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A series of 2,3,4-trisubstituted quinoline derivatives have been synthesized by reactions between 2-amino-
aryl ketones and dialkyl acetylenedicarboxylate. The synthetic pathway allows for the direct construction of

said quinoline derivatives in pyridine/ethanol at ambient temperature through a zwitterion intermediate.
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INTRODUCTION

Incorporation of the quinoline moiety is very important

in heterocyclic chemistry as it leads to biological activity

in such areas as antiplasmodial [1], intrinsic [2], cytotoxic

[3], functional [4], antibacterial [5], antiproliferative [6],

antimalarial [7], and anticancer activity [8]. In addition,

quinolines are important synthetic materials for the prepa-

ration of nano and mesostructures [9]. In view of their re-

markable significance, a number of methods have

been reported for the synthesis of quinoline derivatives

[10a–h]. Despite the available methods efforts have been

devoted to the development of new quinoline-based struc-

tures [11] and some new synthetic methodology for their

construction [12]. Among them, very few reports are

available on synthesis of 2,3,4-trisubstituted quinoline

derivatives by using 2-aminoaryl ketones and dimethyl

acetylenedicarboxylate (DMAD) and such type of com-

pound shows antiallergic properties [13a–e]. However,

most of the reported methods have significance draw-

backs such as difficulties in workup, drastic reaction con-

ditions and lack of mechanistic details.

The reaction of nucleophiles with activated acetylenes

has attracted the attention of organic chemists for a long

time, especially from vantage point of heterocyclic syn-

thesis. In these reaction processes, zwitterionic species

are known to arise from the addition of nucleophiles

such as triphenylphosphine [14], pyridine [15], dime-

thylsulphoxide [16], isocyanides [17], and ethanol [18]

to activated acetylenes. The formed zwitterionic inter-

mediates can be trapped by suitable substrates to give

stabilized product, and this interception can either be

two-component or multicomponent reaction. The 1:4

zwitterionic intermediate has been exploited in the syn-

thesis of aminofurans [19], iminolactones [19], and 2-

aminopyrroles [20].

Considering the literature background given above

and in view of our general interest in synthesis of heter-

ocyclic compounds [21], herein, we describe an efficient

synthesis of 2,3,4-trisubstituted quinoline derivatives via

the reaction of 2-aminoaryl ketone with dialkyl acetyle-

nedicarboxylate in pyridine/ethanol at room temperature

without using any catalyst through zwitterionic inter-

mediates (Scheme 1).

RESULTS AND DISCUSSION

Our primary investigation was initiated with the reac-

tion of 2-aminoacetophenone and DMAD in ethanol

(5 mL) stirred at ambient temperature without any cata-

lyst or additive gave the desired cyclization product

dimethyl 4-methylquinoline-2,3-dicarboxylate 3a. The

structure of the product was assigned on the basis of

spectroscopic analysis. This initial success enforced us to

check the capability of the protocol by variation in 2-ami-

noaryl ketones and dialkyl acetylenedicarboxylate. But

the limitation of the said process occurred when DMAD

has been replaced by diethyl acetylenedicarboxylate

(DEAD). The reaction didn’t proceed even for a long

time (24 h). To overcome the limitation of above reac-

tion, we have carried out the same reaction in presence
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of pyridine (20 mol %). Surprisingly, in pyridine the

reaction proceeds smoothly at room temperature to afford

expected product. Pyridine is found to be effective pro-

moting medium to complete the reaction with variations

in both the substrates in shorter time with excellent

yields. The results are summarized in Table 1.

Based on the experimental observations, the possible

mechanism for this transformation is depicted in

Scheme 2. The initial event involves the nucleophilic

attack of ethanol or pyridine on dialkyl acetylenedicar-

boxylate form 1:4 zwitterion (I) followed by subsequent

[2 þ 2] cycloaddition of zwitterion to the carbonyl

group of 2-aminoaryl ketone to give an unstable oxetene

[22], which undergoes ring opening followed by cyclo-

dehydration resulting in the formation of 2,3,4-trisubsti-

tuted quinolines.

CONCLUSIONS

A convenient and an efficient one-pot method for the

synthesis of quinoline derivatives from readily accessi-

ble precursors have been developed. Finally, we con-

cluded that pyridine is the most suitable promoting me-

dium for the synthesis of 2,3,4-trisubstituted quinoline

derivatives as compared with ethanol. The simplicity of

the present procedure makes it an interesting alternate to

other approaches. The biomedical applications of these

compounds are under study.

EXPERIMENTAL

All chemicals and solvents were reagent grade and used as
purchased without any further purification. Analytical thin-
layer chromatography was performed on percolated silica gel
60-F 254 plates. The data found were in consistent with the
proposed structure. IR spectra on KBr disks were recorded on

a Shimadzu IR-470 FT-IR spectrophotometer in cm�1. The
routine nuclear magnetic resonance spectra were taken in
CDCl3 using a Bruker Spectrospin Avance II-300-MHz spec-
trophotometer and Jeol-400-MHz spectrophotometer with tetra-
methyl silane (TMS) as an internal standard. Gas chromatogra-

phy mass spectrometry (GCMS) spectra analyses were done on
Shimadzu QP 2010 GCMS. Melting points were determined in
an open capillary tube and were found to be uncorrected.

General procedure for the synthesis of 2,3,4-trisubsti-

tuted quinoline derivatives. To DEAD (0.278 mL, 2 mmol),
pyridine (20 mol %) was added at 0–10�C temperature.

After 15 min stirring 2-amino-5-chlorobenzophenone (0.462 g,
2 mmol) was added, and the mixture was stirred at room tem-
perature. The precipitate obtained was then filtered, washed
with water and petroleum ether, and dried in vacuum. The
crude product was recrystalized from methanol. In some cases

(entry f, i, j) products were obtained by keeping the reaction
mixture for several hours after completion of reaction.

Spectral data. Dimethyl 4-methylquinoline-2,3-dicarbox-
ylate: (a). Creamish powder, mp 99–101�C; IR (KBr): 2958,
1733, 1679, 1231, 812, 785, 767 cm�1; 1H NMR (CDCl3 300

MHz): d ¼ 2.65 (s, 3H, ACH3), 3.75(s, 3H, AOCH3), 3.79 (s,
3H, AOCH3), 6.638–6.666 (dd, 1H, Ar-H), 6.994–7.045 (t,
1H, Ar-H), 7.336–7.392 (t, 1H, Ar-H), 7.821–7.852 (dd, 1H,
Ar-H); 13C NMR (CDCl3 300 MHz): d ¼ 28.22, 51.55, 52.88,
100.24, 118.54, 121.20, 123.84, 131.55, 133.25, 141.89,

144.19, 165.46, 167.84; ms: m/z ¼ 259 [Mþ]. Anal. Calcd. For
C14H13NO4: C, 64.86; H, 5.05; N, 5.40. Found: C, 64.84; H,
5.00; N, 5.37.

Dimethyl 4-phenyl-6-chloroquinoline-2,3-dicarboxylate: (b). Pale
yellow powder, mp152–158�C; (lit.162.5–163�C [13a]); IR
(KBr): 2954, 1727, 1441, 1220, 1054, 866, 833, 755, 702
cm�1; 1H NMR (CDCl3 300 MHz): d ¼ 3.64 (s, 3H,AOCH3),
4.07(s, 3H AOCH3), 7.26–7.78(m, 7H, Ar-H), 8.26–8.29 (d,
1H, Ar-H); 13C NMR (CDCl3 300 MHz): d ¼ 52.56, 53.56,

99.99, 125.40, 128.43, 128.51, 129.17, 129.24, 132.18, 133.78,
135.66, 145.45, 164.09, 167.04; ms: m/z ¼ 355 [Mþ]. Anal.
Calcd. For C19H14NO4Cl: C, 64.14; H, 3.97; N, 3.94. Found:C,
64.11; H, 3.96; N, 3.89.

Dimethyl 4-phenylquinoline-2,3-dicarboxylate: (c). Pale
yellow powder; mp 128–129�C (lit.129–130�C [13a]); IR
(KBr): 3048, 2949, 1736, 1686, 1238, 819, 776, 751, 705
cm�1; 1H NMR (CDCl3 300 MHz): d ¼ 3.76 (s, 3H,AOCH3),
3.80 (s, 3H AOCH3), 6.782–6.809 (dd, 1H, Ar-H) 7.028–7.053
(t, 1H, Ar-H), 7.26(s, 1H, Ar-H) 7.39–7.58 (m, 5H, Ar-H),
7.835–7.864 (dd, 1H, Ar-H); 13C NMR (CDCl3 400 MHz): d
¼ 51.56, 52.85, 98.56, 119.89, 121.45, 126.30, 138.08, 141.76,
145.10, 165.09, 168.46; ms: m/z ¼ 321 [Mþ]. Anal. Calcd. For
C19H15NO4: C, 71.02; H, 4.71; N, 4.36. Found: C, 71.00; H,
4.67; N, 4.34.

Dimethyl 4-(2- chlorophenyl)-6-chloroquinoline-2,3-dicar-
boxylate: (d). Pale yellow powder; mp >300�C; IR (KBr):
2950, 1731, 1685, 1052 826, 774, 736 cm�1; 1H NMR (CDCl3
300 MHz): d ¼ 3.78 (s, 3H AOCH3), 3.81 (s, 3H, AOCH3),
7.257–7.267 (d, 1H, Ar-H), 7.32–7.47 (m, 6H, Ar-H); 13C
NMR (CDCl3 300 MHz): d ¼ 51.69, 53.02, 101.20, 120.45

125.53, 126.40, 126.85, 129.64, 130.24, 131.58, 131.73,
132.58, 133.43, 138.07, 141.16, 143.86, 164.85, 167.88; ms:
m/z ¼ 389 [Mþ]. Anal. Calcd. For C19H13NO4Cl2: C, 58.48;
H, 3.36; N, 3.59 Found: C, 58.49; H, 3.32; N, 3.56.

Diethyl 4-phenylquinoline-2,3-dicarboxylate: (e). White
crystals; mp 97–102�C; IR (KBr): 2992, 1745, 1723, 1377,
1202, 1021, 860,768, 756, 704 cm�1; 1H NMR (CDCl3 400
MHz): d ¼ 0.97–1.00 (t, J ¼ 12Hz, 3H, ACH2ACH3) 1.44–1.48
(t, 3H, J ¼16Hz, ACH2ACH3), 4.06–4.10 (q, 2H, J ¼ 16Hz,

ACH2ACH3), 4.51–4.54 (q, 2H, J ¼ 12Hz, ACH2ACH3), 7.26
(s, 2H, Ar-H), 7.36–7.37 (m, 3H, Ar-H), 7.37–7.62 (m, 3H, Ar-
H), 8.32–8.34 (d, 1H, Ar-H); 13C NMR (CDCl3 400 MHz): d ¼
13.69,14.29, 61.64, 62.72, 126.68, 127.14, 127.60, 128.31,
128.74, 128.82, 128.97, 129.33, 129.49, 130.74, 130.91, 130.99

134.82, 145.89, 147.16, 148.05, 165.36, 167.24; ms: m/z ¼ 349
[Mþ]. Anal. Calcd. For C21H19NO4: C, 72.20; H, 5.44; N, 4.01.
Found: C, 72.22; H, 5.42; N, 4.03.

Scheme 1. Synthesis of 2,3,4-trisubstituted quinoline derivatives.
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Dimethyl 4-phenylquinoline-2,3-dicarboxylate: (f). Pale
yellow crystals; mp 128�C (lit. 129–130�C [13a]); IR (KBr):
2952, 1725, 1443, 1205, 1051, 865,794, 966, 769, 605 cm�1;
1H NMR (CDCl3 400 MHz): d ¼ 3.64 (s, 3H, AOCH3), 4.08

(s, 3H, AOCH3), 7.26 (s, 2H, Ar-H), 7.37–7.38(m, 3H, Ar-H),
7.50–7.63 (m, 3H Ar-H), 8.32–8.35(d, 1H, Ar-H); 13C NMR
(CDCl3 400 MHz): d ¼ 52.50, 53.52, 100.01, 126.67, 127.24,
127.65, 128.31, 128.86, 129.29, 129.34, 130.65, 131.07,

Table 1

Synthesis of 2,3,4-trisubstituted quinolines at room temperature.

Entry R R1 R0 Medium Product Time/h Yielda

a AH ACH3 ACH3 EtOH 20 79

b ACl -Ph ACH3 EtOH 21 77

c AH -Ph ACH3 EtOH 23 75

d ACl 2-ClC6H4 ACH3 EtOH 24 78

e AH -Ph ACH2CH3 Pyridine 15 88

f AH -Ph ACH3 Pyridine 14 87

g ACl -Ph ACH2CH3 Pyridine 12 88

h ACl -Ph ACH3 Pyridine 12 89

i ACl 2-ClC6H4 ACH2CH3 Pyridine 14 86

j ACl 2-ClC6H4 ACH3 Pyridine 15 85

aYields refers to pure isolated product.
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134.49, 144.83, 147.08, 148.09, 165.56, 167.67; ms: m/z ¼
321 [Mþ]. Anal. Calcd. For C19H15NO4: C, 71.02; H, 4.71; N,
4.36. Found: C, 71.00; H, 4.67; N, 4.32.

Diethyl 4-phenyl-6-chloroquinoline-2,3-dicarboxylate: (g). Creamish
powder; mp 255–263�C; IR (KBr): 2980, 1733, 1718, 1292,
1145, 1051, 831, 808, 753, 700 cm�1; 1H NMR (CDCl3 400
MHz): d ¼ 0.96–1.00 (t, 3H, J ¼ 16 Hz, ACH2ACH3), 1.44-

1.48 (t, 3H, J ¼ 16 Hz, ACH2ACH3), 4.06–4.10 (q, 2H, J ¼
16 Hz ACH2ACH3), 4.50–4.54(q, 2H, J ¼ 16 Hz
ACH2ACH3), 7.33–7.36 (m, 2H, Ar-H), 7.51–7.54 (t, 3H, Ar-
H), 7.580–7.586 (d, 1H, Ar-H) 7.738–7.767 (dd, 1H, Ar-H)
8.256–8.281 (d, 1H, Ar-H); 13C NMR (CDCl3 400 MHz): d ¼
13.68, 14.27, 61.80, 62.85, 125.44, 128.03, 128.41, 128.55,
129.17, 129.41, 132.10, 132.29, 134.09, 135.48, 145.53,
145.96, 147.26, 165.02, 166.91; ms: m/z ¼ 383 [Mþ]. Anal.
Calcd. For C21H18NO4Cl: C, 65.79, H, 4.69, N, 3.65 Found:
C, 65.68; H, 4.63; N, 3.64.

Dimethyl-4-phenyl-6-chloroquinoline-2,3-dicarboxylate: (h). Pale
yellow powder; mp155–160�C (lit.162.5–163�C [13a]); IR
(KBr): 3065, 2954, 1741,1728, 1220, 1055, 834,755, 702, 670
cm�1; 1H NMR (CDCl3 300 MHz): d ¼ 3.64(s, 3H AOCH3),
4.07 (s, 3H AOCH3), 7.33–7.36 (m, 2H, Ar-H), 7.52–7.54 (m,

3H, Ar-H), 7.596–7.604 (d, 1H, Ar-H), 7.750–7.787 (dd, 1H,
Ar-H) 8.262–8.292 (d, 1H, Ar-H); 13C NMR (CDCl3 400
MHz): d ¼ 52.58, 53.58, 125.41, 128.44, 128.52, 129.18,
129.24, 132.18, 133.78, 135.65, 145.45, 147.29, 166.50,

167.29; ms: m/z ¼ 355 [Mþ]. Anal. Calcd. For C19H14NO4Cl:
C, 64.14; H, 3.97; N, 3.94. Found: C, 64.08; H, 3.93; N, 3.92.

Diethyl 4-(2-chlorophenyl)-6-chloroquinoline-2,3-dicarbox-
ylate: (i). Creamish powder; mp 98–107�C; IR (KBr): 3059,
2981, 1722, 1239, 1146, 829, 812, 759, 741 cm�1; 1H NMR

(CDCl3 300 MHz): d ¼ 0.98–1.01 (t, 3H, J ¼ 12 Hz,
ACH2ACH3), 1.44–1.48 (t, 3H, J ¼ 16 Hz, ACH2ACH3),
4.09–4.12 (q, 2H, J ¼ 12 Hz, ACH2ACH3), 4.52–4.56 (q, 2H,
J ¼ 16 Hz, ACH2ACH3), 7.24–7.28 (m, 1H, Ar-H), 7.32–7.36
(d, 1H, Ar-H), 7.37–7.42 (m, 1H, Ar-H), 7.44–7.50 (m, 1H,

Ar-H), 7.53–7.57 (d, 1H, Ar-H), 7.73–7.77 (dd, 1H, Ar-H),
8.24–8.28 (d,1H, Ar-H); 13C NMR (CDCl3 400 MHz): d ¼
13.66, 14.26, 61.83, 62.88, 125.00, 126.88, 127.80, 127.87,
129.82, 130.77, 131.15 132.38, 133.20, 133.68, 135.79,144.85,
145.47, 146.67,165.04, 166.27; ms: m/z- 417[Mþ]. Anal.

Calcd. For C21H17NO4Cl2: C, 60.43; H, 4.07; N, 3.35. Found:
C, 60.40; H, 4.03; N, 3.32.

Dimethyl 4-(2-chlorophenyl)-6-chloroquinoline-2,3-dicar-
boxylate: (j). Pale yellow powder; mp > 300�C; IR (KBr):
3067, 2952,1728, 1607, 1442, 1222, 1149, 1064, 849, 813,

760, 744 cm�1; 1H NMR (CDCl3 300 MHz): d ¼ 3.77 (s, 3H,
AOCH3), 4.10 (s, 3H, AOCH3), 7.27–7.31 (d, 1H, Ar-H),
7.36–7.38 (d, 1H, Ar-H), 7.40–7.46 (m, 1H, Ar-H), 7.47–7.52
(m, 1H, Ar-H), 7.56–7.60 (d, 1H, Ar-H), 7.76–7.80 (dd, 1H,

Ar-H), 8.26–8.31 (d, 1H, Ar-H); 13C NMR (CDCl3 400 MHz):
d ¼ 52.79, 53.73, 125.06, 126.93, 127.98, 129.92, 130.88,
131.02, 132.36, 132.55, 132.88, 133.58, 136.07, 145.43,
165.34 166.80; ms: m/z ¼ 389 [Mþ]. Anal. Calcd. For
C19H13NO4Cl2: C, 58.48; H, 3.96; N, 3.59. Found: C, 58.22;

H, 3.76; N, 3.55.
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