Synthesis and Conversion of 6-Fluoro Derivatives of 1,3,4-Thiadiazolo-[3,2-*a*]pyrimidine

Muhamadsho A. Kukaniev^a and Cyril Párkányi^b*

 ^aLaboratory of Chemistry of Heterocyclic Compounds, V.I.Nikitin Institute of Chemistry of the Academy of Sciences of the Republic of Tajikistan, 299/2 Ainy St., 734063 Dushanbe, Tajikistan
^bDepartment of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, P.O. Box 3091, Boca Raton, Florida 33431-0991
*E-mail: parkanyi@fau.edu Received July 23, 2010 DOI 10.1002/jhet.767
Published online 4 August 2011 in Wiley Online Library (wileyonlinelibrary.com).

2-Alkyl-, 2-aryl-, and 2-halo-substituted derivatives of 7-methyl-6-fluoro-1,3,4-thiadiazolo[3,2-*a*]pyrimidin-6-one (**3**) were prepared by reaction of 2-substituted 5-amino-1,3,4-thiadiazoles (**1**) and ethyl 2fluoroacetoacetate (**2**) in polyphosphoric acid. A convenient procedure was developed for the synthesis of new 2-amino derivatives of 2-R-7-methyl-6-fluoro-1,3,4-thiadiazolo[3,2-*a*]pyrimidin-6-one (**5**).

J. Heterocyclic Chem., 48, 1308 (2011).

INTRODUCTION

Although research on 1,3,4-thiadiazolo[3,2-*a*]pyrimidines is not a new one—the first article devoted to this problem was published 50 years ago [1], new articles devoted to the chemistry and biological activity of these compounds have been recently published [2–13]. In 2004, a monograph on chemistry and biological activity of 1,3,4-thiadiazolo[3,2-*a*]pyrimidines was published in Russian, but the book could not cover all the aspects of the aforementioned field [14]. Although different syntheses of these compounds are presented in the above publications, not much information can be found about the synthesis of fluorine derivatives of this group of compounds. Patents on 2-trifluoromethyl derivatives [15] and 7-fluorosubstituted 1,3,4-thiadiazolo[3,2-*a*]pyrimidines [16] are available. Also a few articles on the synthesis of 6-chloro-, 6-bromo-, and 6-nitro-1,3,4-thiadiazolo[3,2-*a*]pyrimidines [16–22] have been published. However, there is no information available on the synthesis of the derivatives of this class with a fluoro group in the position 6.

RESULTS AND DISCUSSION

In this work, we studied the possibilities of the synthesis of various derivatives of 1,3,4-thiadiazolo[3,2-*a*]pyrimidine containing the fluorine group in the position 6.

The reaction of 2-substituted 5-amino-1,3,4-thiadiazoles (1a-e) with ethyl 2-fluoroacetoacetic ester in polyphosphoric acid (PPA) leads to the formation of

© 2011 HeteroCorporation

Table 1						
The new derivatives 3.						
3	R	Yield (%)	Mp (°C)			
а	Br	80	219			
b	Cl	69	174			
с	Н	30	164			
d	C_2H_5	46	148			
e	$C(CH_3)_3$	36	117			
f	C_6H_5	70	200			
g	p-CH ₃ C ₆ H ₄	73	255			

2-substituted 6-fluoro-7-methyl-5-oxo-5H-1,3,4-thiadiazolo[3,2-*a*]pyrimidines, which can be isolated in a 30– 80% yield (Scheme 1). The results are summarized in Table 1.

The structures of **3a–g** were confirmed by elemental analysis and ¹H NMR, ¹³C NMR, ¹⁹F NMR, and mass spectra. The ¹H NMR spectra of compounds **3a–g** display a doublet for the protons of the methyl group at 2.2–2.4 ppm with spin–spin coupling constant of 3.73 Hz, which relates to the interactions of the fluorine atom with the methyl group (Fig. 1).

Our next aim was to study the possibility of the synthesis of 2-amino-6-fluoro-7-methyl-5-oxo-5*H*-1,3,4-thiadiazolo[3,2-*a*]pyrimidines **5a–g**, based on the reaction of 2-bromo-6-fluoro-7-methyl-5-oxo-5*H*-1,3,4-thiadiazolo-[3,2-*a*]pyrimidine **3a** with ammonia (**4a**), primary amines (**4b–c**), and secondary amines (**4d–f**). 2-Bromo-6-fluoro-7-methyl-5-oxo-5*H*-1,3,4-thiadiazolo[3,2-*a*]pyrimidine **3a** reacted selectively with **4a–f** in the 2-position giving the new derivatives **5a–f** (Scheme 2 and Table 2).

Refluxing of amines **5a** and **5b** with acetic anhydride did not give the acyl derivatives **6a** and **6b** (Scheme 3).

CONCLUSIONS

The interaction of 2-bromo-6-fluoro-7-methyl-5-oxo-5H-1,3,4-thiadiazolo[3,2-a]pyrimidine with nucleophiles such as amines led only to substitution of the bromine atom located in the position 2 of the ring, but the fluorine atom located in the position 6 of the ring is not replaced. Fluorine atom located in the position 6 of the ring exhibits

Figure 1. The ¹³C NMR data of 3a measured in CDCl₃.

spin–spin interaction with protons of the methyl group in the position 7. The exocyclic amino group in 2-amino-6-fluoro-7-methyl-5-oxo-5H-1,3,4-thiadiazolo[3,2-*a*] pyrimidines has acidic properties and does not undergo acylation.

EXPERIMENTAL

Melting points were determined on a Fisher–Johns melting point apparatus and are uncorrected. The infrared spectra were recorded in potassium bromide pellets on a UR-20. ¹H, ¹³C, and ¹⁹F NMR spectra were measured on a Varian Mercury 400 instrument. The ¹⁹F NMR spectra are not discussed here. Mass spectra were obtained on a Thermo Electron LCQ Deca (San Jose, CA) ion trap mass spectrometer fitted with an electrospray ionization (ESI) source, with the *m*/*z* range of 100– 1000 Da. Elemental analyses were performed by Desert Analytics (Tucson, AZ). 2-Amino-1,3,4-thiadiazole [23], 2-amino-5-phenyl-1,3,4-thiadiazole [24], and 2-amino-5-bromo-1,3,4thiadiazole [25] were obtained as described in the literature.

General procedure for the preparation of 2R-6-fluoro-7methyl-5-oxo-5H-1,3,4-thiadiazolo[3,2-*a*]pyrimidines. A mixture of PPA (10 g) and 2-amino-5-R-1,3,4-thiadiazole (0.001 mol) was placed in a flask and ethyl 2-fluoroacetoacetic ester (0.001 mol) was added. The reaction mixture was stirred for 8 h at 100°C, cooled, and poured into 100 mL of ice-cold water. The precipitate was filtered, washed on the filter with 30 mL of ice-cold water, and poured into 100 mL of ice-cold water. The precipitate was filtered, washed on the filter with 30 mL of ice-cold water, and dried in air for 12 h.

2-Bromo-6-fluoro-7-methyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5one (3a). Yield 2.11 g (80%), mp 219°C., ir (potassium bromide) υ_{max} cm⁻¹: 1700 (C=O), 1590 (C=N); ¹H NMR (CDCl₃): 2.24 ppm (d, 3H from CH₃), ¹³C NMR (CDCl₃): 17.6 (CH₃), 135.8 (C-7), 143.6 (C-6), 147.4 (C-2), 150.5 (C-8), 155.5 (C-5). ESI MS: m/z (%) 264.07(75), 266.07 (100). Anal. Calcd. for C₆H₃BrFN₃OS: C, 27.29; H, 1.15; N, 15.91. Found: C, 27.62; H, 1.14; N,15.81.

2-Chloro-6-fluoro-7-methyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3b). Yield 1.53 g (69%), mp 174°C. ¹H NMR (CDCl₃):

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

Table 2The new derivatives 5.

5	R	R′	Yield (%)	Mp (°C)
а	Н	Н	93	276
b	Н	CH ₃	84	288
с	Н	C_2H_5	84	275
d	C_2H_5	C_2H_5	84	126
e	$-(CH_2)_2-O-(CH_2)_2-$		67	237
f	-(CH ₂) ₅ -		74	182
g	$-(CH_2)_2 - NH - (CH_2)_2 -$		73	194

2.26 ppm (d, 3H from CH₃), ESI MS: m/z (%) 220.13 (100). Anal. Calcd. for C₆H₃ClFN₃OS: C, 32.81; H, 1.38; N, 19.13. Found: C, 32.89; H, 1.33; N,19.09.

6-Fluoro-7-methyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (**3c**). Yield 0.55 g (30%), mp 164°C. ¹H NMR (CDCl₃): 2.37 ppm (d, 3H from CH₃), 8.78 ppm (s, 1H from CH), ESI MS: *m*/*z* (%) 186.13 (100). Anal. Calcd. for C₆H₆FN₃OS: C, 38.92; H, 2.18; N, 22.69. Found: C, 38.54; H, 2.16; N, 22.54.

2-*Ethyl-6-fluoro-7-methyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-***5-***one* (*3d*). Yield 1.00g (46%), mp 148°C. ¹H NMR (CDCl₃): 1.45 ppm (t, 3H from CH₃), 2.39 ppm (d, 3H from CH₃), 3.15 ppm (q, 2H from CH₂), ESI MS: m/z (%) 214.13 (100). Anal. Calcd. for C₈H₈FN₃OS: C, 45.05; H, 3.78; N, 19.71. Found: C, 45.17; H, 3.66; N, 19.56.

2-Tert-butyl-6-fluoro-7-methyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (**3e**). Yield 1.40 g, mp 117°C. ¹H NMR (CDCl₃): 1.49 ppm (c, 9H from 3 CH₃), 2.39 ppm (d, 3H from CH₃), ESI MS: m/z (%): 242.20 (100). Anal. Calcd. for C₁₀H₁₂FN₃OS: C, 49.78; H, 5.01; N, 17.41; S, 13.29. Found: C, 49.84; H, 5.55; N, 17.14; S, 13.16.

6-Fluoro-7-methyl-2-phenyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3f). Yield 2.43 g (70%), mp 200°C. ¹H NMR (DMSO d_6): 2.37 ppm (d, 3H from CH₃), 7.64 ppm (m, 2H from Ph-H), 7.71 ppm (m, 1H from Ph-H), 8.00 ppm (m, 2H from Ph-H), ESI MS: m/z (%) 262.07 (100). Anal. Calcd. for C₁₂H₈FN₃OS: C, 55.16; H, 3.09; N, 16.08. Found: C, 55.21; H, 3.02; N, 15.98.

6-Fluoro-7-methyl-2-p-tolyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3g). Yield 2.63 g (73%), mp 255°C. ¹H NMR (DMSO*d*₆): 2.25 ppm (d, 3H from CH₃), 2.38 ppm (c, 3H from CH₃), 7.41 ppm (d, 2H from Ph-H), 7.69 ppm (d, 2H from Ph-H), ESI MS: *m*/*z* (%), 276.07 (100). Anal. Calcd. for C₁₃H₁₀FN₃OS: C, 56.72; H, 3.66; N, 15.26. Found: C, 56.41; H, 3.59; N, 15.12.

General procedure for the preparation of 2-amino-6-fluoro-7-methyl-5-oxo-5*H*-1,3,4-thiadiazolo[3,2-*a*]pyrimidines (5a-e). Compound 1a (2.64 g, 0.01 mol) was dissolved in methanol and then an amine (0.02 mol) was added with stirring. The reaction mixture was stirred at room temperature for 5 h and then refluxed for 10 min. After cooling the reaction mixture was poured into ice-water (100 mL). The precipitated compounds 5a-e were filtered off and washed with water.

2-Amino-6-fluoro-7-methyl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (5a). Yield 1.85 g (93%), mp 276°C. ¹H NMR (DMSO*d*₆): 2.14 ppm (c, 3H from CH₃), 7.20 ppm (s, 2H from NH₂), ESI MS: *m/z* (%) 201.07 (100). Anal. Calcd. for C₆H₅FN₄OS: C, 36.00; H, 2.52; N, 27.99. Found; C, 36.10; H, 2.49; N, 27.91.

6-Fluoro-7-methyl-2-methylamino-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (5b). Yield 1.80 g (84%), mp 288°C. ¹H NMR (DMSO- d_6): 2.21 ppm (d, 3H from CH₃), 2.88 ppm (d, 3H from CH₃), 8.19 ppm (q, 1H from NH), ESI MS: *m/z* (%) 215.13 (100). Anal. Calcd. for C₇H₇FN₄OS: C, 39.25; H, 3.29; N, 26.15. Found; C, 39.33 H, 3.24; N, 26.13.

6-Fluoro-7-methyl-2-ethylamino-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (5c). Yield 1.93 g (84%), mp 275°C. ¹H NMR (DMSO- d_6): 1.18 ppm (t, 3H from CH₃), 2.23 ppm (d, 3H from CH₃), 3.32 ppm (q, 2H from CH₂), 8.24 ppm (t, 1H from NH), ESI MS: *m*/*z* (%) 229.13 (100). Anal. Calcd. for C₈H₉FN₄OS: C, 42.10; H, 3.97; N, 24.55. Found; C, 42.16; H, 3.75; N, 24.43.

2-Diethylamino-6-fluoro-7-methyl-1,3,4-thiadiazolo[3,2-a]pyr*imidin-5-one (5d).* Yield 1.93 g, (84%), mp 126°C. ¹H NMR (CDCl₃): 1.22 ppm (t, 6H from 2 CH₃), 2.27 ppm (d, 3H from CH₃), 3.45 ppm (q, 4H from 2 CH₂), ¹³C NMR (CDCl₃): 12.8 (CH₃), 17.6 (CH₃), 45.9 (CH₂), 135.8 (C-7), 143.6, (C-6), 147.6 (C-2), 155.4, (C-8), 159.1 (C-5), ESI MS: *m/z* (%) 257.13 (100). Anal. Calcd. for C₁₀H₁₃FN₄OS: C, 46.86; H, 5.11; N, 21.86; S, 12.51. Found: C, 46.97; H, 5.75; N, 21.69; S, 12.61.

6-Fluoro-7-methyl-2-morpholin-4-yl-1,3,4-thiadiazolo[3,2-a]pyr*imidin-5-one* (*5e*). Yield 1.82 g, (67%), mp 237°C. ¹H NMR (CDCl₃): 2.29 ppm (d, 3H from CH₃), 3.50 ppm (d, 4H from 2 CH₂), 3.76 ppm (d, 4H from 2 CH₂), ¹³C NMR (CDCl₃): 17.4 (CH₃), 48.5 (CH₂), 66.0 (CH₂), 144.0 (C-7), 145.9, (C-6), 151.0 (C-2), 152.8, (C-8), 160.5 (C-5), ESI MS: *m/z* (%) 271,20 (100). Anal. Calcd. for C₁₀H₁₁FN₄O₂S: C, 44.44; H, 4.10; F, 7.03; N, 20.88. Found; C, 44.54; H, 4.03; F, 7.10; N, 20.48.

6-Fluoro-7-methyl-2-piperidin-1-yl-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (5f). Yield 2.00 g (74%), mp 182°C. ¹H NMR (CDCl₃): 1.64 ppm (m, 6H from 3 CH₂), 2.23 ppm (d, 3H from CH₃), 3.46 ppm (m, 4H from 2 CH₂), ¹³C NMR (CDCl₃): 17.3 (CH₃), 23.8 (CH₂), 25.2 (CH₂), 49.9 (CH₂), 144.0 (C-7), 145.4 (C-6), 151.0 (C-2), 154.5, (C-8), 160.1 (C-5), ESI MS: m/z (%) 269.20 (100). Anal. Calcd. for C₁₁H₁₃FN₄OS: C, 49.24; H, 4.88; N, 20.88. Found: C, 49.29; H, 4.83 N, 20.81.

6-Fluoro-7-methyl-2-piperazin-1-yl-1,3,4-thiadiazolo[3,2-a]pyr*imidin-5-one* (5g). Yield 1.96 g (73%), mp 194°C. ¹H NMR (CDCl₃): 2.55 ppm (d, 3H from CH₃), 2.79 ppm (m, 4H from

2 CH₂), 3.26 ppm (s, 1H from NH), 3.38 ppm (m, 4H from 2 CH₂), ESI MS: m/z (%) 270.07 (100). Anal. Calcd. for C₁₀H₁₂FN₅OS: C, 44.60; H. 4.49; N, 26.01. Found: C, 44.69; H, 4.43; N, 25.98.

Acknowledgments. The authors thank Fulbright Foundation for providing the grant (to M.A.K.).

REFERENCES AND NOTES

[1] Allen, C. F. H.; Beilfuss, H. R.; Burness, D. M.; Reynolds, G. A.; Tinker, J. F. VanAllan, J. A. J Org Chem 1959, 24, 779.

[2] Santagati, A.; Granata, G.; Marrazzo, A.; Santagati, M. Arch Pharm 2003, 336, 429.

[3] Singh, A.; Nizamuddin J. Indian Chem Soc 2005, 82, 727.

[4] Khan, R. H.; Rastogi, R. C. J Agric Food Chem 1991, 39, 2300.

[5] Suiko, M.; Maekawa, K. Agric Biol Chem 1977, 41, 2047.

[6] Mahran, M. A.; El-Sherbeny, M. A.; El-Obaid, A. R. M. A.; Badria, F. A. Alex J Pharm Sci 1998, 12, 39.

[7] Maekawa, K.; Takeya, R. J Fac Agric Kyushu Univ 1977, 21, 99.

[8] Khan, R. H.; Rastogi, R. C. J Agric Food Chem 1991, 39, 2300.

[9] Santagati, A.; Longmore, J.; Guccione, S.; Langer, T.; Tonnel, E.; Modica, M.; Santagati, M.; Scolaro, L.Monsu; Russo, F. Eur J Med Chem 1997, 32, 973.

[10] Santagati, M.; Modica, M.; Santagati, A.; Russo, F.; Spampinato, S. Pharmazie 1996, 51, 7.

[11] Santagati, M.; Modica, M.; Santagati, A.; Russo, F.; Caruso, A.; Cutuli, V.; Di Pietro, E.; Amico-Roxas, M. Pharmazie 1994, 49, 880.

[12] Maekawa, K.; Takeya, R. J Fac Agric Kyushu Univ 1977, 21, 99.

[13] Salimov, T. M.; Kukaniev, M. A.; Sattorov, I. T.; Osimov, D. M. Pharm Chem J 2005, 39, 311.

[14] Kukaniev, M. A.; Salimov, T. M.; Khaidarov, K. Chemistry and Biological Activity of 1,3,4-Thiadiazolo[3,2-a]pyrimidines (in Russian); Nauka: Moscow, 2004.

[15] Tokunaga, Y.; Kojima, Y.; Maeno, S. I.; Sawai, N.; Saso, Y. (to Kumiai Chemical Industry Co., Ltd., Japan; Ihara Chemical Industry Co., Ltd.). Eur. Pat. Appl., 1987, 52 pp. CODEN: EPXXDW EP 238059 A2 1987092. Chem Abstr 1988, 108, 75418.

[16] Russo, F.; Santagati, A.; Santagati, M. J Heterocycl Chem 1985, 22, 297.

[17] Mahran, M. A.; El-Sherbeny, M. A.; El-Obaid, A. R. M. A.; Badria, F. A. Alex J Pharm Sci 1998, 12, 39.

[18] Kukaniev, M. A.; Nurov, U.; Shukurov, S. Sh.; Khodzhibaev, Yu. Russ Chem Bull (translation of Izv Akad Nauk Ser Khim) 1999, 48, 1143.

[19] Kukaniev, M. A.; Shukurov, S. Sh.; Nasyrov, M. I. Khim Geterotsikl Soedin 1996, 4, 549.

[20] Safarov, S.; Kukaniev, M. A.; Karpuk, E.; Meier, H. J Heterocycl Chem 2007, 44, 269.

[21] Okabe, T.; Taniguchi, E.; Maekawa, K. J Fac Agric Kyushu Univ 1975, 19, 91.

[22] Safarov, S.; Kukaniev, M. A.; Kolshorn, H.; Meier, H. J Heterocycl Chem 2005, 42, 1105.

[23] Laur, R. F.; Zunchoff, G. J Heterocycl Chem 1976, 13, 291.

[24] Shukurov, S. Sh.; Kukaniev, M. A.; Bobogaribov, B. M.; Sabirov, S. S. Izv Akad Nauk Ser Khim 1995, 10, 2035.

[25] Shams, E. D. S. A.; Clauder, O. Acta Chim Acad Sci Hung 1975, 84, 85.