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Kinetics analysis of a linear model enzyme system shows that, in theory, the combined effect of two inhibitors 
acting by sequential blockage is necessarily synergistic. The rate equations for the system describe a theoretical 
dose-effect surface for the drug pair which results in a formal definition of synergism that correlates well with 
experimental observation over the concentration range for which the effect is demonstrable. This definition 
provides a rationale for the isobole technique for demonstrating synergism experimentally and a means for de­
fining and calculating the "amount" of synergism shown by two drugs. 

The term synergism1 has been applied by pharma­
cologists2 and chemotherapists3-6 to instances in which 
two or more inhibitors of a biological response are more 
effective when acting together than would be expected7 

from additivity of their individual effects.8 

Synergism is often encountered9 and is always of in­
terest for the possibility that host toxicity may be only 
additive,10 or that the emergence of drug resistance may 
be delayed by the combined use of two or more inhibi­
tors with different modes of action.11 The effect is 
unmistakable12 when drugs A and B, which produce a 
certain sub-maximal effect in concentrations a and b 
alone, produce the same effect when combined in con-

(1) Observations of synergism and use of the isobole method for de­
scribing them are at least 90 years old. T. R. Fraser, Brit. Med. J., 2, 457, 
485 (1872), did not use the term but observed synergism, as well as antagon­
ism, between atropine and physostigmine, depending on relative doses. 
Since Fraser, the term has had a controversial career, as emphasized by a 
recent exchange of Letters to the Editor, Various Authors, The New Scien­
tist, 14, 481, 600, 662 (1962). The term even has a metaphysical connota­
tion; ibid., 18,45 (1962). 

(2) G. Chen, Arch. Intern. Pharmacadyn., I l l , 322 (1957). 
(3) G. A. H. Buttle, Proc. Roy. Soc. Med., 49, 873 (1956). 
(4) E. Jawetz and J. B. Gunnison, Pharmacol. Revs., 5, 175 (1953). 
(5) E. Jawetz, J. B. Gunnison and V. R. Coleman, J. Gen. Microbiol., 10, 

191 (1954). 
(6) Anon., Chem. Eng. News, 32, 4473 (1954). 
(7) One person will "expect" more than another, so this "definition" is 

operationally worthless. A. J. Zwart Voorspuij and C. A. G. Nass. Arch. 
Intern. Pharmacodyn., 109, 211 (1957), and S. Loewe, Arzneimittel-Forsch., 
3, 285 (1953), have in fact shown how it can lead to the absurd 
conclusion that a drug can be synergistic with itself. As Loewe contends, 
the decisive test for synergism lies in treatment of the data by the boloform 
method. This method has been applied to double inhibition by G. H. Hitch-
ings, Am. J. Clin. Nutrition, 3, 321 (1955), by S. B. Kendall, Proc. Roy. Soc. 
Med., 49, 874 (1956), and by many others. Chen, ref. 2, and A. J. Zwart 
Voorspuij and L. H. Bokma, Ann. inst. Pasteur, 95, 404 (1958), have used 
4-dimensional boloforms to describe the joint effects of 3 inhibitors. 

(8) Loewe (see ref. 7) emphasizes that a definition of synergism based on 
non-additivity vs. additivity of effects is meaningless since effects are never 
with certainty additive. He discusses in detail the question of "what is 
properly additive to what." See also ref. 21. 

(9) The literature on synergism has been reviewed by H. Veldstra, 
Pharmacol. Revs., 8, 339 (1956). A well documented case results from the 
action of sulfadiazine (li) and pyrimethamine (la) on a variety of organisms, 
both in vitro and in vivo, presumably by blockage of the essential sequence 

li h 
p-Aminobenzoic acid -*• Folic acid -»• Folinic acid 

See L. G. Goodwin, Proc. Roy. Sec. Med., 49, 871 (1956); S. B. Kendal], 
see ref. 7; L. G. Goodwin and 1. M. Rollo in "The Biochemistry and Physiol­
ogy of Protozoa," S. H. Hutner and A. Lwoff. eds., Academic Press, New 
York, N. Y., 1955, Vol. 2, pp. 245-246; L. P. Joyner and S. B. Kendall, 
Nature, 176, 975 (1955); G. H. Hitchings, see ref. 7. 

(10) As was shown by J. Greenberg, B. L. Boyd, and E. S. Josephson, J. 
Pharmacol. Exptl. Therap. 94, 60 (1948), for experimental treatment of 
Plasmodium oallinaceum infections with sulfadiazine—chloroguanide com­
binations. 

(11) D. A. Mitchison. Brit. Med. Bull., 18, 77 (1962). 
(12) See, for example, M. W. Fisher and L. Doub, Biochem. Pharmacol., 

3, 10 (1959). M. W. Fisher, Antibiot. Chemotherapy, 7, 315 (1957), 
also has shown that a concerted inhibitory effect, consisting of antimetabolic 
and immunogenic components, can achieve the same net result. B. A. 
Waisbren, ibid., 7, 322 (1957), has reported the clinical effectiveness of this 
technique. 

centrations xa and yb, with (,r + y) <?« 1. Results 
of this type seem to be in some way multiplicative, in­
stead of additive, functions of inhibitor concentrations, 
but they apparently have never been accounted for in 
theoretical terms.13 

The plausibility of sequential blockage as a mechanism 
for synergism is widely accepted,13'44 but on purely in­
tuitive grounds and not without dissent.14 It is the 
purpose of the present work to show that synergism in 
this sense is not only possible but is, indeed, a necessary 
consequence of a sequentially blocked mechanism. This 
will be done by deriving from the kinetics of a model 
reaction an expression for the net effect of two inhibi­
tors that act at different points in a linear sequence of 
enzymatic reactions. The resulting expression leads to 
a formal definition of synergism that relates individual 
dose-effect curves to a dose-effect, or boloform,8 sur­
face for joint inhibition. This expression contains a 
small number of constants, each of which is a defined 
reaction parameter. Synergism, as defined by this 
equation, is a necessary result of sequential blockage in 
the sense that the net effect of the inhibitors is a multi­
plicative function of their concentrations for all possible 
values of the constants and variables that the defining 
equation contains. 

The model to be adopted is based, in part, upon these 
assumptions: (1) the intensity (Rt) of the biological 
response in question, whether inhibited or not, is limited 
at a given time by (and only by) the instantaneous rate, 
ds3/df, at which some metabolite, S3, is being produced 
at the same time from precursors, Si and S2, by the 
mechanism, Si -»• S2 -*• S3; (2) the effect (Et) of inhibi­
tors of the response is to depress the rate of formation 
of S3; (3) each inhibitor acts by competing with a dif­
ferent substrate for active sites on the enzyme, Ei or E2, 
with which the substrate must combine to react. 

These assumptions will be introduced later in more 
explicit mathematical form; they are more general than 
those upon which the Michaelis-Menten theory is based, 
so in this sense the present results are more general 
than a Michaelis-Menten treatment of this specific 

(13) A. Albert, Proc. Roy. Soc. Med., 49, 881 (1956), comments briefly 
on the "arithmetic" of synergism but does not show how inhibitor concentra­
tions are involved. 

(14) See, for example, R. Knox, ibid., 49, 879 (1956). 
(15) M. Dixon and E. C. Webb, "Enzymes," Academic Press, Inc., New-

York, N. Y., 1958, Chapt. XII, discuss substrate-linked multi-enzyme sys­
tems in detail. 

(16) The interdependence of bacterial growth rates and enzyme-substrate 
kinetics is treated exhaustively by C. N. Hinshelwood, "The Chemical 
Kinetics of the Bacterial Cell," Oxford University Press, London, 1946. 
See also M. Harris and G. A. Morrison, Nature, 191, 1276 (1961). 
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problem would allow. The latter theory17'1" has dealt 
with the effect of a single inhibitor upon a single enzy­
matic step but has not been developed in a direction 
that fits the present purpose. The non-biological litera­
ture19 on consecutive reactions also fails to show how 
inhibitor concentrations combine to affect net reaction 
rates. 

The reaction model assumed here is, of course, an 
over-simplification20; its usefulness is nevertheless 
shown by the identity of the resulting rate equations 
for single inhibition with certain empirical expressions 
that have been applied successfully to a variety of 
singly-inhibited biological responses. The equations to 
bo developed therefore suggest a deductive basis for 
these empirical expressions and permit for the first 
time a presumptive identification of the arbitrary con­
stants that they contain. 

The equation for joint inhibition defines a theoretical 
dose-effect, or boloform, surface; the validity of this 
equation as a definition of synergism is supported by 
the similarity of constant-effect profiles of this surface 
to published isobolesMM4 whose shape is commonly 
accepted as distinctive of synergism. These and other 
points of agreement with published work will be dis­
cussed later in detail; they suggest that, despite the 
highly idealized nature of the model, sequential block­
age is necessarily synergistic over a concentration range 
that is experimentally meaningful; they also imply that 
additive21 and antagonistic22 effects of jointly adminis­
tered drugs should depend upon mechanisms that differ 
in some fundamental way from one that results in 
synergism. 

The present results indicate that synergism is as 
much a feature of the enzyme system as it is a feature of 
the inhibitors; they do not deny, however, that types 
of synergism entirely unrelated to sequential blockage 
may also exist.14'46 

Derivation of Rate Equations 

Symbols and Abbreviations.—The conventions and assump­
tions of chemical, bacterial and enzyme kinetics to be used in­
volve the following terminology. 

(17) Summarized in H. G. Bray and K. White, "Kineties and Thermo­
dynamics in Biochemistry," Academic Press Inc.. New York, N. Y., 1957, 
Chap. 7. 

(18) J. Z. Hearon, Bull. Math. Biophys., 11, 29, 83 (1949); IS, 121 
(1953), has generalized the Michaelis-Menten theory to include a connected 
sequence of enzymatic reactions, but has not shown the consequences of 
multiple inhibition. See also J. Z. Hearon, Physiol. Rev.. 32, 499 (1952), for 
a general discussion. 

(19) See, for example, J. W. Mellor, "Higher Mathematics for Students of 
Chemistry and Physics," Dover Publications. New York, N. Y., 1946, pp. 
443-440; A. A. Frost and R. G. Pearson, "Kinetics and Mechanisms; a 
Study of Homogeneous Chemical Reactions," John Wiley and Sons, Inc.. 
New York, N. Y., 1953, Chapt. 8. 

(20) Rut necessarily so, for only the simplest mechanisms are amenable 
to complete kinetics analysis. In fact, a simple analytical solution for tin; 
transient-state kinetics of the Michaeiis-Menten mechanism is not possible. 
B. Chance, •/. Biol. Chem.. 151, 553 (1953), obtained particular solutions by 
use of a differential analyzer. These were confirmed by C.-C Yang, Arch. 
Biochem. Biophys., 51, 419 (1953), using the reversion method. G. B. Kis-
tiakowsky and P. C. Mangeldorf, Jr., ./. Am Chem. Soc., 78, 2964 (1956). 
achieved a close approximation by a power series expansion of the Michaelis -
Menten rate equation. 

(21) A rate equation for the additive effects of two inhibitors ai'titm on 
the samv enzymatic step lias been deduced by F. II. Johnson, U. 1-iyriug, 
and M. J. Polissar, "The Kinetic Basis of Molecular Biolosry," John Wiley 
and Sons. New York, N. Y.. 1954, pp. 469-470. 

(22) J. II. Gaddum, ./. Physiol. 89, 7P (1937), 

*i", *Y, «,i", d", i->"~ -concentrations of free substrates, S,, S.,, 
and S.i and free inhibitors, h and I2, at time, I. — 0. i\° arid /'•..'' 
are synonymous with concentrations of drugs added at the 
beginning of an experiment. 

Y, 's'i. ••"», 'i, 'V instantaneous concentrations of free Si, S2, S.., I,, 
and L< at time, /. 

('i, e-2 -instantaneous concentrations of free enzymatic sites, 10, 
and Iv, at time, /. 

(-—time, dating from some arbitrary beginning, t = 0. 
A,, A\>, Ay, AY •- specific rate constants for reactions in the models 

described below. 
iv = AY/AY 

A'-—-response of the system as limited by the instantaneous 
rate of appearance of S3 at time, t, with initial inhibitor concen­
trations, ('1" and A", either alone or combined. 

A\- --drug effect at time, t. 
'"-functional notation, as in Et = fid", A"). I'se in different 

connotations does not imply that / is of the same form in all 
cases. 

F -the function corresponding to ./after integration. 
("- -integration constant: non-committal in same sense as./'. 
In -logarithm to base e. 
i' - -base of the natural logarithm system. 
/<,- -instantaneous concentration of bacterial cells in a logarith­

mically growing culture at time, /. 
A-'—bacterial growth rate constant during the logarithmic growth 

phase. 
/'—proportionality constant relating instantaneous bacterial 

growth rate to instantaneous rate of appearance of S.;. 
. 1 , - optical absorbancy of a bacterial culture containing a con­

centration of cells, «,, at time, t. 
q -proportionality constant relating .1, and n, such that . 1, = 

' ' " ' " • 

2> -integrated "amount" of synergism shovn by t'r> t 70 inhibi­
tors relative to a specified Et end-point. 

Kinetics Definitions 
Fat ;T ()ii!j:-:it CASK 

(a.) —dsi/df = Ay<i 
(b 1 — dii/dt = AY ft 
(c) - d W d , = A'2s-2 = dy/d( 
(d) -dkldt = kyh, 
!e) A'. = d.s;:,AU = A2S2. This is a mathematical re­

statement of Assumption 1 (see Introduction). 
(f) A;, K 1/AY, whence dE,/Er = -dR,./Ii;. This is a 

mathematical re-statement of assumption 2 (see introduction). 
(g) A = /,'V •"'''*' (by integration of definition b) 
(h'l A = i/'e "'"' (by integration of definition d) 
(i) If the system is closed, then, by material ba'ance 

' X, + ^ - f S, = «,» " M l ! 0 + S3° 
(j} For the specific case of bacterial growth 

du-t/dt = k'n- = I'll'.,) = k'AJq during the logarithmic 
growth phase. 

SECO.YD ORDER CASE 
(k) — dxz/dt =• Ayys; = dss/dt = /A 
1.1) -dsi/dt = Ay,*, 
(m) —dii/dt = Ayy'i 
(n) —dii/dt = kyi'21'z 

Mathematical Definitions 
The usual notation of differential and integral calculus will 

lie used, including the two theorems 
(A) If x - f(;/,z), then 

d.r = (dx/dy)zdi/ + {dx/dzjgdz 

even when 1/ and z are interdependent.2:t 

(B) If v: = f{x). x = ./'(<j), and y = f(z) then2'1 

die _ die dx d;/ 
dz dx (t// dz 

Summary of Procedure.—Expressions for the functions 

dA\ = t\(dii") 

(23) V. II. Wells. "Elementary Calculus." lb Van Nostrand Co.. I n c . 
New York. N. Y., 1941. p. 320. 

(24) (i. J. Kynch, "Mathematics for the. Chemist," Academic Press Inc.. 
New York. N. V.. 15)55. p. 14. 
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dflt = /2(di2°) 

will first be derived. These will be combined by theorem A to 
give an expression for 

dflt =/,.2(di,»,d*Y>) 

Because of the logarithmic nature of .fi and/ 2 and the relationship 
between Rt and Et, the differential equation that results will be 
shown to have a solution of the form 

E t = FUii" X H") 

Et is, thus, a function of the product of ii" and i2°, proving that 
synergism is a necessary property of the model assumed. Et, as a 
function of J'I° and is°, is the equation for a boloform surface.8 

An isobole is a constant-effect profile of a boloform surface7; 
thus dEt = 0, leaving an expression for ii" = F(i2") as the equa­
tion for a theoretical isobole. The slope and direction-of-curva-
ture of this isobole denote synergism for all possible values of the 
constants and variables. 

Discussion of the Reaction Model.—Proof of the case 
for synergism requires an expression relating Rt to ii° 
and i2°. The rate expression can contain ii° and i2

a as 
variables only if i\ ~ ex and ii ~ e2 or if d > > > i\ and 
<?2 > > > ii. Since competition between inhibitors and 
substrates for the enzyme surfaces is required for inhi­
bition, Si r^j ix and s2 —' ii are also realistic conditions. 
The only models, therefore, that will permit a proof of 
the desired type are: 

(1) lst-order in s\, s2, i\, ii and zero-order in ei and 
e->; i.e., ex > > > J?I and n; e2 > > > s2 and ii. A proof 
based on this model will be given in detail. 

(2) 2nd-order in which sx ~ i\ ~ ex and Si ~ ii ~ 
ei. This procedure gives a more general but less useful 
result than the above. The differential equations that 
result cannot be integrated, but they reduce to the lst-
order set when lst-order conditions are imposed. The 
2nd-order case may be safely ignored for the present 
purpose, for reasons to be given later. 

The arguments to follow do not require the assump­
tion of an intimately detailed mechanism, but the lst-
order case may be depicted in highly schematic form as 
shown: 

(1) Inhibition by Ii alone 

I i 
(Ei) 

-* (E,)I, 

S, -* S2 
(Ei) (EO 

- » 8 3 

(2) Inhibition by I2 alone 

(Ei) (Es) 

ky 

-» s 3 

-» (E2)I2 
(Ej) 

(3) Inhibition by Ii and I2 simultaneously 

I i 
(Ei) 

* i 

L (Ei) 

-> ( E i ) I i 

S2 (E2) 
-+s3 

(Ej) 
-> (E2)I2 

The brackets enclose the species that react competi­
tively. The symbols (Ei) and (E2) have no mathe­
matical meaning but are included as reminders that 
enzyme-1 and enzyme-2 are involved in the usual cat­

alytic sense. In the 2nd-order model the concentrations 
ei and e2 of these enzymes must, however, be treated as 
variables. 

All reactions are assumed to be irreversible because 
of the mass-action effect of e > » (i ~ s). Steady-
state conditions are not deliberately imposed, but the 
net result, as will be shown later, is equivalent to having 
done so. 

The condition for competitive inhibition (Assump­
tion 3, see Introduction) will appear in the following 
development as negative signs for operators of the type 
— ds/di, and for the functions that they represent. 
This condition is justified by the following argument. 
Competition prevails as long as both S and I are pres­
ent, so any change in s occurs in the face of competition 
from I. and conversely. Consider two hypothetical 
experiments that differ only in the infinitesimal extent 
to which competition has occurred after a given time 
interval; the relationship existing between the vari­
ables at the stated time is, 

ds = kd(ia - i) 

i.e., the increased extent, ds, to which S has not reacted 
with E is due to more efficient competition by I, as 
measured by the increased extent, d(i° — i),to which I 
has reacted with E within the same time interval. 
This relationship carries a linear proportionality con­
stant, fc, since competition occurs on a one-for-one 
basis. Performing the indicated differentiation gives 

—ds/di = k 

The precise form of the function corresponding to 
the operator —ds/di will appear later, but the above 
argument shows that it can be interpreted as a condi­
tion for competition and that, as such, it is always 
negative. The negative sign will hereafter be affixed 
to ds/di as a reminder that the function that it repre­
sents must likewise be negative. 

This argument acknowledges only those changes in s 
and i that are due to competition proper; other contri­
butions to the net changes in these quantities will be 
incorporated, as needed, in the form of the appropriate 
operators. In this sense, —ds/di is actually a partial 
differential coefficient in which all influences upon s and 
i that do not result from competition are considered 
constant. As will be shown later, this mathematical 
interpretation of a metabolic block leads to variants of 
Huxley's25 well-known allometric equation, dy/dx = 
ky/x, which has been applied to competitive biological 
interactions of widely variable types.26 

Derivation for First-order Model with Inhibition by 
Ii Alone.—From definition (e) 

(1) fit = /(».) 

From definition (i), with S]°, s2°, s3° and s3 constant 

(2) s2 = f(Sl) 

From the condition for competition between Si and F 
for Ei 

(3) «, = f(n) 

From definition (g), when t is constant 

(4) i i SW) 
(25) J. S. Huxley, "Problems of Relative Growth," JMethuen and Co. 

Ltd., London, 1932, p. 7. 
(26) H. G. Bray and K. White, ref. 17, pp. 332-333. 
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So, from theorem B 

(5) 
dRt 

di.° 
d/?t ds2 

ds2 
X 

2/ dsA dti 
A di,/dtT» 

in which the negative term is the condition for competi­
tion between Ii and Si for Ei. 

The operations indicated in eq. (5) are performed on 
definitions (a), (b), (c), (e) and (g). Differentiation of 
definition (e) gives 

(6) dtft/ds2 - k2 

Definition (c) divided by definition (a) gives 

(7) 
ds, 
ds, 

A-2s2 

Definition (a) divided by definition (b) gives 

(8) 
dsi 
dii kxii 

Differentiation of definition (g) with t constant gives 

(0) dii/diV 

Combining eq. (6-9) in the manner indicated by eq. 
(.">) gives 

(10) dA't 
di? "*«(©(-te>^ 

Substituting definition (g) for i\ in eq. (10) and cancel­
ling identical terms gives 

(ID 
d/?t 
d7i» 

fa(A,'2S2_) 

Disappearance of the t term still leaves time as a hidden 
variable in all subsequent equations; thus Rt will al­
ways refer to response, and Et to effect, after a constant 
time interval dating from introduction of the inhibitor(s) 
to the system. 

By definition (e), k2s-> = Rt, so eq. (11) becomes, after 
rearranging 

(12) dRt • £ X ^>» 
Kx 2]° 

Integration of eq. (12) gives 

(13) 

or, by definition (f) 

(M) l n £ t 

- In Rt = -f In i\o + In C 

k: 
In ii" + In C 

Derivation for First-order Model with Inhibition by 
I2 Alone.—The derivation follows from definitions (c), 
(d), (e), and (h), theorem B, and the condition for 
competition by a method similar to the above. Thus 

(15) fit =/(«*) 

(10) s2=f(i2) 

and, at constant t 

(17) ii = fW) 
So 

ds2\ dh 
dii/du" ( IS) 

All 
di'2° 

t = dRt/ 
0 dsA" 

As before, the negative term is the condition for compe­
te ion between S2 and L for E2. 

The terms in eq. (18) are obtained from definitions 
(c), (c) and (d), and (h) respectively. The result, for 
constant t, is 

(19.) 
dRt 
cU'2° V kylj 

-ty( 

Substituting definition (h) for i . and definition (0) for 
A'2Sn, cancelling identical terms and rearranging gives 

(20) 
dRt = ~i x 5 d/a° 

Integration of eq. (20) gives 

(21) 

or, by definition (f) 

- In Rt = .-' In !2» + In C 

(22) 
k, . 

In Et = -,-" In ii" + In C 
«y 

Derivation for First-order Model Inhibited by Ii and 
I2 Combined.—With both inhibitors present 

(23) Rt = /(*,», »V>) 

so, by theorem A 

«» «•- (£).,*+(£),*• 
But the partial differential coefficients on the right side 
of eq. (24) are given by eq. (12) and (20) so eq. (24) 
becomes 

(25) 
] T> k'2 Rt j • „ 1'2 Rt 

ks l l ° Ky l-l" 
d*2° 

In fit = ^ In ii" + v2 In ?2° + In C 

Rearranging and integrating eq. (25) gives 

(26) 

or, by definition (f) 

(27) In Et = | 2 In 1,° + *? In t2° + In C 

The locus of eq. (27) is the desired theoretical dose-
effect surface for the drug pair. 

Although the addition required by eq. (24) would 
seem to imply additive effects for E and I2, the net re­
sult is multiplicative—and therefore synergistic—be­
cause of the presence of the logarithmic factors, di^/i 1" 
= d (In ii°) and diz"/ii0 = d (In i>°), as seen in eq. (25). 
I t is this feature tha t leads to eq. (27) and its associated 
dose-effect surface as the first recorded indication of the 
obligatory nature of synergism. This point will be ex­
plored later in more detail. 

Derivations for the Second-order Model.—The 
procedure (See Appendix) is analogous to tha t for the 
lst-order case except tha t e-i and e2 must be treated as 
variables and freer use of partial differentials must 
therefore be made in handling the appropriate defini­
tions, (f), (i), (k)-(n) . 

The equations tha t result are, for single inhibition 

(28) 

and 

dfc't ^ h/e2j- sAdjV; 
E, ~ kX eT J'h" 

cm [Mh kifetJ-jAdJl 
( ' Et ~ ky\ e, J IP 

and, for double inhibition 

dEt _ k,/e2 + sArfji0 Ufa + sAdtV 
l ' i U j Et " kA C, J W ^ ky\ C, J it° 

These equations cannot be integrated as they stand, but 
they are comparable in form to eq. (14), (22), and (27) 
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for the lst-order cases. The validity of eq. (28), (29), 
and (30) relative to that of the corresponding lst-order 
equations is seen by applying the lst-order condition, 
ei ~ e2 > > > s2; this leads to (e2 + s2)Ai ~ 1 and (e2 + 
s2)/e2 ~ 1. Integration is now possible, with results 
identical with eq. (14), (22), and (27) for the lst-order 
case. 

All subsequent discussion will be simplified, but with 
no loss in generality, by minimizing the 2nd-order case. 
This will emphasize the early, exponentially rising part 
of the composite dose-effect surface, Fig. 1, described 

b,a,(Et)b,a y 
Fig. 1.-—Part of the locus of the exponential form of eq. (27), 

developed for the lst-order region in which ei >>> (si ~ ii°), 
e2 > > > (s2 ~ ii"), k-i > kx and k2 > ky. The qualitative identity 
of all analytic properties of this surface to those of an experimental 
boloform surface8 is evidence for the validity of eq. (27) as a 
definition of synergism. The symmetry of the surface relative 
to the ii° = ii° plane depends on the magnitude of kx/ky. Defini­
tion of the individual dose-effect curves (AA' and BB') and the 
isobole intercepts (A, B, A', B') requires translation of eq. (27) 
and (34) to the origin shown here. This translation and the 
relevance of points A, a, B, b and coordinates x and y to an ex­
perimental isobole are discussed in connection with Fig. 3. The 
transition of an individual dose-effect curve, for example BB', to 
the familiar sigmoid form at higher i2° values is explainable as a 
continuous transition to 2nd-order kinetics in the neighborhood of 
the inflection point (not shown) and to kinetics 0-order in inhib­
itor as the plateau (also not shown) is reached. In the plateau 
region, Et is, in theory and in fact, independent of further in­
creases in inhibitor concentrations. The notion of synergism is 
experimentally meaningless in the plateau region, so the inability 
of the model to account for it when if >» et and i2° >» e2 is 
expected. The ^-coordinate of the origin, (Et)b.*, is given by 
eq. (43) and the individual dose-effect curves are defined by eq. 
(42) when x = 0 or y = 0. 

by the exponential form of eq. (27). This emphasis is 
justified by the experimental need for working at inhib­
itor concentrations that produce sub-maximal effects 
in order to demonstrate synergism at all. 

Synergism is, of course, demonstrable for inhibitor 
concentrations in the 2nd-order region of the dose-
effect surface, described by eq. (30); no inflections or 
discontinuities are discernible, however, in the approach 
of (e2 + s2)/ei and (e2 + s2)/e2 to unity, which reduces 

eq. (30) to eq. (27), so conclusions as to the nature of 
synergism in the 2nd-order region should be qualita­
tively the same as those to follow for the more manage­
able lst-order region, depicted in Fig. l.26a 

Other points of qualitative equivalence of the 1 st­
and 2nd-order cases will be emphasized as they appear. 
The fuller relevance of Fig. 1 to synergism will also 
appear later. 

The steady-state assumption, ds2/di = 0, has not 
been deliberately imposed. This assumption is most 
often made for the mathematical simplicity to which it 
leads, but it also has a very realistic basis when applied 
to successive enzymatic reactions.18 The results for 
the lst-order model would be unchanged by this as­
sumption since s2 does not appear in the final equations. 
The 2nd-order model is reduced to lst-order by assum­
ing s2 small relative to ex and e2; this is equivalent, in its 
net effect upon Et, to assuming s2 constant, which is the 
steady-state condition. 

The following discussion will be based upon results 
for the model inhibited at adjacent points 

Ii U 
Si —*" 02 —*" S3 

but the more general nature18 of these results can be 
shown by assuming that the points of inhibition are 
not adjacent. If, for example 

ki ki kz ki 
Si —* 02 —* 03 —*" 04 —* S& 

II Is 

then by analogy with eq. (5) 

dBt = dfft x ds, x ds3 . . d s 2 / _ dsA dt'i 
dii° ds4 ds8 ds2 ds . \ di'j/di'i0 

or 

d#t = , Aj£_4 fasj k&i(ki8i\ _ M 
dt'i0 4k3Si fc2s2 k]Si\ kxu) 

This, after the operations of eq. (10), (11) and (12) 
gives, for inhibition by Ii alone 

a form identical with eq. (12). Results analogous to eq. 
(20) and (25) are also obtained for inhibition of the 
above sequence by I2 and Ii + I2, so the following dis­
cussion applies to an unbranched sequence of any 
length inhibited at any two different points. 

Discussion of Results 

The dose-effect curve for a single inhibitor can often 
be linearized over an important part of its range by 
plotting on log-log axes. This technique has given 
linear plots for effects as diverse as: urea denaturation 
of tobacco mosaic virus27; carbamate inhibition of 
luminescence of Photobacterium phosphoreum2S; pheno-
barbital inhibition of respiration of rat brain slices29; 

(26a) A referee h a s correct ly observed t h a t compe t i t i on would be rela­
t ive ly inefficient in t h e l s t - o r d e r case; th i s is equ iva len t , of course , t o recog­
nizing t h a t a smal l a m o u n t of d r u g h a s a smal l effect-—u la rger a m o u n t , a 
larger effect, etc., un t i l t h e p l a t eau of t h e dose-effect curve is r eached . T h e 
con t inuous collapse of t h e 2nd- t o t h e l s t - o r d e r equa t i ons as l s t - o r d e r condi­
t ions are a p p r o a c h e d shows, however , t h a t t h e condi t ion for compe t i t i on is 
appl icable in principle over t h e en t i r e concen t r a t i on range , however smal l 
t he ex ten t to which compe t i t i on migh t actually prevai l in t he ex t r eme l s t -
order case. 

(27) M . A. Lauffer, J. Am. Chem. Soc, 65, 1793 (1943). 
(28) F . H. Johnson , E . A. Flagler , R. S impson a n d K. McGeer , J. Cell. 

Comv. Physiol.. 37, 1 (1951). 
(29) M . Jowe t t , J. Physiol., 92, 322 (1938). 
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p h e n o l d i s infec t ion of Staphylococcus pyogenes aureus'0 ; n; 
inhibition of horse serum cholinesterase by alkyl ffuoro-
phosphates32; malonate inhibition of the succinic de­
hydrogenase of Escherichia coli33; inhibition of em­
bryonic heart beat by cyanide34; inhibition of yeast 
respiration by ethyl carbamate35; azide inhibition of 
Cypridina luciferase.36 Many similar examples from 
the older literature are discussed by Clark.37 

This practice, though empirical in origin, implies a 
relationship of the type 

In Et = m In i" -f- In (J 

Substitution of Ay 'A\, or A'2/A:y for m in this expression 
gives a result identical with eq. (14) or eq. (22). This 
identity satisfies the need, expressed by Hinshelwood,38 

for a rational interpretation of the arbitrary coefficient, 
m. The validity of eq. (14) and (22) is thus supported 
by the widespread, successful use of In E\ vs. In ?'" 
plots,39 in which the coefficient m can now be identified 
as the ratio of two rate constants: one, a characteristic 
of the enzyme system alone; the other, a characteristic 
of the inhibitor and the enzyme system. This point 
supports the earlier contention that synergism is as 
much a property of the enzyme system as it is a prop­
erty of the inhibitors. 

Equation (27) is the defining equation for syner­
gism. The locus of eq. (27), when converted to its 
exponential form, is identical in all essential respects to 
a boloform surface of the type found experimentally 
in cases of synergism. When k-> > kx and k-> > Ay this 
surface has the general shape shown in Fig. 1, adapted 
from Loewe.7 When k-> < Ay or Ay < Ay, the individual 
dose-effect curves, AA' or BB', have curvatures opposite 
to those shown, but—as will appear later—the direction 
of curvature of isoboles AB and A'B', which is the crite­
rion for synergism, is the same for all combinations of the 
values of Ay, Ay and Ay. 

Experimental application of eq. (27) is most conven­
ient when one of the concentration variables is held 
constant; the resulting graph is then a vertical profile of 
the boloform surface. A profile of this type is also 
linear in In E, vs. In i" since the constancy of the fixed 
inhibitor concentration becomes a part of In C. The 
use of eq. (27) in this manner is particularly convenient 
in the in vitro study of inhibited bacterial growth be­
cause of the simple proportionalities relating Eu ru and 
.1,. as expressed by definitions (j) and (f).40 For this 
purposes eq. (27) becomes 

— In . 1 , = -" In /i" -f '* In y + In C 

in which the proportionality constants in definitions (j) 
and (f) are part of new intercept. In C. Applicability 
of eq. (27) is not, of course, limited to bacterial growth. 

Equation (27) has a number of properties of interest 

(30) H. C h i d , ,/. Ili/g.. 8, i)2 (1908). 
(31) II. K. Wa t son , ibid., 8, 536 (11)08). 
(32) ,1. F . .Mackworth and E. C. Webb , hioehem. J., 42, !H ( I M S ) . 
(33) J. II . Quastc l and W. R. Wooldr idge , ibid., 22, 689 (1928) . 
(34) K. C. Fisher and H. Ohnell . ./, Cell. Comp. Physiol.. 16, 1 (1940). 
(3o) K. C. F isher and J. R. S tearn , ibid., 19, 109 (1942). 
(36) A. M. Chase , ibid., 19, 173 (1942). 
137) A. J. Clark, " G e n e r a l P h a r m a c o l o g y , " in "UefTter 's H a n d b u c h der 

expe r imen t ' lien P h a r m a k o l o g i e , " W. I l e u b n e r and J . Schiiller, eds . . Verlag 
von Juliu-i Springer , Berlin, 1937, Rd, IV. 

(38) C. N. Hinshelwood, ref. 16, pp. 101-102. 
(39) See also t he adso rp t ion funct ion of A. .J. Clark, ref. 37, p. 38. 
(,0*1 See also M. K u r o k a w a , M . l l a t a n o , N . Kash iwagi , T. Sai to, S. 

l sh idu. and R, l lo tn ina , ./. Bart.. 83 , 14 ' 1962) . 

for their bearing on the concept of synergism. The 
multiplicative effect of joint inhibition is, in principle, 
most easily seen for the special case 

fa = A , = ky 

for eq. (27) then takes the clearly multiplicative form 

For the more general and more likely case, /.•. 5*= Ay T6-
ky. the function is more complicated, but in no case can 
it be additive for any combination of values of the 
quantities in eq. (27). 

The practical relevance of eq. (27) to synergism is 
best seen, however, if it is given a geometric interpreta­
tion in terms of the combinations of i'i° and i2" that lead 
to a constant-effect end-point; the result is a horizontal 
profile of Fig. 1 with analytic properties identical with 
those of an experimental isobole.41 Thus, rearranging 
eq. (2o) and substituting d/i,/A\ for — d/i\,''/i\. (definition 
f) gives 

Since every point on an isobole refers to constant effect, 
d£V = 0 and cq. (31) becomes 

This is another variant of the allometric equation re­
ferred to earlier.-5,26 Integration of eq. (32) gives a 
form linear in In ii° vs. In h" 

Ci'.i) In iV = - .'- In (V + In (,' 
/Jy 

or its equivalent 

(34) t," = C/ih0)'" 

where w = Ay Ay The 2nd-order analog of cq. (32) can 
be obtained by setting dEt = 0 in eq. (30), leaving 

As expected, e\ and e-> appear explicitly, and the lst-
order result, eq. (34), is obtained when the lst-order 
condition, ei ~ <y > > > n° ~ i2°. is imposed on eq. (3.>). 

Equation (34) describes a family of curves, some seg­
ments of which are indicated in Fig. 2. A given curve is 
completely determined for particular values of C and w 
and the result can be considered a theoretical isobole for 
synergism between a pair of drugs, Ii and I2, that react 
in a lst-order manner (rate constants kx and Ay) with Ei 
and E2 in competition with Si and S2, respectively. 
Each such isobole is a constant-effect profile of the 
theoretical boloform surface for the drugs in question 
within the concentration range for which synergism is 
demonstrable. The relationship of a theoretical isobole 
to a generalized boloform surface and to the individual 
dose-effect curves is shown in Fig. 1. 

Each theoretical isobole of the type expressed by cq. 
(34) approaches the axes asymptotically with a slope 
tlial is everywhere negative. At the point of inter­
section of the line, /,° = i2°, with an isobole 

CM)) <h'in/(liy -• slope = - w 

b u t . in genera l 

(:i7) - if ^ slope X ('V'/'V'J 

(41) L. G, Goodwin, see ref. 9. 
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C*l 

C = l 

Fig. 2.—Segments of the theoretical isobole, «i° = C/(W)W, 
for various values of C and w: (a) same C (VI), different w's; 
(b) same C (= 1), different w's; (c) different C's, same to; (d) 
different C's, different w's. 

by rearrangement of eq. (32). The symmetry of a 
theoretical isobole relative to the line ii° = i2° is thus 
determined by the magnitude of w; for the special 
case, w = 1, the isobole is a rectangular hyperbola.41a 

Differentiation42 of eq. (32) gives 

(38) («' = (W + ^ T ° 
For all meaningful values of n°, i2°, and u> in eq. (38) 

(39) d2ii0/(di2°)2 > 0 

so every isobole is concave as shown, as required for 
synergism and as found experimentally. 

A similar test for the direction-of-curvature of the 
2nd-order isobole, obtained by partial differentiation of 
eq. (35), gives a result identical with eq. (39); this 
identity is another indication of the qualitative equiv­
alence of the 1st- and 2nd-order treatments. 

The ratio, w, can be found from eq. (37) by visually 
fitting a tangent, dii°/di2°, to any point, (H0, i2°), on 
an isobole. This is more easily done, however, from a 
linear plot of In zV vs. In i2°, from which ( — w)= slope 
directly, as required by eq. (33). C, in a logarithmic 
plot of eq. (33), is the extrapolated value of ii° for 
i2° = 1. 

The asymptotic approach of each end of a theoretical 
isobole, eq. (34), to the axes implies that, contrary to 
experience, an infinite concentration of either drug alone 
would be required to produce the standard response; 
this feature, though inconvenient, is in itself only a 
formal detriment to the theory,43 for the same limita­
tion is inherent in the kinetics analysis of any lst-order 
reaction. Thus, for 

k 

A — B 

the rate equation, — dA/dt = kA, is indeterminate in t 
for A = 0, but first-order reactions do, in practice, go to 
completion in finite time. The indeterminate forms of 

(41a) R. A. Edgren, Ann. X.Y. Acad. Sci., 83, 170 (1959), lias referred 
to the hyperbolic nature of experimentally established isoboles. 

(42) By logarithmic differentiation as described by G. J. Kynch, ref. 24, p. 
48. 

eq. (33) and (34) for «,° = 0 or i2° = 0 thus result from 
the assumption of a lst-order mechanism. 

The 2nd-order result, eq. (35), would presumably 
also lead to an indeterminate form, but this cannot be 
established formally since eq. (35) cannot be integrated 
under 2nd-order conditions. The lst-order theoretical 
isobole, eq. (34), can be given meaningful intercepts, 
however, by translation to a new coordinate system 
with a new origin at (b,a). This is a valid, indeed, a 
realistic procedure since drugs must often exceed certain 
threshold concentrations (b or a) before any effect is 
observed.38-43 Letting a and b represent the threshold 
concentrations for Ii and I2, respectively, eq. (33) can 
be translated to the new coordinate system 

i'i° = x + a 

u" = y + b 

where x and y are the concentrations of Ii and l2 in 
excess of threshold concentrations, a and b. b and a are 
both constants, so the new origin is (b,a) and eq. (33) 
becomes 

(40) In (x + a) = - w In (y + b) + In C 

Intercept, In C, is now the value of In (x + a) for (y + 
b) = 1- . . . 

The result of this translation of coordinates is, in iso­
bole form 

(4i; (x + a) = C/(t/ + &)» 

with a general shape shown in Fig. 3. The new isobole, 

y«-b) 
Fig. 3.—Graph of the function (x + a) = C/(y + b)w rela­

tive to an origin at (&,a); a theoretical isobole in translated 
coordinates. 

now plotted on an x vs. y scale, is of course identical 
with the previous one, but relative to the new origin 
(b,a), and has finite intercepts on the x and y axes. C 
and (— w) are best determined from eq. (40) by a linear 
plot of In (a + x) vs. In (b + y). 

The intercepts, A and B, in Fig. 3 are now finite, for 
if, in eq. (41), y = 0, then x = A = (C/bw) - a, and if 
x = 0, then 

y = B = (C/a)h/k' - b 

Intercept A is the concentration of drug Ii in excess of 
its minimum effective concentration (a) that, when act-

(43) A. J. Clark, ref. 37, p. 7. 
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iug in the presence of a threshold concentration (b) of 
12, causes the standard response. The meaning of in­
tercept B is clear by analogy. 

Note that Fig. 1 is plotted relative to the same trans­
lated coordinate system, and that the /^-coordinate of 
the origin, (ii\)!„.•>, is therefore not zero; it must be 
found by translation of eq. (27) and casting the result 
into exponential form, giving 

(42) Et = C(a + x)k-/'ki (b + y)k"-/kv 

whence, by setting x = 0 and y = 0 

(43) (£"t)b,a = Cak'/kx hk/ky 

The individual dose-effect curves (BB' and AA') in 
Fig. 1 are defined by e<[. (42) when x = 0 or y = 0. 

In theory, a threshold-effect isobole should connect 
points b and a in the Et = 0 plane of a boloform surface. 
This predicts the existence of synergism when iia = ga 
and z2° = hb, g and h being fractions such that g + h < 
1. This isobole is not seen, however, in Fig. 1 since the 
1'Ji = 0 plane is not shown there. 

The cross-hatched area between the additivity and 
synergism isoboles in Fig. 3 has been defined as the 
"amount" of synergism.44 This quantity, 2, can be 
determined directly from the graph by mechanical inte­
gration or by integration of eq. (41). Letting 0 repre­
sent the origin, then 

Area AOB = (AB)/2 

Cjo(y + b)^dy-ajo Area AOCB = C 

2 = AOB - AOCB 

dy 

SO 

2 = (AB)/2 (cfQ
B(y + b)-°dy-afo

Bdy) 

When w ^ I, integration gives 

2 = (AB)/2 - C C 
(*-f) + (1 _ ^)6S-1> + aB 

(I - w')(B + &;<• 

For the special case, w = 1, the integration gives 

2 = (AB)/2 - C In (B + b) 4- C In b -f aB 

w is thus determined entirely by the graphical con­
stants for a given system. 
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f44) G. B. Elion, -5. Finger and G. H. H i t d i i n g s , J. Biol. Chem., 208, 477 
(1954). 

:i.->> ,}. Ii . J-'onts iiinj )!. 1>. Brodie . ./. Pharmacol. E.rper. Tlierap., 116, 480 
fl0.")6). 

(46) .1. I I . G a d d u m . Pharmacol. Ilecs., 9, 211 (1957). 
(47) (a) S. E. dr . longh in, " Q u a n t i t a t i v e M e t h o d s in P h a r m a c o l o g y , " 

II . (In .Umirc. ed., N o r t h - H o l l a n d Puh l . Co. . A m s t e r d a m , 1961, pp . 318 -327 ; 
(1>) P . S. Hewle t t and R. L. P lueke t t , ibid.. pp . 328-339 . 

Appendix 

Derivation of Equation (28).—The procedure is analogous to 
that followed for the lst-order model except that e, and e2 must 
be treated as variables and freer use of partial differentiation must 
be made in handling the relevant definitions, (f), (i), (k)-(n). 

From these definitions 

(Al) 

(A2) 

(A;;) 

and 

(A4) 

So, by 

(A3) 

theorem B 

dftt _ 
dii" ' 

fit = f(ei,Si) 

«2 •= f(S[ ) 

* . = / ( » ' i ) 

i) - / ( i i " ) 

= dA't x ds-,/_ 
d.s2 dsi \ 

In the strictest sense, eq. (A2)-( A4) and the operators in eq. (Ao) 
should be written as partial dependencies; it will be seen later, 
however, tha t certain convenient cancellation properties require 
that only ft, be treated explicitly as a function of two variables, 
as specified in eq. (Al.) 

Applying theorem A to eq. (Al) gives 

and these operations, applied to definition (k), give 

(A7) dft t = (he2)ds2 + (hs^dei 

(AS; d/ i ' t 

ds2 
hd + <,k2S2) y " 

US-2 

B u t deo/dsa = 1, so eq. (AS) becomes 

(A9) dfi = to + hs, 
ds2 

Definition (k) divided by definition (1) is 

(A10) 

and definition (1) divided by definition (rn) gives 

(A l l ) 

ds, 
ds, k,e,si 

_ds, 
dii 

/MCISI 

kxe,ii 
/,'iS, 

~kJ, 

Integration of definition (m) gives 

(A12) In /, = -h* f e,dt + In iia 

or 

(A13) /, = i^-k, J-n.il 

and partial differentiation of eq. (A 13) gives 

(AM) 
dii 
d/Y> 

- K / V i d / 

Equations (A9), (A10), (A l l ) and (A14) are the terms in eq. 
(A5), so eq. (A5) becomes, after these substitutions 

(A15) $ - ( , , 

Substituting definition (k) for (k^e^Si), eq. (A13) for il7 cancelling 
identical terms, factoring, and rearranging gives 

(A16) 
d/ij k, (> 

' 7?t k, V 
ei + s2\dfV> 

Substitution of definition (f! in eq. (A16) gives 

(2S; 
dEt __ k, fc, -f-_sAdi, 
E, " /.'* V r, •• J ii" 

Derivation of Equation (29).—As in the lst-order case for in­
hibition bv Io alone 

J-n.il
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(A17) 

But 

(A18) 

1963 

so, by theorem A 

(A19) d/?t 

dRt _ dRi / ds2\di2 
di2° ds2 \ di2)di2° 

Ri = /(S2,e2) 

~ \2s2/e! 2 \3e2/s2 C2 
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(A20) 
di? t = /d f lA / 5 B A de2 

ds2 \ 3 s 2 / e i \Se2/s!ds2 

The dependence of Rt on i2 is omitted in eq. (A18)-(A20) since it 
has already been acknowledged in the first two terms of the right-
hand side of eq. (A17). 

Since de2/ds2 = 1, eq. (A20) may be simplified, giving 

(A21) 
dR 
ds; : \c)S2/ej \ d e z / s 

Applied to definition (k), eq. (A21) becomes 

dRt (A22) = h,e2 + k2s2 

Definition (k) divided by definition (n) gives 

k2e2s2 (A23) 
ds 2 

di2 kye2i2 

Integration of definition (n) gives 

(A24) In i2 = -kyfadt + In i,« 

or 

(A25) i2 = i^e-hfadt 

and partial differentiation of eq. (A25) gives 

(A26) ^ = e-kufe,At 
di<° 

Substitution of eq. (A22), (A23) and (A26) in eq. (A17) gives 

(A27) 
dtft 
di'j0 = ( t e + k 

, , ( he.Si 

V %-e2t2 

e. ~ kafeidt 

Substituting definition (k) for k2r2s2 and eq. (A25) for i2, cancel­
ling identical terms, factoring and rearranging gives 

d/? t 

" / f t 
(A2g) _,«.„£(*_+«.)«*• 

Substitution of definition (f) in eq. (A28) gives 

' Et k \ e, J i/ 

Derivation of Equation (30N;.—Py the reasoning given in the 
lst-order case, eq. (28) and (29) may be combined directly to 
give eq. (30). 
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Two sequences of chemical reactions leading to several new basically substituted phenylalkylhydrazines are 
described. The compounds were less active and/or more toxic than the unsubstituted parent compound in 
limited animal tests. 

Certain aralkylhydrazines and selected acyl deriva­
tives of them are potent, long-acting monoamine 
oxidase inhibitors.1 Substitution of the phenyl ring 
with amino or dialkylamino residues converted the 
length of activity from periods of the order of 25 days to 
less than 1 day. It was noted2 that with increasing 
length of the alkylene bridge, compounds of intermediate 
length of activity (4-5 days) were obtained. This paper 
describes the preparation of these latter materials. 

(4-Dimethylamino-a:-methylphenethyl)hydrazine (V) 
was svnthesized as follows 

treating 4-nitrophenylacetyl chloride with diethyl 
ethoxymagnesium malonate.3 It was reduced readily 
in the presence of formalin to produce l-(4-dircethyl-
aminophenyl)-2-propanone (II) in 91% yield as a yel­
low distillable oil, which was treated with acetyl hydra­
zine to form the corresponding acetylhydrazone (III) 
which was reduced to IV in acetic acid by H2 /Pt02 , 
stopping the absorption of one equivalent of hydrogen. 
If the reduction was permitted to continue, the cyclo-
hexyl compound VI was formed which, on deacetyla-
tion, gave VII. Deacetylation of IV gave V. 

p-02NCtH4CH2CCCH, - p-(CH3)2NC6H4CH2COCH3 -> p-(CH : i)2NC6H4CH2C(CH i) -NXHOOCH., 
I II III 

p-(CH8)2NC6H4CH2CH(CH3)NHNHCOCH, 
IV 

p-(CH3)2NC6H4CH2CH(CH3)NHNH2 

V 

•p-(CH,)2NC6H10CH2CH(CH3)NHNHCOCH3 

VI 

p-(CH3)2NCeH10CH2CH(CH3)NHNH2 

VII 

l-(4-Nitrophenyl)-2-propanone (I) was prepared by 

(1) T. S. Gardner. E. Wenis, and J. Lee, J. Med. Pharm. Chem., 2, 133 
(1960). 

(2) T. S. Gardner, E. Wenis, and J. Lee, ibid., 3, 241 (1961). 

The synthesis of the higher homolog, l-(4-dimethyl-
aminophenyl)-3-hydrazinobutane and related products, 
is shown in the scheme at the top of the next page. 

(3) C. G. OverberRer and H. Biletch, J. Am. Chem. Soc, 73, 4881 (1931). 


