Anton V. Dolzhenko, ${ }^{\text {a* }}$ Shiqi Bai, ${ }^{\text {b }}$ Anna V. Dolzhenko, ${ }^{\text {c }}$ and Wai Keung Chui ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Health Sciences, School of Pharmacy, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia
${ }^{\mathrm{b}}$ Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
${ }^{c}$ Perm State Pharmaceutical Academy, 2 Sadovaya Street, Perm 614990, Russian Federation
*E-mail: Anton.Dolzhenko@curtin.edu.au
Received December 14, 2010
DOI 10.1002/jhet. 851
View this article online at wileyonlinelibrary.com.

This article is dedicated to Professor Boris Ya. Syropyatov with our best wishes on the occasion of his 70th birthday.

Abstract

A new convenient synthon for heterocyclic chemistry, namely $1 H$-pyrazolo[3,4- b]pyridin-3-ylguanidine was successfully prepared by selective guanylation of $1 H$-pyrazolo[3,4-b]pyridin-3-amine. A series of 3,4dihydropyrido $\left[2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo $[1,5-a][1,3,5]$ triazin-2-amines was synthesized from $1 H$-pyrazolo[3,4- b] pyridin-3-ylguanidine using aldehydes or ketones as one-carbon inserting reagents. The tautomeric preferences of the products were determined using spectroscopic (e.g., 2D NOESY NMR) and single crystal X-ray diffraction data.

J. Heterocyclic Chem., 49, 763 (2012).

INTRODUCTION

Pyrazolo[1,5-a][1,3,5]triazine ring system has been known since the first report by Checchi and Ridi in 1957 [2] on the synthesis of the compounds with this heterocyclic core. Now, the pyrazolo[1,5-a][1,3,5]triazine nucleus is well recognized as a template for the development of new heterocyclic molecules with potential therapeutic properties [3]. However, information on pyrazolo[1,5-a][1,3,5]triazines fused with other rings, particularly pyridine ring, is limited. The available data concerning synthesis of pyrido[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5]triazines are fragmentary and the products lack appropriate structural characterization [4-7].

N -Heterocyles bearing guanidine moiety in the position vicinal to the endocyclic nitrogen atom are useful building blocks for the construction of the fused amino-1,3,5-triazines. The annelation of the triazine ring can be achieved via a cyclocondensation of the heterylguanidines with a variety of one-carbon inserting reagents. In our program on the synthesis of fused 1,3,5-triazines, this strategy has been successfully applied for various 1,2,4-triazol-5-yl- [8-12], benzimidazol-2-yl- [13-18], benzoxazol-2-yl- [18], benzothiazol-2-yl- [18], pyrimidin-2-yl- [19,20], and quinazolin-2-yl- [17,21] substituted guanidines. Among fused 1,3,5-triazines obtained by this approach, dihydro-1,3,5-triazines appeared to be the
more interesting group in terms of their biological activity (viz., antifolate [14,16], antibacterial [13], and anticancer [12,17] properties).

This study is designed with the objective to synthesize a series of 3,4-dihydropyrido[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5] triazines via the cyclocondensation of $1 H$-pyrazolo[3,4-b] pyridin-3-guanidine (3) with carbonyl compounds (i.e., aldehydes and ketones). The structural features of the products, particularly tautomeric preferences are also discussed herein.

RESULTS AND DISCUSSION

$1 H$-Pyrazolo[3,4-b]pyridin-3-amine (2), required for the synthesis of guanidine $\mathbf{3}$, was prepared using previously reported [22] reaction of 2-chloro-3-cyanopyridine (1) with hydrazine (Scheme 1). The guanylation of $\mathbf{3}$ with cyanamide in the presence of acid proceeded at the exocyclic nitrogen affording 1 H -pyrazolo[3,4-b]pyridin-3-ylguanidine (3) as a salt. The ${ }^{1} \mathrm{H}$ NMR spectrum of the hydrochloride of compound 3 contained a broad signal of four protons at 8.05 ppm corresponding to the guanidine group and two deuterium oxide exchangeable singlets at 12.05 and 13.56 ppm ,

Scheme 1. Synthesis of $1 H$-pyrazolo[3,4-b]pyridin-3-ylguanidine (3).

therefore, suggesting protonation of the endocyclic pyridine nitrogen rather than the guanidine group of $\mathbf{3}$. The base 3 is freely soluble in aqueous solutions of strong alkali (e.g., sodium hydroxide) but can be conveniently isolated by treatment of salt $3 \cdot \mathrm{HCl}$ with aqueous sodium carbonate.

In the piperidine-catalyzed reaction with pyrazolo[3,4-b] pyridin-3-ylguanidine (3), aldehydes acted as electrophilic one-carbon inserting reagents providing hitherto unknown 4-het(aryl)-3,4-dihydropyrido[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5] triazin-2-amines (5) (Scheme 2 and Table 1). The signals of the sp^{3}-hybridized carbon atom of $\mathbf{5}$ in ${ }^{13} \mathrm{C}$-NMR spectra at $63-70 \mathrm{ppm}$ (Table 2) confirmed that the triazine ring closure had occurred and ruled out structure 4 (probable intermediate in the reaction).

The amino group, methine proton at the sp^{3}-hybridized carbon, and endocyclic NH signals at 6.43-6.61, 6.81-7.15, and $7.87-8.11 \mathrm{ppm}$, respectively (Table 2), appeared in the regions characteristic for the similar fused aryl-substituted dihydro-1,3,5-triazines with the primary amino group [8,1217,21].

The reaction of guanidine $\mathbf{3}$ with acetone under catalysis of piperidine led to the formation of 3,4-dihydropyrido [$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5]triazin-2-amine (6) with two geminal methyl groups (Scheme 3). Spiro fused analog 7 was prepared similarly by heating 3 with cyclopentanone in ethanol. The signals in ${ }^{13} \mathrm{C}$-NMR spectra at 70.6 and 80.0 ppm (for 6 and 7, respectively) indicated the creation of quaternary sp^{3}-hybridized carbon atoms formed due to the triazine ring annelation.

3,4-Dihydropyrido[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5]triazines $\mathbf{5}, \mathbf{6}$, and $\mathbf{7}$ might be involved in the prototropic annular tautomerism. Possible migration of the proton from one to another endocyclic nitrogen atom might result in the existence of four tautomers: 3,4-dihydro- (A), 1,4-dihydro- (B), 4,6-dihydro- (C), and 4,7-dihydro- (D) forms (Scheme 4).

Scheme 2. Synthesis of 4-(het)aryl-3,4-dihydropyrido $\left[2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5]triazin-2-amines(5).

Table 1
4-(Het)aryl-3,4-dihydropyrido[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5- $\left.a\right][1,3,5]$ triazin-2-amines (5).

Compound	R	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Molecular Formula	Analysis \%, Calcd./Found		
					C	H	N
5a	Ph	259-260	95	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6}$	63.62	4.58	31.80
					63.65	4.60	31.67
5b	4-MeC66 H_{4}	239-240	90	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6}$	64.73	5.07	30.20
					64.81	5.10	30.03
5 c	4-MeOC6 H_{4}	234-235	88	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}$	61.21	4.79	28.55
					61.04	4.83	28.32
5d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	240-241	89	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{6}$	56.29	3.71	28.13
					56.22	3.80	28.01
5e	2-Furyl	243-244	63	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$	56.69	3.96	33.05
					56.48	4.03	32.98
5 f	2-Thienyl	251-252	79	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}$	53.32	3.73	31.09
					53.20	3.77	31.00
5g	2-Pyridyl	255-256	86	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{7}$	58.86	4.18	36.96
					58.83	4.23	36.88
5h	4-Pyridyl	217-218	88	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{7}$	58.86	4.18	36.96
					58.78	4.28	36.72

Table 2
Spectral data of 4-(het)aryl-3,4-dihydropyrido[2',3':3,4]pyrazolo[1,5-a][1,3,5]triazin-2-amines (5).

	Dimethyl sulfoxide- d_{6} / TMS, δ (ppm)	
Compound	${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$	${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$
5a	$\begin{aligned} & 6.52\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{NH}_{2}\right), 6.79\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.1,{ }^{3} J=4.3 \mathrm{~Hz}, \mathrm{H}-9\right), \\ & 6.89(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-4), 7.27-7.44(5 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}), 7.96(1 \mathrm{H}, \mathrm{dd}, \\ & \left.{ }^{3} J=8.1,{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-10\right), 8.01(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}), 8.41(1 \mathrm{H}, \\ & \left.\mathrm{dd},{ }^{3} J=4.3,{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-8\right) \end{aligned}$	$\begin{aligned} & 69.0(\mathrm{C}-4), 103.4(\mathrm{C}-10 \mathrm{a}), 113.7(\mathrm{C}-9), 126.1\left(\mathrm{C}-2^{\prime}\right. \\ & \text { and } \left.\mathrm{C}-6^{\prime}\right), 128.6\left(\mathrm{C}-3^{\prime} \text { and } \mathrm{C}-5^{\prime}\right), 128.8\left(\mathrm{C}-4^{\prime}\right), \\ & 130.1(\mathrm{C}-10), 140.6,140.7\left(\mathrm{C}-10 \mathrm{~b} \text { and } \mathrm{C}-1^{\prime}\right) \\ & 151.3(\mathrm{C}-8), 153.1(\mathrm{C}-6 \mathrm{a}), 157.4(\mathrm{C}-2) \end{aligned}$
5b	$2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.78\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3\right.$, $\left.{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right), 6.82\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.9 \mathrm{~Hz}, \mathrm{H}-4\right)$, 7.15-7.23 (4H, m, C $\left.6_{6} \mathrm{H}_{4}\right), 7.90\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.8 \mathrm{~Hz}, \mathrm{NH}\right)$, $7.94\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3,{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-10\right), 8.40(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{3} J=4.1,{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-8\right)$	$\begin{aligned} & 20.6(\mathrm{Me}), 68.8(\mathrm{C}-4), 103.4(\mathrm{C}-10 \mathrm{a}), 113.6(\mathrm{C}-9), 126.0 \\ & \left(\mathrm{C}-2^{\prime} \text { and } \mathrm{C}-6^{\prime}\right), 129.0\left(\mathrm{C}-3^{\prime} \text { and } \mathrm{C}-5^{\prime}\right), 130.0(\mathrm{C}-10), \\ & 137.9\left(\mathrm{C}-4^{\prime}\right), 138.2\left(\mathrm{C}-1^{\prime}\right), 140.5(\mathrm{C}-10 \mathrm{~b}), 151.2(\mathrm{C}-8), \\ & 153.1(\mathrm{C}-6 \mathrm{a}), 157.3(\mathrm{C}-2) \end{aligned}$
5c	$3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.77\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3\right.$, $\left.{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right), 6.81\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.5 \mathrm{~Hz}, \mathrm{H}-4\right), 6.94$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=8.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.23$ ($2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\left.\mathrm{H}^{-} 6^{\prime}\right), 7.87\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.5 \mathrm{~Hz}, \mathrm{NH}\right)$, $7.93\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3,{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-10\right), 8.39(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{3} J=4.1,{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-8\right)$	$\begin{aligned} & 55.1(\mathrm{OMe}), 68.7(\mathrm{C}-4), 103.4(\mathrm{C}-10 \mathrm{a}), 113.6(\mathrm{C}-9), 113.9 \\ & \left(\mathrm{C}-3^{\prime} \text { and } \mathrm{C}-5^{\prime}\right), 127.5\left(\mathrm{C}-2^{\prime} \text { and } \mathrm{C}-6^{\prime}\right), 130.0(\mathrm{C}-10), \\ & 132.9\left(\mathrm{C}-1^{\prime}\right), 140.5(\mathrm{C}-10 \mathrm{~b}), 151.2(\mathrm{C}-8), 153.1(\mathrm{C}-6 \mathrm{a}), \\ & 157.3(\mathrm{C}-2), 159.6\left(\mathrm{C}-4^{\prime}\right) \end{aligned}$
5d	$6.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.79\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3,{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right)$, $6.91\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.9 \mathrm{~Hz}, \mathrm{H}-4\right), 7.31\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=\right.$ $8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\left.\mathrm{H}-6^{\prime}\right), 7.48\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.94\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3,{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-10\right)$, $7.97\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.8 \mathrm{~Hz}, \mathrm{NH}\right), 8.41\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.1\right.$, $\left.{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-8\right)$	$\begin{aligned} & 68.2(\mathrm{C}-4), 103.4(\mathrm{C}-10 \mathrm{a}), 113.8(\mathrm{C}-9), 128.0,128.6\left(\mathrm{C}-2^{\prime}\right. \\ & \text { and } \left.\mathrm{C}-6^{\prime} \text { and } \mathrm{C}-3^{\prime} \text { and } \mathrm{C}-5^{\prime}\right), 130.0(\mathrm{C}-10), 133.3\left(\mathrm{C}-4^{\prime}\right), \\ & 139.6\left(\mathrm{C}-1^{\prime}\right), 140.6(\mathrm{C}-10 \mathrm{~b}), 151.4(\mathrm{C}-8), 153.0(\mathrm{C}-6 \mathrm{a}), \\ & 157.4(\mathrm{C}-2) \end{aligned}$
5e	$\delta 6.39-6.56\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}, \mathrm{H}-3^{\prime}\right.$, and $\left.\mathrm{H}-4^{\prime}\right), 6.78(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{3} J=8.3,{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right), 6.95(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.64(1 \mathrm{H}$, s, H-5'), 7.87-7.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and NH), $8.41(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{3} J=4.1,{ }^{4} J=1.9 \mathrm{~Hz}, \mathrm{H}-8\right)$	$\begin{gathered} 63.0(\mathrm{C}-4), 103.4(\mathrm{C}-10 \mathrm{a}), 108.4,110.4\left(\mathrm{C}-3^{\prime} \text { and } \mathrm{C}-4^{\prime}\right), \\ 113.7(\mathrm{C}-9), 130.0(\mathrm{C}-10), 140.6(\mathrm{C}-10 \mathrm{~b}), 143.6\left(\mathrm{C}-5^{\prime}\right), \\ 151.4(\mathrm{C}-8), 151.9\left(\mathrm{C}-2^{\prime}\right), 153.1(\mathrm{C}-6 \mathrm{a}), 157.4(\mathrm{C}-2) \end{gathered}$
5 f	$6.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.79\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=7.9,{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right)$, $7.01\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.9,{ }^{3} J=3.8 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.14-7.22$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4\right.$ and $\left.\mathrm{H}-3^{\prime}\right), 7.53\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=5.3\right.$, $\left.{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.93\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3,{ }^{4} J=1.9 \mathrm{~Hz}\right.$, $\mathrm{H}-10), 8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.42\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.1,{ }^{4} J=\right.$ 1.9 Hz, H-8)	65.1 (C-4), 103.5 (C-10a), 113.8 (C-9), 125.9, 126.6, 127.2 (C-3', C-4', and C-5'), 130.0 (C-10), 140.1 (C-10b), 143.9 (C-2'), 151.4 (C-8), 152.9 (C-6a), 157.4 (C-2)
5 g	$6.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.79\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=8.3,{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right)$, $6.88\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.9 \mathrm{~Hz}, \mathrm{H}-4\right), 7.18\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=7.9 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-3^{\prime}\right), 7.39\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=7.5,{ }^{3} J=4.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.82$ $\left(1 \mathrm{H}, \operatorname{td},{ }^{3} J=7.6,{ }^{4} J=1.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.96\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3\right.$, $\left.{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-10\right), 8.03\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=1.9 \mathrm{~Hz}, \mathrm{NH}\right), 8.41$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.1,{ }^{4} J=1.9 \mathrm{~Hz}, \mathrm{H}-8\right), 8.57\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=\right.$ $4.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$)	69.9 (C-4), 103.5 (C-10a), 113.6 (C-9), 120.9 (C-3'), 124.1 (C-5'), 130.1 (C-10), 137.3 (C-4'), 141.1 (C-10b), 149.4 (C-6'), 151.4 (C-8), 153.1 (C-6a), 157.3 (C-2), 158.3 (C-2')
5h	$6.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.81\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.1,{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right)$, $6.96(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.27\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.3,{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.96\left(1 \mathrm{H}\right.$, dd, $\left.{ }^{3} J=8.1,{ }^{4} J=1.7 \mathrm{~Hz}, \mathrm{H}-10\right), 8.11$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.44\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.1,{ }^{4} J=1.7 \mathrm{~Hz}, \mathrm{H}-8\right), 8.61$ ($2 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.3,{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$)	```67.7 (C-4), 103.4 (C-10a), 113.9 (C-9), 120.8 (C-3' and C-5'), 130.1 (C-10), 140.8 (C-10b), 148.4 (C-4'), 150.1 (C-2' and C-6'), 151.6 (C-8), 153.0 (C-6a), 157.5 (C-2)```

The coupling of the $\mathrm{H}-4$ and NH signals (${ }^{3} J=0-1.9 \mathrm{~Hz}$) in ${ }^{1}$ H NMR spectra of $\mathbf{5}$ suggested the equilibrium to be shifted toward 3,4-dihydro-tautomeric form A. In a 2D NOESY experiment conducted on $\mathbf{6}$, a strong pair of cross-peaks was observed for the gem-dimethyl signal at 1.72 ppm and the NH signal at 7.62 ppm . The close spatial relationship of the methyl groups and the proton at annular nitrogen atom might correspond to the 3,4-dihydro- (A) or 4,6-dihydro- (C) tautomeric forms. X-ray crystallographic study [23] on $\mathbf{6}$ was performed to differentiate between these two tautomers. The crystals suitable for X-ray diffraction analysis were obtained by recrystallization of $\mathbf{6}$ from ethanol. The molecule of 6
crystallized together with one ethanol molecule, therefore providing the ethanol monosolvate of $\mathbf{6}$. Similarly to the previously reported [10,24] fused gem-dimethyl substituted amino-1,3,5-triazines, 6 existed in the crystal as a tautomer with the labile hydrogen atom located at the triazine nitrogen atom adjacent to the quaternary sp^{3}-hybridized carbon atom (Fig. 1). Considering the similarity of the spectral data for 5-7, we concluded that 3,4-dihydro-tautomeric form \mathbf{A} was generally preferred in solution and solid states for all series of the compounds.

Pyrido[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5]triazines 5-7 underwent a series of biological screening assays. They showed

Scheme 3. Reaction of 1H-pyrazolo[3,4-b]pyridin-3-ylguanidine (3) with ketones.

neither appreciable antiproliferative activity against MDA-MB-231 breast cancer cell line nor dihydrofolate reductase inhibitory activity. They were also found to be inactive in the ApoE secretion, cell cycle, anti-angiogenesis, insulin secretion, and Wnt pathway Eli Lilly's phenotypic bioassay modules.
In conclusion, a series of new 3,4-dihydropyrido[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo $[1,5-a][1,3,5]$ triazines 5 -7 was successfully synthesized using cyclocondensation of $1 H$-pyrazolo[3,4-b]pyridin3 -ylguanidine (3) with carbonyl compounds. The developed method is general, and a variety of aldehydes and ketones can be applied as one-carbon inserting reagents for the triazine ring annelation. The products 5-7 appear to exist as the 3,4-dihydro-tautomers in the solution and solid state.

Scheme 4. Possible tautomeric forms of 3,4-dihydropyrido [2', $\left.3^{\prime}: 3,4\right]$ pyrazolo[1,5-a][1,3,5]triazin-2-amines (annular tautomerism).

EXPERIMENTAL

Melting points (uncorrected) were determined on a Gallenkamp melting point apparatus. Analytical thin layer chromatography (TLC) was carried out on aluminum plates coated with silica gel 60 F254 (Merck) with detection by UV light. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker DPX-300 spectrometer in the dimethyl sulfoxide- $d_{6}\left(\right.$ DMSO- $\left.d_{6}\right)$ solution using tetramethylsilane (TMS) as an internal reference. Assignments were done on the basis of $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC, and NOESY experiments.

1H-Pyrazolo[3,4-b]pyridin-3-amine (2). The mixture of 2-chloro-3-cyanopyridine ($\mathbf{1}, 6.93 \mathrm{~g}, 50 \mathrm{mmol}$) and hydrazine hydrate $(80 \%, 6.2 \mathrm{~mL}, 100 \mathrm{mmol})$ in ethanol (60 mL) was heated under reflux with stirring for 6 h . After cooling at $4^{\circ} \mathrm{C}$, the precipitated product was filtered, washed with cold ethanol, dried and recrystallized from ethanol to give $5.76 \mathrm{~g}(86 \%)$ of 2; mp: 183-184 ${ }^{\circ} \mathrm{C}$ [ref. 22; mp: 184-185 ${ }^{\circ} \mathrm{C}$]; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 6.33\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.96(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{3} J=7.9,{ }^{3} J=4.5 \mathrm{~Hz}, \mathrm{H}-5\right), 8.15\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=7.9,{ }^{4} J=1.5 \mathrm{~Hz}\right.$, $\mathrm{H}-4), 8.35\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.5,{ }^{4} J=1.5 \mathrm{~Hz}, \mathrm{H}-6\right), 11.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , DMSO- d_{6}): $\delta 106.1$ (C-3a), 113.7 (C-5), 129.6 (C-4), 148.0 (C-3), 148.4 (C-6), 152.3 (C-7a).
$\mathbf{1 H}$-Pyrazolo[3,4-b]pyridin-3-ylguanidine (3). To the solution of 1 H -pyrazolo[3,4-b]pyridin-3-amine ($\mathbf{2}, 4.20 \mathrm{~g}, 30 \mathrm{mmol}$) and cyanamide ($1.39 \mathrm{~g}, 30 \mathrm{mmol}$) in ethanol (25 mL), concentrated hydrochloric acid ($3 \mathrm{~mL}, 30 \mathrm{mmol}$) was added and the reaction mixture was heated under reflux with stirring for 6 h . After cooling, the precipitated $1 H$-pyrazolo[3,4-b]pyridin-3-ylguanidine hydrochloride was filtered, washed with cold ethanol, and dried. Free base 3 was obtained by treatment of aqueous solution of pyrazolo[3,4-b] pyridin-3-ylguanidine hydrochloride with 10% sodium carbonate solution (30 mL) with stirring and gentle heating at $40-50^{\circ} \mathrm{C}$ for 10 min . After cooling, the precipitated product $\mathbf{3}(3.8 \mathrm{~g}, 72 \%)$ was filtered, washed with cold water, dried and used in the subsequent reactions without further purification. Analytical sample was

Figure 1. Molecular structure of 4,4-dimethyl-3,4-dihydropyrido [$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo[1,5-a] [1,3,5]triazin-2-amine (6) as an ethanol monosolvate. Displacement ellipsoids are drawn at the 50% probability level.
obtained by recrystallization from ethanol; mp: 256-257 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR (300 MHz, DMSO- d_{6}): $\delta 6.55$ (4 H , br s, $\mathrm{NHC}(\mathrm{NH}) \mathrm{NH}_{2}$), $7.00\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=7.5,{ }^{3} J=4.5 \mathrm{~Hz}, \mathrm{H}-5\right), 8.05\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=7.5\right.$, $\left.{ }^{4} J=1.1 \mathrm{~Hz}, \mathrm{H}-4\right), 8.39\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.5,{ }^{4} J=1.1 \mathrm{~Hz}, \mathrm{H}-6\right), 12.38$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta 110.7(\mathrm{C}-3 \mathrm{a})$, 114.6 (C-5), 129.5 (C-4), 148.6 (C-6), 151.1 (C-3), 151.8 (C-7a), $156.0\left(\mathrm{NHC}(\mathrm{NH}) \mathrm{NH}_{2}\right)$; Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{6}: \mathrm{C}, 47.72 ; \mathrm{H}$, 4.58; N, 47.70. Found: C, $47.64 ;$ H, $4.60 ;$ N, 47.72 .

General procedure for preparation of 4-(Het)aryl-3,4dihydropyrido $\left[2^{\prime}, 3^{\prime}: 3,4\right]$ pyrazolo $[1,5-a][1,3,5]$ triazin-2-amines
(5). To the solution of $1 H$-pyrazolo[$3,4-b$]pyridin-3-ylguanidine (3, $0.88 \mathrm{~g}, 5 \mathrm{mmol}$) and appropriate (het)arylaldehyde (5 mmol) in ethanol (15 mL), piperidine ($0.30 \mathrm{~mL}, 3 \mathrm{mmol}$) was added and the mixture was heated under reflux with stirring for 3-16 h. After cooling, the precipitated product was filtered, washed with cold ethanol, dried and recrystallized from ethanol.
4,4-Dimethyl-3,4-dihydropyrido $\left.{ }^{\prime} \mathbf{2}^{\prime}, \mathbf{3}^{\prime}: 3,4\right]$ pyrazolo[1,5-a] [1,3,5]triazin-2-amine (6). To the solution of 1 H -pyrazolo [3,4-b]pyridin-3-ylguanidine ($3,0.88 \mathrm{~g}, 5 \mathrm{mmol}$) in acetone $(30 \mathrm{~mL})$, piperidine $(0.30 \mathrm{~mL}, 3 \mathrm{mmol})$ was added and the mixture was heated under reflux with stirring for 10 h . After cooling, the precipitated product was filtered, washed with cold acetone, dried and recrystallized from ethanol to give 0.84 g (78%) of 6; mp: $285-286{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): δ $1.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 6.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.77\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3,{ }^{3} J=\right.$ $4.1 \mathrm{~Hz}, \mathrm{H}-9), 7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.89\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.3,{ }^{4} J=1.9\right.$ $\mathrm{Hz}, \mathrm{H}-10), 8.42\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=4.1,{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, \mathrm{H}-8\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz, DMSO- d_{6}): $\delta 28.6\left(\mathrm{Me}_{2}\right), 70.6(\mathrm{C}-4), 103.5(\mathrm{C}-10 \mathrm{a})$, 113.4 (C-9), 129.9 (C-10), 139.8 (C-10b), 150.9 (C-8), 153.4 (C-6a), $157.0(\mathrm{C}-2)$; Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{6}: \mathrm{C}, 55.54 ; \mathrm{H}$, 5.59; N, 38.86. Found: C, 55.61; H, 5.60; N, 38.73.

4,4-Tetramethylene-3,4-dihydropyrido [2', $\left.\mathbf{3}^{\prime}: 3,4\right]$ pyrazolo $[1,5-a][1,3,5]$ triazin-2-amine (7). To the solution of $1 H^{-}$ pyrazolo[3,4-b]pyridin-3-ylguanidine ($\mathbf{3}, 0.88 \mathrm{~g}, 5 \mathrm{mmol}$) and cyclopentanone ($0.51 \mathrm{~mL}, 5.5 \mathrm{mmol}$) in ethanol (10 mL), piperidine ($0.30 \mathrm{~mL}, 3 \mathrm{mmol}$) was added and the mixture was heated under reflux with stirring for 16 h . After cooling, the precipitated product was filtered, washed with cold ethanol, dried and recrystallized from ethanol to give 0.75 g (62%) of 7; 248-249 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , DMSO- d_{6}): $\delta 1.73-2.01$ $\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{H}-1^{\prime} a x\right.$, and $\left.\mathrm{H}-4^{\prime} a x\right), 2.36-2.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}\right.$ $e q$ and $\left.\mathrm{H}-4^{\prime} e q\right), 6.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.76\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.2\right.$, $\left.{ }^{3} J=4.1 \mathrm{~Hz}, \mathrm{H}-9\right), 7.72(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.89\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.1\right.$, $\left.{ }^{4} J=1.0 \mathrm{~Hz}, \mathrm{H}-10\right), 8.41\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=4.0,{ }^{4} J=1.1 \mathrm{~Hz}\right.$, $\mathrm{H}-8)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta, 23.4\left(\mathrm{C}-1^{\prime}\right.$ and C-4'), 39.8 (C-2' and C-3'), 80.0 (C-4), 103.6 (C-10a), 113.5 (C-9), 129.8 (C-10), 140.5 (C-10b), 150.9 (C-8), 153.5 (C-6a), $157.0(\mathrm{C}-2)$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{6}$: C, $59.49 ; \mathrm{H}, 5.82$; N, 34.69. Found: C, 59.35; H, 5.90; N, 34.64 .

Acknowledgments. The authors thank Tan Geok Kheng and Koh Lip Lin for the X-ray crystallographic data.

REFERENCES AND NOTES

[1] Part 18 in the series "Fused heterocyclic systems with s-triazine ring," for part 17, see: Dolzhenko, A. V.; Tan, G. K.; Dolzhenko, A. V.; Koh, L. L.; Chui, W. K. Acta Crystallogr 2011, E67, o85.
[2] Checchi, S.; Ridi, M. Gazz Chim Ital 1957, 87, 597.
[3] For review on the synthesis and biological activity of pyrazolo[1,5-a][1,3,5]triazines, see: Dolzhenko, A. V.; Dolzhenko, A. V.; Chui, W. K. Heterocycles 2008, 75, 1575.
[4] Youssef, M. M.; Al-Haiza, M. A. Egypt J Chem 2000, 43, 165.
[5] El-Dean, A. M. K.; Atalla, A. A.; Gaber, A. M. Bull Fac Sci, Assiut Univ 1990, 19, 23.
[6] Abd El-Fattah, A. H. Assiut Univ J Chem 2007, 36, 1.
[7] Mayer, K. H.; Sasse, K.; Koenig, A. V. Pat. DE 3001498 (1981); Chem Abstr 95, 132967.
[8] Dolzhenko, A. V.; Dolzhenko, A. V.; Chui, W. K. Tetrahedron 2007, 63, 12888.
[9] Dolzhenko, A. V.; Pastorin, G.; Dolzhenko, A. V.; Chui, W. K. Tetrahedron Lett 2008, 49, 7180.
[10] Dolzhenko, A. V.; Tan, G. K.; Koh, L. L.; Dolzhenko, A. V.; Chui, W. K. Acta Crystallogr 2007, E63, o2796.
[11] Dolzhenko, A. V.; Tan, G. K.; Koh, L. L.; Woo, S. F.; Chui, W. K. Acta Crystallogr 2008, E64, o2021.
[12] Dolzhenko, A. V.; Tan, B. J.; Dolzhenko, A. V.; Chiu, G. N. C.; Chui, W. K. J Fluorine Chem 2008, 129, 429.
[13] Dolzhenko, A. V.; Chui, W. K.; Dolzhenko, A. V.; Chan, L. W. J Fluorine Chem 2005, 126, 759.
[14] Dolzhenko, A. V.; Chui, W. K. J Heterocycl Chem 2006, 43, 95.
[15] Dolzhenko, A. V.; Chui, W. K.; Dolzhenko, A. V. J Heterocycl Chem 2006, 43, 1513.
[16] Dolzhenko, A. V.; Chui, W. K. Pharm Chem J 2007, 41, 470.
[17] Dolzhenko, A. V.; Foo, M. C.; Tan, B. J.; Dolzhenko, A. V.; Chiu, G. N. C.; Chui, W. K. Heterocycles 2009, 78, 1761.
[18] Dolzhenko, A. V.; Chui, W. K.; Dolzhenko, A. V. Synthesis 2006, 597.
[19] Dolzhenko, A. V.; Sachdeva, N.; Tan, G. K.; Koh, L. L.; Chui, W. K. Acta Crystallogr 2009, E65, o684.
[20] Sachdeva, N.; Dolzhenko, A. V.; Tan, G. K.; Koh, L. L.; Chui, W. K. Acta Crystallogr 2010, E66, o2050.
[21] Dolzhenko, A. V.; Dolzhenko, A. V.; Chui, W. K. J Heterocycl Chem 2008, 45, 173.
[22] Hatt, T. L. P.; Vass, J. D. R. Chem Commun 1966, 10, 293.
[23] Dolzhenko, A. V.; Tan, G. K.; Dolzhenko, A. V.; Koh, L. L.; Chui, W. K. Acta Crystallogr 2011, E67, o83.
[24] Dolzhenko, A. V.; Tan, G. K.; Koh, L. L.; Dolzhenko, A. V.; Chui, W. K. Acta Crystallogr 2007, E63, o2797.

