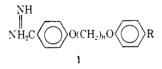
Irreversible Enzyme Inhibitors. CXLIV.^{1,2} Proteolytic Enzymes. VII.³ Additional Active-Site-Directed Irreversible Inhibitors of Trypsin Derived from *m*- and *p*-(Phenoxyalkoxy)benzamidines with a Terminal Sulfonyl Fluoride⁴


B. R. Baker and Edward H. Erickson

Department of Chemistry, University of California at Santa Bachara, Santa Bachara, California 93106

Received August 5, 1968

Twenty-four *m*- and *p*-(phenoxyalkoxy)benzamidines bearing a terminal sulforpy fluoride moiety were synthesized and evaluated as irreversible inhibitors of trypsin; all were excellent reversible inhibitors with $K_1 = 0.7$ -3.6 μM . Eight (**2**, **3**, **5**, **6**, **19-21**, **24**) were excellent active-site-directed irreversible inhibitors when assayed at a K_1 concentration giving 88-100% inactivation. Four (**13**, **15-17**) showed no irreversible inhibitor when assayed at an $8K_1$ concentration. The remaining twelve were poor irreversible inhibitors at a > K_1 concentration. One of the excellent irreversible inhibitors of trypsin was p-[p-(p-fluorosulfonylbenzamido)phenoxypropoxy]benzamidine (**2**), which showed no irreversible inhibition of a related "tryptic" enzyme, namely, thrombin; this specificity is presumably due to the probability that the SO₂F moiety of **2** forms a covalent bond "outside" the active site where structural differences between trypsin and thrombin are apt to be present. The possibility of design of inhibitors of opposite specificity, that is, inactivation of thrombin with no inactivation of trypsin, by appropriate modification of benzamidine and phenylguanidine is discussed.

The chemotherapy of cardiovascular diseases and organ transplantation should be approachable by selective blockage of key serum proteases.⁵ Our initial studies have used trypsin as a model since a number of these serum proteases are "tryptic" in character. In our first paper on trypsin,⁵ it was established that phenoxyalkoxy groups could be substituted on the good reversible inhibitor, benzamidine.⁶ with some gain in reversible binding. Later studies⁴ described the discovery of active-site-directed irreversible inhibitors⁷ of trypsin derived from *p*-(phenoxyalkoxy)benzamidine (**1**, R = H) by insertion of a fluorosulfonylphenyl group on the terminal phenyl.

Although five of these six candidate active-sitedirected irreversible inhibitors at $2-4K_i$ could inactivate trypsin with a half-life of 3-6 min, inactivation was only 30-55% at a K_i concentration of inhibitor, which is sufficient to convert 50% of the enzyme to the ratelimiting reversible enzyme-inhibitor complex:⁸ that the inactivation reaction was incomplete, due in part to concomitant enzyme-catalyzed hydrolysis of the SO₂F group to SO₃⁻, was established.^{4.9} Therefore a further study has now been made to determine the

(1) This work was generously supported by Grant CA-08695 from the National Cancer Institute, U. S. Public Health Service: some of the enzyme measurements were made on a Gilford 2400 spectrophotometer purchased with finnis from U. S. Public Health Service Grant FR07099.

- (3) For the previous paper on proteolytic enzymes see B. R. Baker and J. A. Hurlbut, *ibid.*, **11**, 1054 (1968), paper CXXXII of this series.
- 14) For the previous paper on trypsin see B. R. Baker and E. H. Erickson, ibid., **11**, 245 (1968), paper CXV of this series.

(5) See B. R. Baker and E. H. Erickson, *ibid.*, **10**, 1123 (1967), paper CV1 of this series, for a more detailed discussion of the inhibition of these enzymes.
(6) M. Mares-Guia and E. Shaw, J. Biol. Chem., **240**, 1579 (1965).

(7) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors. The Organic Chemistry of the Enzymic Active-Site," John Wiley aud Sons, Inc., New York, N. Y., 1967.

(8) For the kinetics of irreversible inhibition see ref 7. Chapter 8

(9) B. R. Baker and J. A. Hurlbut, J. Med. Chem., **11**, 233 (1968), paper CXIII of this series.

relationship of structure to efficient irreversible inhibition.

Enzyme Results—The results obtained earlier with the five active-site-directed irreversible inhibitors (2-6) are listed in Table I, the enzyme inactivation being measured with N-benzoyl-dl-arginine p-nitroanilide (BANA);¹⁰ since BANA has a low V_{max} compared to ester substrates such as N-tosyl-L-arginine inethyl ester (TAME),¹¹ a high concentration of enzyme is needed in the BANA assay. Thus compounds **2-6** were incubated with 3-9 μM trypsin:⁴ in a few runs.⁴ the trypsin concentration was lower than the inhibitor concentration, such a ratio making total inactivation stoichiometrically impossible.¹² When the extent of irreversible inhibition of trypsin was measured with TAME with its higher V_{max} , the concentration of the enzyme could be reduced to 0.1-0.3 μM (see Experimental Section); it was then readily ascertained which compounds still underwent enzyme-catalyzed hydrolysis of the SO₂F function to SO₃H⁹ at a K_i concentration of inhibitor.

The five compounds (2-6) previously examined as irreversible inhibitors of trypsin with the BANA assay were reexamined at K_i concentration with the TAME assay where the concentration of trypsin was $<0.3 \ \mu M$ (Table I). At a K_i concentration (1.6-3.1 μM), all five (2-6) were excellent irreversible inhibitors of trypsin, showing 83-94% inactivation. One of the compounds (2) was then examined as an irreversible inhibitor at less than K_i concentration; with 0.5 and $0.25K_i$ concentrations of **2**, which are still in excess over trypsin and able to reversibly complex 33 and 20%,⁸ respectively, of the available trypsin. total irreversible inhibition was reduced to 75 and 40%. Thus enzyme-catalyzed hydrolysis of the SO₂F group is still observable⁹ as the inhibitor concentrations approach these lower enzyme concentrations.

Since **6** was an excellent irreversible inhibitor at a $K_i = 1.6 \ \mu M$ concentration, several analogs were synthesized for enzymic evaluation. Introduction of

⁽²⁾ For the previous paper in this series see B. R. Baker and R. B. Meyer, Jr., J. Med. Chem., 12, 108 (1969).

⁽¹⁰⁾ B. F. Erlanger, N. Kowkowsky, and W. Cohen, Arch. Biochem. Biophys., 95, 271 (1961).

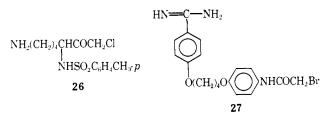
⁽¹¹⁾ B. C. W. Hummel. Con. J. Biochem. Physiol., 37, 1303 (1959).

⁽¹²⁾ We wise to though Dr. Howard J. Schneffer for polaring on this solichionetry.

a Me (7), MeO (8), or EtO (9) group ortho to the SO₂F function gave little change in K_i . Although these structural changes still allowed irreversible inhibition, the total irreversible inhibition at a 1-4 K_i concentration was low, indicating that these structural changes had a detrimental effect on the ratio of the rate of enzyme inactivation vs. the rate of enzyme-catalyzed hydrolysis. Substitution of Cl (10) or MeO (11) para to the SO₂F function of **6** was also detrimental to irreversible inhibition, but not reversible inhibition; substitution of a Cl (12) on the central phenyl group of **6** gave similar results.

When the m-SO₂F function of **6** was moved to para (13), reversible inhibition was enhanced about twofold; however, this structural change destroyed the irreversible inhibitory properties. When 13 was further substituted by Me (16) or Cl (17) on the central phenyl group, irreversible inhibition was still not seen. Substitution of o-Me (15) to the SO₂F function of 13 gave similar negative results. In contrast, substitution of Cl (14) meta to the SO₂F function of 13 gave a good irreversible inhibitor, although reversible inhibition was not changed. When the bridging in 13 to the benzamidine was changed from para to meta, the resultant 18 showed improvement over the nonirreversible 13; 18 was still a poor irreversible inhibitor since a $4K_i$ concentration showed irreversible inhibition but a K_i concentration gave essentially no irreversible inhibition.

When the *p*-(fluorosulfonylbenzamido) moiety of **4** was moved to the *meta* position, the resultant **19** was an even better irreversible inhibitor than **4** when both were compared at K_i concentration.


A series of irreversible inhibitors derived from p-(*m*-aminophenoxyethoxy)benzamidine were then investigated. The *m*-fluorosulfonylphenylureido derivative (**20**) was an excellent irreversible inhibitor of trypsin, as was **21** with a Cl para to the SO₂F moiety. Insertion of an o-Me (**22**) on **20** again gave a poorer irreversible inhibitor, presumably due to a less favorable ratio of enzyme inactivation to enzyme-catalyzed hydrolysis.

When the m-SO₂F moiety of **20** was moved to the para (**23**), little change in reversible inhibition occurred; however, the effect on irreversible inhibition was more dramatic, **23** now being a poor irreversible inhibitor; removal of an NH of the ureido bridge of **23** to give **24** resulted in recouping irreversible inhibition.

The last compound investigated was the lower homolog (25) of 13 which was a poor irreversible inhibitor, but was better than 25 which failed to show any irreversible inhibition. The best irreversible inhibitors in Table I are 2, 3, 5, 6, 19–21, and 24, all of which gave >88% inactivation at a K_i concentration. In order to compare these best inhibitors in speed of inactivation, in contrast to total inactivation in 60 min, time studies were performed. The half-lives of irreversible inhibition by these eight compounds at a K_i concentration were compared; these half-lives varied between 1–7 min. Three of the compounds (19–21) had half-lives of 2 min or less at a K_i concentration of 0.9–2.2 μM and gave essentially 100% inactivation in 60 min.

Although it is likely that these SO_2F -type irreversible inhibitors in Table I form a covalent bond with a serine or threonine of trypsin, it is unlikely that the same amino acid in trypsin is attacked by all these irreversible inhibitors. The location of the amino acid covalently linked by these inhibitors is a challenging endeavor worthy of pursuit.¹³

One of the objects of synthesizing the compounds in Table I was to gain better specificity among the numerous "tryptic" enzymes. For example, thrombin¹⁴ is defined as a "tryptic" enzyme since it can use N-tosyl-L-arginine methyl ester (TAME) as a substrate. Therefore one of compounds (2) in Table I was examined as a reversible and irreversible inhibitor of thrombin. Reversibly, **2** had an $I_{50} = 24 \ \mu M$ when assayed with 1 mM TAME at pH 8.4. When thrombin was incubated for 1 hr at 37° at pH 7.4 with 30 μM 2, no irreversible inhibition was observed. Note that 3.1 μM 2 can give 91% inactivation of trypsin under the same conditions. This selectivity in irreversible inhibition by 2 between trypsin and thrombin should be contrasted with the results of irreversible inhibition of these two enzymes by the chloromethyl ketone from N-tosyl-L-lysine (26) (TLCK); the latter could irreversibly inhibit both thrombin and trypsin.¹⁵ TLCK specifically alkylates histidine-46 when complexed

with trypsin; 16 this histidine is most likely part of the active site. 15

Since thrombin and trypsin are both "tryptic," their catalytic sites and complexing sites for a lysine moiety would be expected to be similar; hence, both should be inactivated by TLCK. In contrast, **2** was designed to complex the benzamidine moiety in the active site of trypsin then extend the SO₂F moiety outside the active site where differences in structure between trypsin and other "tryptic" enzymes should be apparent.¹⁷ Thus, the specificity shown by **2** between trypsin and thrombin can be accounted for by covalent bond formation outside the active site, the so-called exo mechanism of active site-directed ir-

(15) E. Shaw, M. Mares-Guia, and W. Cohen, *Biochemistry*, 4, 2219 (1965).

(16) E. Shaw and S. Springhorn, Biochem, Biophys. Res. Commun., 27, 391 (1967).

(17) An active site is defined as containing those amino acids in contact with the substrate and those amino acids involved in the catalytic process.¹⁸ Since it is not yet known how many amino acid residues at the carboxyl end of a lysine or arginine in a protein are in contact with a protease such as trypsin, the dimensions of the active site are impossible to estimate by substrate size when the substrate is a protein. However, even if two or three amino acid units at the carboxyl terminus were in contact with two different proteases, the farther removed from the catalytic site are these contacts, the greater difference could be expected in primary and tertiary structure of the two proteases.

(18) See ref 7, p 188.

⁽¹³⁾ The SO₂F moiety also has the ability to form a stable covalent bond with histidine or tyrosine. Since there are only three histidines in trypsin and the number of tyrosines on the surface of an enzyme is apt to be small, linkage to one of these amino acids is not likely.

⁽¹⁴⁾ A number of commercial crude thrombin preparations contained much water-insoluble protein and gave a low velocity of reaction with TAME which was highly variable. Good activity and duplicatability were achieved with a water-soluble thrombin preparation, No. BT2000, purchased from Sigma Chemical Co. TAME showed an apparent $K_{\rm m}$ of 3 mM in 0.05 M Tris buffer, pH 8.4.

TABLE I

INHIBITION^a OF TRYPSIN BY

NH NH₂C-O(CH₂)_nO(CH₂)_nO

	Bridge		Reversible		T				
	position		Isn,"	Estd		Inhib,	Irrever	Time,	
No.	(n)	R	μM	$K_{1}, ^{*} \mu M$	$Mechod^d$	μM	$E \cdots l^c$	min	inactvu
27	para(3)	p-NHCOC ₆ H ₄ SO ₂ F- p	6.2	3.1	BANA	25	88	3, 15''	50,100
					BANA	7.5	~ 70	5, 30%	50, 88
					BANA	3.1		4, 15, 309	44, 44
					TAME	3.14	50	60	91
					TAME	1.5^{h}	33	60	75
					TAME	0.75^{b}	20	60	40
					TAME	3.1^{h}	50	7	50%
3^{j}	para(3)	p-NHCOC ₆ H ₄ SO ₂ F- m	3.4	1.7	BANA	6.5	~ 80	4, 120	50,100
•,	P				BANA	1.7	- 1,707	$14, 30^{\circ}$	54, 54
					TAME	1.74	50	14 , 50 [,] 60	94
					TAME	1.7%	50	4, 10, 60¢	50, 65, 92
41	para(4)	p-NHCOC ₅ H ₄ SO ₂ F- p	4.1	2.0	BANA	40	92	3, 124	50, 00, 52 50, 100
' t '	para (4)	p-refreshows p -refreshows p -r	ч. I	4.0					,
					BANA	10	83	3, 30*	50, 70
					BANA	2.0	50	8, 307	31, 31
- /	64 S	NHOODHEOF	4 -	a a	TAME	2.04	50	60	83
5^{f}	para(4)	p-NHCOC ₆ H ₄ SO ₂ F- m	4.5	2.2	BANA	11	\sim 83	6, 30%	$50, 80^{\circ}$
					BANA	2.2		8, 30#	40, 40
					TAME	2.3^{*}	$\overline{20}$	60	-02
					TAME	2.3^{b}	50	$\overline{\epsilon}$	50ø
6^{f}	para (4)	$p ext{-NHCONHC_6H_4SO_2F-}m$	3.2	1.6	BANA	7.0	~ 80	$6, 30^{g}$	$50, 82^{c}$
					BANA	1.6		8, 302	37, 37
					TAME	1.6^{k}	50	60	88
					TAME	1.6^{h}	50	7	.)(10
7	para (4)	p-NHCONHC ₆ H ₃ -4-Me-3-SO ₂ F	2.3	1.1	BANA	14	92	60	87
					BANA	3.8		60	23
					TAME	1.1	50	60	38
8	para(4)	p-NHCONHC ₆ H ₃ -4-MeO-3-SO ₂ F	2.5	1.2	BANA	7.0	~ 85	$15,60^{g}$	24, 24
	1				BANA	2.0		60#	O
					TAME	2.5	67	60#	49
9	para(4)	p-NHCONHC ₆ H ₃ -4-EtO-3-SO ₂ F	2.2	1.1	BANA	10	90	60	74
0	pa, a (1)				BANA	4.0	0.5	60 ⁹	0
					TAME	4.0	$\overline{79}$	60	41
10	para(4)	p-NHCONHC ₆ H ₃ -2-Cl-5-SO ₂ F	1.5	0.75	BANA	9,5	93	60	
10	p(a, a(1))	<i>p</i> 1010000106113 2 01 9 0021	1		BANA	2.4		60	28
					TAME	0.75	50	60	76
11	para(4)	<i>p</i> -NHCONHC ₆ H ₃ -2-MeO-5-SO ₂ F	2.8	1.4	BANA	13	90	60 60	80
71	para(4)	<i>p</i> =1(11001(110,113-2-3160-0-0,0)21	- .0	1.4	BANA	5.2	:00		41, 4 t
							-0	$16,60^{g}$	
		OL NUCONHOU SO E		1.0	TAME	1.4	50	60 co	6
12	para(4)	o-Cl-p-NHCONHC6H4SO2F-116	2.5	1.2	BANA	5.0		60 40	42
	245	NTROUNTRO TO SO T		0 - 0	TAME	1.2	50	60	41
13	para(4)	$p ext{-NHCONHC_6H_4SO_2F-}p$	1.4	0.70	BANA	5,6	S 9	60	0
					TAME	0.70	50	60	0
14	para(4)	p-NHCONHC ₆ H ₃ -2-Cl-4-SO ₂ F	1.6	0.80	BANA	7.0	~ 90	60	95
					BANA	2.8		5,600	40, 40
					TAME	0.80	50	69	78
15	para(4)	p-NHCONHC ₆ H ₃ -3-Me-4-SO ₂ F	1.6	0.80	BANA	6.8	~ 89	60	0
					TAME	1.6	67	60	0
16	para(4)	m-Me- p -NHCONHC ₆ H ₄ SO ₂ F- p	1.4	0.70	BANA	5.6	89	60	0
17	para(4)	$o ext{-} ext{Cl-}p ext{-} ext{NHCONHC}_6 ext{H}_4 ext{SO}_2 ext{F} ext{-}p$	2.4	1.2	BANA	10	89	60	0
18	meta (4)	$p ext{-}\mathrm{NHCONHC_6H_4SO_2F}$ - p	7.2	3.6	BANA	15	81	$20,60^{g}$	50, 87 ⁷
					BANA	7.4		604	()
					TAME	3.6	50	60	6
19	para(4)	m-NHCOC ₆ H ₄ SO ₂ F- p	4.4	2.2	BANA	8.8	~ 80	$2, 8^{o}$	$72, 90^{10}$
					BANA	2.2		8, 304	45, 45
					TAME	2.2	50	60	96
					TAME	1.1	33	60	78
					TAME	2, 2	50	1, 10, 60	50, 92, 970
20	para(2)	m-NHCONHC ₆ H ₄ SO ₂ F-m	3.6	1.8	BANA	7.2	~ 80	2, 80	75, 87
20								- , ~	
20	p.0. a (=)				BANA	1.8		4,30'	42.42
20	p. (0 (1 (2))				BANA TAME	$1.8 \\ 1.8$	50	4 , 30¢ 60	42, 42 96

		Т	ABLE I	(Continued	1)					
	Bridge		-Reversible-		Irreversible					
No.	position (n)	R	150, ^b µМ	Estd $K_{i,c} \mu M$	$Method^d$	lnhib, μM	$\frac{\%}{E\cdots l^e}$	Time, min	% inactvn	
21	para(2)	<i>m</i> -NHCONHC ₆ H ₃ -2-Cl-5-SO ₂ F	1.8	0.90	BANA	3.0		60	54	
	• • • •				TAME	0.90	50	60	100	
					TAME	0.90	50	1, 10, 60	$50, 86, 100^{g}$	
22	para(2)	<i>m</i> -NHCONHC ₆ H ₃ -4-Me-3-SO ₂ F	4.1	2.0	BANA	9.2	82	60	86	
	• • • •				BANA	2.3		60	23	
					TAME	2.0	50	60	76	
23	para(2)	m-NHCONHC ₆ H ₄ SO ₂ F- p	4.8	2.4	BANA	10.6	82	60	59	
	1	· · · ·			BANA	5.3		60	12	
					TAME	2.4	50	60	15	
24	para(2)	$m-\mathrm{NHCOC_6H_4SO_2F}-p$	3.0	1.5	BANA	6.0		$2, 30^{g}$	$50, 83^{i}$	
	•	•			BANA	1.5		$10, 30^{g}$	47, 47	
					TAME	1.5	$\overline{50}$	60	94	
					TAME	1.5	50	3, 10, 60	$50, 68, 91^{g}$	
25	para(3)	p-NHCONHC ₆ H ₄ SO ₂ F- p	4.0	2,0	BANA	13	87	60	41	
	,				TAME	2.0	50	60	0	

^a The technical assistance of Susan Black, Maureen Baker, Jean Reeder, and Julie Leseman with these assays is acknowledged. ^b I₅₀ = concentration necessary for 50% inhibition when assayed with 50 μ M pL-benzoylarginine *p*-nitroanilide (BANA) in pH 7.4 Tris buffer containing 10% DMSO as previously described.^b Estimated as $0.5I_{50}$; see ref 4. ^d Enzyme incubated at 37° in pH 7.4 Tris buffer containing 10% DMSO (as previously described.^b Estimated as $0.5I_{50}$; see ref 4. ^d Enzyme incubated at 37° in pH 7.4 Tris buffer containing 10% DMSO (as previously described.^b Estimated as $0.5I_{50}$; see ref 4. ^d Enzyme incubated at 37° in pH 7.4 Tris buffer containing 10% DMSO (as previously described.^b Estimated as $0.5I_{50}$; see ref 4. ^d Enzyme incubated at 37° in pH 7.4 Tris buffer containing 10% DMSO (b) as previously described.^b Estimated as $0.5I_{50}$; see ref 4. ^d Enzyme incubated at 37° in pH 7.4 Tris buffer containing 10% DMSO (b) as previously described.^b Estimated as $0.5I_{50}$; see ref 4. ^d Enzyme incubated at 37° in pH 7.4 Tris buffer containing 10% DMSO (b) as previously described.^c Estimated as $0.5I_{50}$; see ref 4. ^d Enzyme incubated at 37° in pH 7.4 Tris buffer containing 10% DMSO (b) as a sayed with N-tosyl-L-arginine methyl ester (TMAE) (see Experimental Section). ^c Calculated from [EI] = [E₁]/(1 + K₁/[I]) where [EI] = amount of reversible complex expressed as a percentage of total enzyme (E₁),^s this calculation is valid only when inhibitor is in excess of enzyme. ^f Data from ref 4 unless otherwise indicated. ^g From six-point time study.⁴ New data. ⁱ Near maximum irreversible inhibition.

reversible inhibition.⁷ Similarly, the bromoacetamidobenzamidine (27), which at 14 μM shows slow irreversible inhibition of trypsin with a half-life of 4 hr, showed no irreversible inhibition of thrombin at 30 μM .

The trypsin inhibitors, benzamidine (28) and phenylguanidine (29), are also reversible inhibitors of throm-

$$\begin{array}{cc} C_6H_bC(=>NH)NH_2 & C_6H_bNHC(=>NH)NH_2 \\ 28 & 29 \end{array}$$

bin; when thrombin was assayed with 1 m*M* TAME, **28** and **29** had $I_{50} = 0.46$ and 0.68 m*M*, respectively. Thus it should be possible to convert **28** or **29** to a specific irreversible inhibitor of thrombin by utilizing the *modus operandi* developed for trypsin^{4.5} and other enzymes.⁷ Similarly, it should be possible to develop selective irreversible inhibitors of other serum proteases such as the complement system involved in rejection of organ transplants.¹⁹

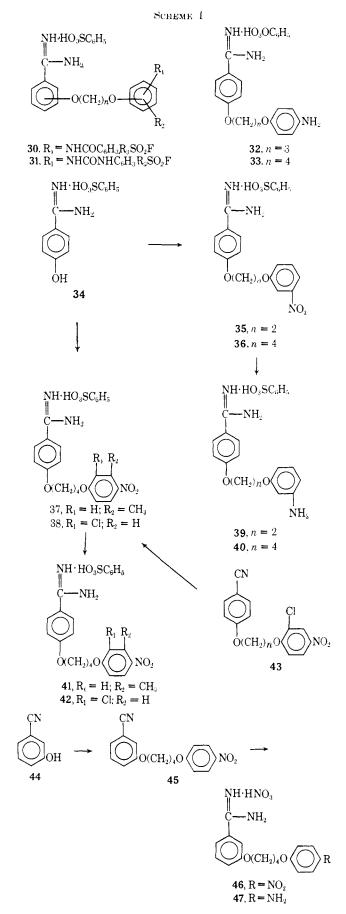
Chemistry.—All of the candidate irreversible inhibitors in Table I can be generalized either as a benzamide (**30**) or phenylurea (**31**); these were synthesized from the appropriate arylamines (**32**, **33**, **39–42**, **47**) by acylation with the appropriate fluorosulfonylbenzoyl chloride in DMF in the presence of Et₃N or with the appropriate O-(p-nitrophenyl) carbamate²⁰ in the absence of Et₃N. Of the required amines, **32** and **33** have been previously synthesized.⁴ The remainder were synthesized as follows.

The alkylation of *p*-hydroxybenzamidine (**34**) with the appropriate ω -bromoalkyl *m*-nitrophenyl ether²¹ in DMF containing K₂CO₃ gave **35** and **36** by the previously described general method.⁴ Catalytic hydrogenation of the NO₂ group afforded the requisite amines **39** and **40**; the amine (**41**) was prepared from **34** in a similar fashion with 4-bromobutyl 3-methyl-4-nitrophenyl ether via **37** (Scheme I). Similarly, alkylation of p-hydroxybenzamidine (34) with the appropriate bromide gave 38. However, trace impurities in 38 made catalytic reduction to 42 a quite variable reaction that failed at times; therefore 38 was synthesized by the alternate route of alkylation of p-cyanophenol to 43 which was more readily purified. Reaction of 43 with EtOH and HCl in CHCl₃ converted the CN to an imino ether which was treated *in situ* with ammonia to give the amidine 38, isolated as its benzenesulfonate salt. Catalytic reduction of 38 then proceeded smoothly to 42. In a similar fashion, m-cyanophenol (44)²² was converted to 47.

Experimental Section

All analytical samples had ir spectra in agreement with their assigned structures, moves as a single spot on the on Brinkmann silica gel GF or polyamide MN, and gave combustion values for C, H, and N or F within 0.4% of theoretical unless otherwise indicated. Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected.

4-Ethoxy-3-fluorosulfonylacetanilide (48).—To 60 ml of Cl-SO₃H was added portionwise with stirring 30 g (0.17 mole) of *p*ethoxyacetanilide with water-bath cooling to keep the temperature at 30-35°. After 2 hr at 40° the solution was cooled in an ice bath, then poured into about 350 g of ice and H₂O with vigorous stirring. The mixture was extracted with two 250-ml portions of CHCl₃. Dried (MgSO₄), the CHCl₃ solution was evaporated *in vacuo* leaving an oily sulfonyl chloride which gradually solidified and had the proper ir spectrum. The oil was dissolved in 60 ml of dioxane. To the solution was added 30 g of KF (0.52 mole) in 30 ml of H₂O, then the mixture was refluxed for 40 min. The cooled mixture was diluted with 300 ml of H₂O and extracted with two 200-ml portions of CHCl₃. The combined extracts were dried (MgSO₄), then evaporated *in vacuo*, leaving 16.9 g (38%) of product that moved as single spot on the with EtOAc and was suitable for the next step. Recrystallization of a sample from CHCl₃ gave white crystals, mp 157-159°. *Anal.* (C₁₀H₁₂-FNO₄S) C, H.


O-(p-Nitrophenyl) N-(4-Ethoxy-3-fluorosulfonylphenyl)carbamate (49).—A mixture of 16.9 g (66 mmoles) of 48, 35 ml of EtOH, 14 ml of H₂O, and 20 ml of 12 N HCl was refluxed for 90 min, then diluted with 450 ml of H₂O. The solution was clarified by filtration, then neutralized with NaHCO₃ and extracted

⁽¹⁹⁾ Ciba Foundation Symposium, Complement, G. E. W. Wolstenkolme and J. Knight, Ed., Little, Brown and Co., Boston, Mass., 1965.

⁽²⁰⁾ B. R. Baker and N. M. J. Vermeulen, J. Med. Chem., **12**, 74 (1969), paper CXXXIV of this series.

⁽²¹⁾ B. R. Baker and G. J. Lourens, ibid., **11**, 26 (1968), paper C1X of this series.

⁽²²⁾ Prepared by the procedure of T. van Es. J. Chem. Soc., 1564 (1965)

with two 250-ml portions of CHCl₃. Dried (MgSO₄), the combined extracts were evaporated in vacua leaving 6.8 g (47%) of 2-ethoxy-5-metanilyl fluoride, mp 55-68°, which was not readily purified.

A solution of 2.19 g (10 minoles) of the crude metanilyl fbioride and 2.2 g (11 minoles) of *p*-nitrophenyl chloroformate in 20 (a) of C_8H_8 was getty refluxed under an air condenser for 3 be 2^{10} C_8H_8 was evaporated *in racio* and the residue was recrystallized three times for CH_2CI_2 ; yield 0.88 g (23%), up 154 155°, (4*nd*, $(C_5H_9FN_2O_78)$ C, H, N. An additional 2.2 g (58%) corless pure material could be isolated from the combined filtrates.

2-Chloro-4-nitrophenyl 4-Bromobutyl Ether (50), —A mixtore of 34.8 g (0.2 mole) of 2-chloro-4-uitrophenol, 174 g (0.8 mole) of 4.4-dibtomobutane, 50 nd of DMF, and 28 g (0.2 mole) of K₂CO₃ was heated on a steam bath for 5 hr. The cooled solution was dibted with 250 ml of CHCl₃ and washed successively with 250 ml of 5⁺/₄ NaOH and two 250-nl portions of H₂O. Dried (MgSO₄), the CHCl₃ solution was evaporated to about 100 mi *in vacuo*, then dibted with 200 ml of MeOH and kept overnight at -15° . The insoluble bisphenoxybutane (6.3 g) was removed by filtration. Evaporation *in vacuo* with removal of the 1,1-dibtomobutane gave an oil which could be crystallized from MeOH with large loss: yield 13.6 g (22°_{-1}) , up 40–43°, suitable for the transformation. Two recrystallizations of a sample from MeOH gave the analytical sample, up 41-43°. *Anal.* (C₁₉H₁₉BrCINO₃) C, H, N.

The corresponding 3-methyl-4-nitrophenyl ether was prepared similarly, but melted below room temperature.

4-(2-Chloro-4-nitrophenoxy)-1-(p-cyanophenoxy)butane (43). --A stirred mixture of 2.4 g (20 mmoles) of p-cyanophenol, 6.25 g (20 mmoles) of **50**, 2.8 g (20 mmoles) of K₂CO₃, and 25 ml of DMF was heated for 5 hr in a bath at 60°. The mixture was dihited with 100 ml of H₂O and extracted with two 100-ml poctions of CHCl₂. Dried (MgSO₃), the combined extracts were evaporated *in racito*. The residual oil was crystallized by the addition of petroleoun ether (bp 30-60°), then corystallized from Me-OE(OH): yield, 5.3 g (75°), mp 134-436°. *Mult*. (C₃₇H₃Cl-N₂O₄O, C, H, N.

Similarly, **45** was prepared in 68°_{ν} yield, mp $70-59^{\circ}_{\nu}$. Recrystallization from MeOH gave the analytical sample, mp 73 75°. Anal. $1C_{13}H_{13}N_2O_3$) C, H, N.

p-(2-Chloro-4-nitrophenoxybutoxy)benzamidine Benzenesulfonate (38) (Method F).—Through a solution of 3.47 g (10 numbles) of 43 and 0.46 g (10 numbles) of EtOH in 40 ml of CHCIs cooled in an ice bath was passed a slow stream of HCI gas for 90 ain, the system being protected from moisture. After standing 48 hr at room temperature, the solution was further treated with 0.23 g (5 numbles) of EtOH and HCI gas for 60 min since ir of an aliquot still showed a CEEN band. After 24 hr the mixture was treated with 25 ml of EtOH saturated with NH₅ at 0°. The mixture was stirred for 48 hr, then fibered and evaporated in racio. The residue was then heated with a solution of 2.5 g (14 numbles) of CeH3SO₃H in 25 ml of H₂O when the product crystallized. Recrystallization from *n*-PrOH gave 1.8 g (35°_c) of product, mp 198-203°. See Table H for additional data.

Similarly, **46** was prepared from **45** except the product was crystallized from 50 ml of *i*-PrOH plus 3 ml of coocentrated HNO₄: yield 1.08 g (10°), mp 152–158°, single spot on the with MeOH on Brinkmann polynmide MN. Recrystallization of a sample from EtOH gave the analytical sample, mp 160–163°. Anal. ($C_{15}H_{20}N_4O_5$) C. H. N.

m-(p-Aminophenoxybutoxy)benzamidine nitrate (47) was prepared from 46 by method B.⁴ Two recrystallizations from H₂O gave 0.35 g (40%) of white crystals, mp 198-200°. *Anal.* (C₁₇H₂₂N₄O₅) C, H, N.

 m_{-} {p-(p-Fhorosulfonylphenylureido)phenoxybutoxy|benzamidine Nitrate (18) (Method C). A solution of 175 mg (0.51 mmole) of 47 and 181 mg (0.50 mmole) of 0-(p-nitrophenyl) N-(p-fborosulfonylphenyl)carbanua(e²⁰ in 1 nol of DMF was magnetically stirred at ambient temperature for 1 br, then dibuted with Et₂O (9 ml). An oil separated that soon solidified. Three recrystallizations from Me(DI gave 133 mg (48%) of product, mp 188-100°. Anot, (C₂₄H₂₈FN₃SO₂) C, II, F. See Table II for other compounds prepared by this method. When the oily product did not crystallize, the solvent indicated.

2-Fluorosulfonyl-4-methoxybenzoic Acid (51). –To 10 ml of FSO₃H in a Teflor beaker was added in portions over 15 min 5.3 g of anisic acid. The solution was heated in a bath at 100° for 4 hr, then cooled and poured into ice with stirring. The mixture was extracted with $E(_2O)$. The combined extracts, dried with MgSO₅, were evaporated in racor to give 3.5 g (46%) of product, np. 158–165°. Several recrystallizations (C₈H₆) gave white crystals, mp. 177–179°. Anal. (CAll;FO;S) C, Hi

				$\underline{\bigcirc}$	$\leq \sim_{R}$		
No.	n	R	$Method^a$	% yield	Mp, °C	Formula	Analyses
7	4	p-NHCONHC ₆ H ₃ -4-Me-3-SO ₂ F	С	54^{b}	230-233	$C_{3}(H_{33}FN_4O_8S_2$	C, H, F
8	4	<i>p</i> -NHCONHC ₆ H ₃ -4-MeO-3-SO ₂ F	С	38^{b}	216–218 dec	$C_{34}H_{33}FN_4O_9S_2$	C, H, F
9	4	<i>p</i> -NHCONHC ₆ H ₃ -4-EtO-3-SO ₂ F	С	28^{b}	216 - 219	$\mathrm{C}_{32}\mathrm{H}_{35}\mathrm{FN}_4\mathrm{O}_0\mathrm{S}_2$	C, H, F
10	4	p-NHCONHC ₆ H ₃ -2-Cl-5-SO ₂ F	С	64^{c}	180-181	$\mathrm{C_{30}H_{30}ClFN_4O_8S_2}$	С, Н, F
11	4	p-NHCONHC ₆ H ₃ -2-MeO-5-SO ₂ F	С	4 0 ^b	183 - 185	$C_{3}H_{3}FN_4O_9S_2$	C, H, F
12	4	o-Cl-p-NHCONHC6H4SO2F-m	С	44 ^b	213 - 215	$\mathrm{C}_{30}\mathrm{H}_{30}\mathrm{ClFN}_4\mathrm{O}_8\mathrm{S}_2$	C, H, F
13	4	p-NHCONHC ₆ H ₄ SO ₂ F- p	С	38^{d}	251–253 dec	$\mathrm{C}_{30}\mathrm{H}_{31}\mathrm{FN}_4\mathrm{O}_8\mathrm{S}_2$	C, H, F
14	4	p-NHCONHC ₆ H ₃ -2-Cl-4-SO ₂ F	\mathbf{C}	34°	178 - 180	$\mathrm{C}_{30}\mathrm{H}_{30}\mathrm{ClFN}_4\mathrm{O}_8\mathrm{S}_2$	C, H, F
15	4	p-NHCONHC ₆ H ₃ -3-Me-4-SO ₂ F	С	30%	240–241 dec	$\mathrm{C}_{33}\mathrm{H}_{33}\mathrm{FN}_4\mathrm{O}_8\mathrm{S}_2$	C, H, F
16	4	m-Me- p -NHCONHC ₆ H ₄ SO ₂ F- p	С	68 ⁷	239–241 dec	$\mathrm{C}_{31}\mathrm{H}_{33}\mathrm{FN}_4\mathrm{O}_8\mathrm{S}_2$	С, Н, F
17	4	o-Cl- p -NHCONHC ₆ H ₄ SO ₂ F- p	С	44 ^y	245 - 249	$\mathrm{C}_{30}\mathrm{H}_{30}\mathrm{ClFN}_4\mathrm{O}_8\mathrm{S}_2$	С, Н, Г
19	4	$m-\mathrm{NHCOC_6H_4SO_2F}-p$	D	13^{h}	161 - 165	${ m C_{30}H_{30}FN_{3}O_8S_2}$	C, H, N
20	2	m-NHCONHC ₆ H ₄ SO ₂ F- m	\mathbf{E}	26^i	233 - 235	$\mathrm{C}_{28}\mathrm{H}_{27}\mathrm{FN}_4\mathrm{O}_8\mathrm{S}_2$	C, H, F
21	2	m-NHCONHC ₆ H ₃ -2-Cl-5-SO ₂ F	С	42^{b}	216–219 dec	$C_{28}H_{26}ClFN_4O_8S_2\cdot H_2O$	С, Н, Г
22	2	m-NHCONHC ₆ H ₃ -4-Me-3-SO ₂ F	С	16^{b}	247 - 249	$C_{29}H_{29}FN_4O_8S_2$	C, H, F
23	2	$m-\mathrm{NHCONHC_6H_4SO_2F}-p$	\mathbf{C}	24°	245 - 248	$\mathrm{C}_{28}\mathrm{H}_{27}\mathrm{FN}_4\mathrm{O}_8\mathrm{S}_2$	C, H, F
24	2	$m-\mathrm{NHCOC_6H_4SO_2F}-p$	D	10^{p}	270 - 272	$\mathrm{C}_{28}\mathrm{H}_{26}\mathrm{FN}_3\mathrm{O}_8\mathrm{S}_2$	C, H, F^e
25	3	p-NHCONHC ₆ H ₄ SO ₂ F- p	С	38^{b}	243-245	$C_{29}H_{29}FN_4O_8S_2$	С, Н, F
35	2	m-NO ₂	Α	47 ^b	203 - 205	$C_{21}H_{21}N_3O_7S$	C, H, N
36	4	m-NO ₂	Α	46^{i}	187 - 190	$\mathrm{C}_{23}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}_{5}\mathrm{S}$	C, H, N
37	4	$3-Me-4-NO_2$	Α	26^k	174 - 178	$C_{24}H_{27}N_3O_7S$	C, H, N
38	4	2 -Cl- 4 -NO $_2$	Α	61	$197 - 203^{t}$	$\mathrm{C}_{23}\mathrm{H}_{24}\mathrm{ClN_3O_7S}$	C, H, N
			\mathbf{F}	35^{t}	198 - 203		
39	2	$m-\mathbf{NH}_2$	В	80^{b}	238 - 240	$\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{N}_{3}\mathrm{O}_{5}\mathrm{S}$	C, H, N
40	4	m-NH ₂	в	66^m	173 - 180	$\mathrm{C}_{23}\mathrm{H}_{27}\mathrm{N}_{3}\mathrm{O}_{5}\mathrm{S}$	C, H, N
41	4	$3-Me-4-NH_2$	В	42	$175 - 178^{n}$	$C_{24}H_{29}N_3O_5S$	C, H, N
42	4	2 -Cl- 4 -NH $_2$	В	90°	205 - 207	$\mathrm{C}_{23}\mathrm{H}_{26}\mathrm{ClN_3O_5S}$	C, H, N
" For	mathod	A B D and F was ref 4; for mathew	L F and F	coo Evno	uimentel Section	h Dogwood flying EtOH	

^a For methods A, B, D, and E, see ref 4; for methods E and F, see Experimental Section. ^b Recrystallized from EtOH-H₂O. ^c Recrystallized from EtOH. ^d Recrystallized from DMF. ^e Anal. Calcd: C, 54.6; H, 4.26; F, 3.09. Found: C, 53.9; H, 4.03; F, 3.76. ^f Reprecipitated from DMF with Et₂O. ^a Reprecipitated from MeOEtOH-Et₂O. ^b Recrystallized from MeOH-Et₂O. ⁱ Recrystallized from MeOEtOH-H₂O. ⁱ Recrystallized by solution in acetone by adding the minimum of H₂O, then addition of Et₂O. ^k After one recrystallization from *i*-PrOH, mp 159-170°, suitable for the next step. ^l Recrystallized from MeOH-Et₂O. ^m Recrystallized from EtOH-Et₂O. ^a Recrystallized from EtOH-Et₂O. ^b Recrystallized from MeOH-Et₂O. ^b Recrystallized from EtOH-Et₂O. ^b Recrystallized from MeOH-Et₂O. ^b Recrystallized from EtOH-Et₂O. ^b Recrystallized from MeOH-Et₂O. ^b Recrystallized from MeOH-Et₂O. ^b Recrystallized from MeOH-Et₂O. ^b Recrystallized from EtOH-Et₂O. ^b Recrystallized from MeOH.

This compound was also prepared from anisic acid by chlorosulfonation²³ followed by treatment with KF in aqueous dioxane as described for 48; the over-all yield was 21%, mp 175–178°. Attempts to acylate several aminophenoxybenzamidines by method D with the acid chloride of 51 gave mixtures difficult to purify.

Enzyme Assays.-The reversible and irreversible inhibition

assays of trypsin using N-benzoyl-DL-arginine p-nitroanilide (BANA)¹⁰ have been described previously;⁴ the earlier irreversible incubations⁴ and those recorded in Table I used 3–9 μM trypsin in the incubation. The incubation concentration of typsin could be reduced to 0.1–0.3 μM by use of the more sensitive N-tosyl-L-arginine methyl ester (TAME);¹¹ the incubations were run in 0.05 M pH 7.4 Tris buffer, then assayed by 1:10 dilution with 0.05 M pH 8.4 Tris buffer containing 1.5 mM CaCl₂ with 1 mM TAME.¹¹

⁽²³⁾ M. S. Shah, C. T. Bhatt, and D. D. Kanga, J. Chem. Soc., 1375 (1933).