly, the measured data passed the Wisniak consistency test.

The correlation results are in good agreements as all AADy values are less than 1 %, except the AADT values are not small, and as a result all calculated lines shifted downward. This illustrated that the activity models cannot predict the binary systems including both alcohol and surfactant well enough. That is because the temperature dependency and the strong association between alcohol and surfactant are not taken into account in the binary parameters. Among the four activity models, NRTL shows the best performance overall.

AUTHOR INFORMATION

Corresponding Author

*Fax: +82-2-888-6695. E-mail: hwayongk@snu.ac.kr.

Funding Sources

This work was supported by the Brain Korea 21 Program supported by the Ministry of Education, Science and Technology (MEST) and by the National Research Foundation of Korea (NRFK) grant funded by the Korea government (MEST) (No. 2009-0078957).

LIST OF SYMBOLS

А, В, С	Antoine equation constant, eq 1
A_i	parameters of Legendre polynomial
A_{ij}	three suffix Margules model parameter
B_{ii}, B_{jj}	second virial coefficient of pure components
B _{ij}	cross second virial coefficient
D_w, L, W	variables of the Wisniak's consistency test
f_i^L	fugacity of component <i>i</i> in the liquid phase
f_{i}^{O}	fugacity of pure component <i>i</i>
f_i^V	fugacity of component <i>i</i> in the vapor phase
Δg_{ij}	NRTL model parameter
Δh_k^{o}	heat of vaporization of pure component k at
	operating pressure [kJ/mol]
P _c	critical pressure [Mpa]
P_i^{sat}	vapor pressure of pure component <i>i</i> [bar]
R	gas constant
R_D	mean radius of gyration [m]
ΔS_k^{o}	entropy of vaporization of pure component
	<i>k</i> at operating pressure [kJ/Kmol]
T_{c}	critical temperature [K]
T_k^o	boiling point of pure component k at operating
	pressure [K]
Δu_{ij}	UNIQUAC model parameter
v_i^l	molar volume of the saturated liquid
x_i, y_i	compositions of the liquid and vapor phases

 Z_c critical compressibility factor

GREEK LETTERS

γ_i	activity coefficient of component <i>i</i>
$\Delta \lambda_{ij}$	Wilson model parameter
μ́	dipole moment [cm]
ϕ_i^V	fugacity coefficient of component <i>i</i>

SUPERSCRIPT

cal calculated value

exp experimental value

REFERENCES

(1) Jang, S.; Shin, M. S.; Lee, Y.; Kim, H. Measurement and correlation of (vapor + liquid) equilibria for the {2-propoxyethanol (C3E1) + n-hexane} and the {2-propoxyethanol (C3E1) + n-heptane} systems. J. Chem. Thermodyn. 2009, 41 (1), 51–55.

(2) Lee, Y.; Jang, S.; Shin, M. S.; Kim, H. Isobaric vapor-liquid equilibria for the n-hexane + 2-isopropoxyethanol and n-heptane + 2-isopropoxyethanol systems. *Fluid Phase Equilib.* **2009**, 276 (1), 53–56.

(3) Jang, S.; Hyeong, S.; Shin, M. S.; Kim, H. Isobaric vapor-liquid equilibria for the n-heptane + ethylene glycol monopropyl ether and n-octane + ethylene glycol monopropyl ether systems. *Fluid Phase Equilib.* **2010**, 298 (2), 270–275.

(4) Davis, M. I.; Chacon, M. Analysis and interpretation of excess molar properties of amphiphile + water systems: Part 3. Excess molar volumes of isopropoxyethanol + water and isobutoxyethanol + water. *Thermochim. Acta* **1991**, *190* (2), 259–265.

(5) Lai, H.-H.; Chen, L.-J. Liquid–Liquid Equilibrium Phase Diagram and Density of Three Water + Nonionic Surfactant CiEj Binary Systems. J. Chem. Eng. Data **1999**, 44 (2), 251–253.

(6) Lee, H.-S.; Lee, H. Liquid—Liquid Equilibria and Partitioning of o-Chlorophenol in Ethylene Glycol Monobutyl Ether + Water, Diethylene Glycol Monohexyl Ether + Water, and Poly(oxyethylene(4)) Lauryl Ether + Water. J. Chem. Eng. Data **1996**, 41 (6), 1358–1360.

(7) Oh, S.-G.; Kim, J.-G.; Kim, J.-D. Phase behavior and solubilization of 1-hexanol in the water-continuous phases containing surfaceactive compounds. *Korean J. Chem. Eng.* **1987**, *4* (1), 53–59.

(8) Carmona, F. J.; Bhethanabotla, V. R.; Campbell, S. W.; Antonio González, J.; de la Fuente, I. G.; Carlos Cobos, J. Thermodynamic properties of (n-alkoxyethanols + organic solvents). XII. Total vapour pressure measurements for (n-hexane,n-heptane or cyclohexane + 2-methoxyethanol) at different temperatures. *J. Chem. Thermodyn.* **2001**, 33 (1), 47–59.

(9) Carmona, F. J.; González, J. A.; García de la Fuente, I.; Cobos, J. C.; Bhethanabotla, V. R.; Campbell, S. W. Thermodynamic Properties of n-Alkoxyethanols + Organic Solvent Mixtures. XI. Total Vapor Pressure Measurements for n-Hexane, Cyclohexane or n-Heptane + 2-Ethoxyethanol at 303.15 and 323.15 K. J. Chem. Eng. Data 2000, 45 (4), 699–703.

(10) Ramsauer, B.; Neueder, R.; Kunz, W. Isobaric vapour-liquid equilibria of binary 1-propoxy-2-propanol mixtures with water and alcohols at reduced pressure. *Fluid Phase Equilib.* **2008**, 272 (1–2), 84–92.

(11) Hayden, J. G.; O'Connell, J. P. A Generalized Method for Predicting Second Virial Coefficients. *Ind. Eng. Chem. Process Des. Dev.* **1975**, 14 (3), 209–216.

(12) Polling, B. E.; Prausnitz, J. M.; O'Connell, J. P. *The Properties of Gases and Liquids*, 5th ed.; McGraw-Hill: New York, 2001.

(13) Wilson, G. M. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. *J. Am. Chem. Soc.* **1964**, *86* (2), 127–130.

(14) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. *AIChE J.* **1968**, *14* (1), 135–144.

(15) Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. *AIChE J.* **1975**, *21* (1), 116–128.

(16) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC; Elsevier: Amsterdam, 1977.

(17) Wisniak, J. A new test for the thermodynamic consistency of vapor-liquid equilibrium. *Ind. Eng. Chem. Res.* **1993**, 32 (7), 1531–1533.

(18) Barnicki, S. D. How Good Are Your Data? Chem. Eng. Prog. 2002, 98 (6), 58-67.

(19) DIPPR 801 Database, Design Institute for Physical Property Data; American Institute of Chemical Engineers.

(20) Joback, K. G.; Reid, R. C. Estimation of Pure-Component Properties from Group-Contributions. *Chem. Eng. Commun.* **1987**, *57* (1-6), 233–243.

(21) Prausnitz, J. M.; Anderson, T. F.; Grens, E. A.; Eckert, C. A.; Hsieh, R.; O'Connell, J. P. *Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria*; Prentice-Hall, Englewood Cliffs, NJ, 1980.

(22) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents In *Techniques of Chemistry*; Weissberger, Ed.; Wiley: New York, 1986; Vol. 2.

(23) NIST Chemistry Webbook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology. http://webbook.nist.gov/chemistry (accessed Feb 20, 2011).