Carbamate Derivatives Related to Meprobamate

B. J. LUDWIG, L. S. POWELL, AND F. M. BERGER

Wallace Laboratories, Division of Carter-Wallace, Inc., Cranbury, New Jersey 08512

Received October 21, 1968

A series of 2-substituted 1,3-propanediol dicarbamates, related chemically to meprobamate, has been prepared for central nervous system pharmacological investigation. The N-musubstituted propanediol dicarbamates were obtained by an ester-exchange reaction between the corresponding diol and methan, by phosgenation of the diol followed by ammoniation of the bis(chlorocarbonate) derivative, by the reaction of the diol with cyanic acid, and by ammoniation of the bis(phenylcarbonate) derivative of the appropriate diol. The symmetrically N, N'substituted propanediol dicarbamates were synthesized by direct carbamoylation of the propanediols, and the unsymmetrically substituted derivatives by stepwise carbamoylation via the m-dioxanone and hydroxypropyl carbamate intermediates using similar carbamoylation reactions. In addition to the preparation and physical properties of these compounds, the muscle paralyzing activity, anticonvulsant activity, and toxicity of these carbamates and many of the intermediates employed in their synthesis are presented. Structure-activity relationships among these compounds are discussed.

Meprobamate, 2-methyl-2-propyl-1,3-propanediol dicarbamate, was first synthesized by Ludwig and Piech in 1951.¹ These workers prepared a series of nine dicarbamates of 2,2-disubstituted 1,3-propanediols as part of a program to modify chemically a variety of substituted propanediols and glycerol ethers. Of the carbamate derivatives prepared, 2-methyl-2-propyl-1,3-propanediol dicarbamate was unusual in possessing pronounced muscle relaxant and anticonvulsant activity and in exerting a marked taming effect on monkeys.² Replacement of one or more of the hydrogens of the carbamate nitrogens of propanediol dicarbamates resulted in compounds possessing central muscle relaxant action different from that of the parent carbamates. Compounds in which only one of the carbamate hydrogens was replaced by a short-chain alkyl group were found to possess potent muscle-relaxant activity. Carisoprodol, N-isopropyl-2-methyl-2-propyl-1.3-propanediol dicarbamate, was found to be the compound of choice among these derivatives.³

This paper describes the preparation of a series of N-unsubstituted and N-substituted 1,3-propanediol dicarbamates related to meprobamate and carisoprodol and compares their muscle paralyzing action, anticonvulsant activity, and toxicity. The activities of the propanediols from which they are derived and many of the intermediate compounds obtained in the synthesis of the dicarbamate compounds are also presented.

The 1,3-propanediols (I) used as starting materials in the preparation of both the propanediol N-unsubstituted and N-substituted dicarbamates were obtained from commercial sources or by LAH reduction of the appropriate malonates.

The procedures employed for the conversion of these diols to the various N-unsubstituted and N-substituted carbamate esters are outlined in Scheme I. Of greatest convenience for the preparation of N-unsubstituted (II) and symmetrically N-substituted dicarbamates (III, IV) was the method described by Ludwig and Piech.¹ who used low-temperature phosgenation in the presence of a tertiary amine as acid acceptor to obtain the corresponding chlorocarbonate, generally in good yield (method A). Tetrahydrofuran also served as an excellent medium for conducting this phosgenation.⁴ The bis(chlorocarbonates) could be readily isolated and purified by distillation under reduced pressure, but for most purposes they were advantageously ammoniated or aminated without isolation.

Most N-unsubstituted dicarbamates could also be formed from the diol through an ester-exchange reaction with a low molecular weight alcohol carbamate such as urethan (method B). The application of this method for the preparation of benzyl carbamate was first described by Kraft.⁵ When used in the preparation of propanediol dicarbamates, the ethanol contained in 2 moles of urethan is replaced by the diol to give the desired dicarbamate in excellent yield.⁶

A third method which proved effective for the conversion of diols to N-unsubstituted dicarbamates was the use of cyanic acid formed *in situ* by the action of dry HCl on sodium cyanate suspended in chloroform or trichloroethylene at 0° (method C).⁷ Loev and Kormendy⁸ have reported the advantageous use of trifluoroacetic acid in place of HCl in this reaction.

Alternate methods for the formation of N-unsubstituted dicarbamates of substituted propanediols have also been explored. Reaction of the diol with urea at controlled elevated temperatures usually gave low yields of the desired carbamates whose work-up was complicated by the presence in the reaction mixture of urea condensation products and high molecular weight by-products.⁹ The conversion of diols to their phenylcarbonate esters using phenylchloroformate in the presence of an acid acceptor, followed by ammonolysis, produced good yields of dicarbamates (method D). This more lengthy procedure proved to be especially suitable when applied to secondary and tertiary carbinols. McLamore, *et al.*,¹⁰ found this procedure of value in the synthesis of unsaturated tertiary carbinol

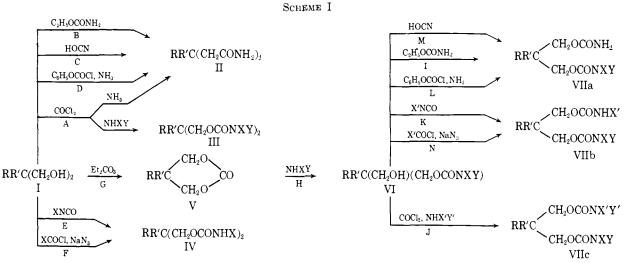
⁽¹⁾ B. J. Ludwig and E. C. Pieelt, J. Am. Chem. Soc., 73, 5779 (1951).

⁽²⁾ For a description of the pharmacological properties of meprobamate and some of the related carbanate compounds described here, see (a) F. M. Berger, J. Pharmacol. Exp. Ther., 104, 229 (1952); (b) F. M. Berger, *ibid.*, 112,413 (1954); (c) F. M. Berger, C. D. Hendley, B. J. Ludwig and T. E. Lynes, *ibid.*, 116, 337 (1956); (d) F. M. Berger, Intern. Rec. Med., 169, 184 (1956).

 ^{(3) (}a) F. M. Berger and B. J. Ludwig, U. S. Patent 2,937,119 (1960); (b)
 F. M. Berger, M. Kletzkin, B. J. Ludwig, S. Margolin, and L. S. Powell, J. Pharmacol. Exp. Ther., 127, 66 (1959).

^{(4) (9)} M. Katz and E. L. Whittbecker, U. S. Patent 2,787,630 (1957);
(b) A. O. Geiszler and M. A. Spielman, U. S. Patent 2,806,053 (1957).

⁽⁵⁾ W. M. Kraft, J. Am. Chem. Soc., 70, 3569 (1948).


⁽⁶⁾ F. M. Berger and B. J. Ludwig, U. S. Patent 3,059,022 (1962).

⁽⁷⁾ Lepetit S.p.A., Swiss Patent 359,126 (1962).

⁽⁸⁾ B. Loev and M. F. Kormendy, J. Org. Chem., 28, 3421 (1963).

⁽⁹⁾ G. Ferrari, Chim. Ind. (Milan), 40, 13 (1958); Y. Liwschitz, Bull. Res. Council Israel, 4, 81 (1954), employed this method to obtain high yields of benzyl carbamate.

⁽¹⁰⁾ W. M. McLamore, S. Y. P'an, and A. Bavley, J. Org. Chem., 20, 1379 (1955).

R, R' = H, alkyl, aryl; X, X', Y, Y' = alkyl, aryl

carbamates. We were unsuccessful, however, in preparing the dicarbamate of 2-*t*-amyl-1,3-propanediol using this method, probably because of the hindering effect of the tertiary amyl group.

The formation of dicarbamates symmetrically substituted but bearing only a single substituent on each nitrogen (IV) was also accomplished by treating the diol with 2 equiv of alkyl or aryl isocyanate (method E). It is of interest that the ester-exchange method, extremely useful in preparing N-unsubstituted dicarbamates, fails when the urethan used to effect the exchange bears a nitrogen substituent. An attempted interchange between N-methylurethan and a hydroxypropyl carbamate, using aluminum isopropoxide as catalyst, failed to give the desired N-methylcarbamate but led to a disproportionation of the monocarbamate to the corresponding dicarbamate and the diol. Although the precise role of aluminum isopropoxide in this exchange reaction was not thoroughly explored, the ability of this catalyst to promote this disproportionation was confirmed in separate experiments.

Symmetrical N-monoalkylated dicarbamates of this type were also prepared by utilizing the Curtius reaction to obtain a solution of the required acyl azide which, when slowly added to a refluxing solution of the diol, is converted *in situ* to the isocyanate which in turn reacts with the diol to give the dicarbamate (method F).¹¹

Monocarbamates of substituted 1,3-propanediols (VI) have been successfully prepared by controlled phosgenation of the diol followed by amidation.¹ Because of the difficulty sometimes encountered in working up the product resulting from the action of NH_3 or amines on this phosgenation reaction mixture, the hydroxypropyl carbamates were usually more readily obtained *via* the intermediate cyclic carbonate ester (*m*-dioxanone). However, the phosgene method proved to be the only means available for the preparation of the monocarbamate of 2-phenyl-1,3-propanediol. We were unable to convert this diol to its cyclic carbonate by the usual ester-exchange method.

The cyclic carbonates (V) were readily obtained by heating the diol in xylene with a slight excess of diethyl carbonate and a catalytic amount of NaOMe^{3a} (method G). The carbonates were converted to the desired monocarbamates by reaction with aqueous or anhydrous NH_3 or amine (method H). The cyclic carbonates were also found to react with hydrazine in a similar manner to give the corresponding carbazates.

N-Substituted monocarbamates bearing one N substituent (VI, Y = H) were in some instances obtainable by the reaction of 2 moles of diol with 1 mole of alkyl or aryl isocyanate.

The unsymmetrical N-substituted dicarbamates (VIIa, VIIb, VIIc) were prepared from the N-unsubstituted or 3-hydroxypropyl N-substituted carbamates by carbamoylation, using ester interchange (method I), phosgenation-amidation (method J), isocyanation (method K), phenyl chloroformate-amidation (method L), cyanic acid (method M), or by the Curtius reaction described earlier (method N), the key intermediate in each case being the appropriate 2-substituted 3-hydroxypropyl carbamate (VI).

In addition to the numerous N-alkyl- and N-arylcarbamate derivatives prepared in this study, a number of N-acyl derivatives were synthesized for pharmacological evaluation (method O). Additional 1,3-propanediol dicarbamates having miscellaneous substituents attached to the carbamate nitrogens were also synthesized for evaluation. The preparation of representative compounds of these types is included in the Experimental Section.

The majority of the compounds prepared in these studies are relatively low-melting, stable crystalline solids. Many of the 1,3-propanediols were obtained as high-boiling liquids. The solubility of these diols in water ranged from about 5% downward. The hydroxypropyl carbamates are usually more water soluble than their dicarbamate counterparts. The noncrystallizable members of this group could be readily purified by distillation under reduced pressure. The 1,3propanediol N-unsubstituted dicarbamates are crystalline solids having a limited solubility in water (0.1%)or less). N-Alkyl substitution resulted in decreased water solubility and usually gave noncrystalline compounds which were purified by molecular distillation. Where acylation of these liquid derivatives is possible, readily crystallizable solids are obtained.

The water solubility of compound 62, the tricarbamate of 2-methyl- $2-\beta$ -hydroxypropyl-1,3-propanediol, is of interest. The dicarbamate from which this tricarbamate is derived, 2-methyl-2- β -hydroxypropyl-1.3-propanediol dicarbamate, is the major metabolite of meprobamate.¹² Both the metabolite and its fully carbamoylated derivative dissolve in water in excess of 10% and are essentially devoid of pharmacological activity. The extreme solubility of this tricarbamate as compared to that of meprobamate supports the postulate that the 1.3-propanediol N-unsubstituted dicarbamates owe their limited water solubility to internal hydrogen bonding between the carbamate moieties.

The 1,3-propanediol mono- and dicarbamates unsubstituted or substituted at the amide nitrogen position are generally resistant to hydrolysis. Unlike urethan and similar alkyl monocarbamates, these compounds require extensive refluxing in mineral acid or strong alkali to effect complete hydrolysis.

The physical constants, analytical data, and pharmacological screening data for the numerous carbamate compounds and for the propanediols and various intermediates employed in their syntheses are summarized in Tables I-VI.

Pharmacology.—The most characteristic and best known pharmacological property of these compounds is their ability to produce relaxation of the voluntary muscles. This effect is produced by an action on the central nervous system and comes about by inhibition of the interneurons. The compounds of this study have no significant peripheral action and do not interfere with neuromuscular transmission in the myoneuronal junction. Because muscular relaxation is difficult to evaluate quantitatively, we measured instead the paralyzing effect of these compounds. Paralysis produced by these compounds is completely reversible. It is an extreme form of muscular relaxation and can be evaluated objectively by measuring the incidence and duration of the loss of righting reflex resulting from the intraperitoneal administration of drugs.¹³ With this technique graded doses of the drugs are given intraperitoneally to groups of mice and the dose that produced a loss of righting reflex for a duration of more than 1 min in 50% of the animals is determined. The mortality occurring 7 days after administration of the compounds was used in calculating the LD_{50} dose.

The anticonvulsant activity of the compounds was measured by determining the dose which upon oral administration prevents the appearance of the extensor tonic phase of electroshock seizures in 50% of mice.¹⁴

2-Substituted 1,3-Propanediols.---The most effective paralyzing agent of this type with a single substituent was 2-(1-methylbutyl)-1,3-propanediol (5). Compounds with a shorter or differently branched chain were less active. None of the singly substituted compounds produced remarkable anticonvulsant action. Several of the 2,2-dialkyl-1,3-propanediols showed good paralyzing activity, and this appeared to be greatest when one of the substituents was methyl and the other a 5-alkyl (17-20). When one of the substituents was ethyl, maximum activity was obtained when the second substituent was a 4- or 5-alkyl (25, 26, 29). All of these more active paralyzing compounds also possessed some anticonvulsant action.

2-Substituted 1,3-Propanediol Dicarbamates.--None of the compounds with a single 2-substituent possessed strong paralyzing action. The sec-butyl, 1-methylbutyl, and 1-ethylpropyl compounds (44, 48, 50) were most potent in this respect. The presence of an aromatic group in the 2 position nullified all paralyzing action but in some cases enhanced anticonvulsant activity (54).

Some of the 2,2-dialkyl-1,3-propanediol dicarbamates possessed strong paralyzing action. Of these, the methyl-sec-butyl and methyl-1-ethylpropyl derivatives (67, 73) had the most potent action and in this respect were equal or superior to meprobamate (61). The greatest activity was shown by compounds having alkyl groups in the 2 position containing a total of five to seven carbon atoms. Introduction of an aromatic group in this position failed to enhance paralyzing activity, but the presence of both a methyl and a phenyl group gave a compound having greatly increased anticonvulsant activity (75). Compounds having substituents in the 2 position containing N, Cl, and S and those derivatives having alkylene or alkyne substituents in this position possessed insignificant paralyzing and anticonvulsant action.

2-Substituted 3-Hydroxypropyl Carbamates.—N-Unsubstituted compounds of this type having 4- or 5alkyls showed good paralyzing activity (110, 140, 153). As before, one aromatic group in the 2 position gave compounds of increased anticonvulsant activity (111), but this substitution also resulted in a diminution of paralyzing activity.

Attaching an alkyl group to the carbamate nitrogen produced compounds with appreciable paralyzing activity, and ethyl and propyl substitution in this manner produced compounds of high activity (119, 151). It is of interest that the N substitution with one CH_3 or C_2H_3 group produced strong paralyzing activity in 2,2-diphenyl substituted compounds (162, 163). This activity contrasts with the low paralyzing action of 2,2-diphenyl-1,3-propanediol N-unsubstituted dicarbamate. N substitution with *i*-Pr or Pr (164. **165**) or the use of tolyl in place of C_6H_5 in the 2 position (167) resulted in loss of activity. The N₀N-dimethyl analogs of 2,2-dialkyl compounds possessed good paralyzing activity (133, 159), but this was lost when two groups larger than CH_3 were used. Introduction of a single allyl group improved activity (121), but this enhancement of activity did not occur when substitution was made with propynyl, 2-butenyl, or methallyl (122, 126, 127).

1,3-Propanediol N-Substituted Dicarbamates.—Replacement of one of the carbamoyl hydrogens by a single short-chain alkyl group yielded a number of compounds with good paralyzing activity (e.g., 191, 211, 218, 235) but similar substitution with Ph or PhCH₂ gave inactive derivatives. Introduction of a single unsaturated hydrocarbon group in this manner yielded several compounds having good paralyzing activity (such as 193, 220, 221, 226). The intensity of this activity was affected to some extent by the nature of the 2 substituents.

The introduction of two alkyl groups on one N or a

⁽¹²⁾ B. J. Ludwig, J. F. Douglas, L. S. Powell, M. Meyer, and F. M. Berger, J. Med. Pharm. Chem., 3, 53 (1961).

^{(13) (}a) F. M. Berger and W. Bradley, Beil, J. Pharmacol., 1, 265 (1946);
(b) F. M. Berger in "Methods in Drug Evaluation," P. Mantegazzo and F. Piccinini, Ed., North-Holland Publishing Co., Amsterdam, 1966, pp.218-233.

⁽¹⁴⁾ J. E. P. Toman, E. A. Swinyard, and L. S. Goodman, J. Neucophysic
(, 9, 231 (1946),

TABLE I 2-Substituted 1,3-Propanediols^a $RR_1C(CH_2OH)_2$

			Yield,	Mp or bp (mm),	112011 /2				Dose, mg/kg ^b	
No.	R	\mathbf{R}_1	7 %	°C	n^{25} D	Formula	Analyses	PD ₅₀	ED50	LD_{50}
1	н	<i>i</i> -Pr	60	80-83 (0.5)	1.4482	$C_6H_{14}O_2$	C_{r} H	> 620	>280	>620
2	н	<i>i</i> -Bu	87	82-86 (0.3)	1.4470	$C_{16}H_{16}O_{2}$	C, HC	>280	>420	>280
3	н	t-Bu	59	59-61		$C_7H_{16}O_2$	C, H	> 280	<420	>280
4	н	Am	73	100-106(0,2)	1.4506	$C_8H_{18}O_2$	C; H^d	225	>420	360
5	н	1-Methylbutyl	70	95-98 (0.5)	1,4560	$C_8H_{18}O_2$	C; H ^e	180	670	570
6	н	3-Methylbutyl	81	104 - 106(0, 4)	1,4482	$C_8H_{18}O_2$	С, Н	280	280 (ip)	> 280
7	н	1-Ethylpropyl	41	82-85 (0.02)	1.4545	$C_8H_{18}O_2$	$H; C^{c}$	280	>180 (ip)	> 280
8	н	2-Cyclopentenyl	70	38.5-40		$C_8H_{14}O_2$	H: C^g	>420	355 (ip)	
9	н	C ₆ H ₁₃	63	30-32		$C_9H_{20}O_2$	C; \mathbf{H}^h			
10	н	Cyclohexyl	80	90-92		$C_{9}H_{18}O_{2}$	C.H	> 280		>250
11	н	p-Tolyl	34	55.5-56		$C_{10}H_{14}O_{2}$	C, H	355	355 (ip)	> 420
12	н	3-Phenylpropyl	80	43-44		$C_{12}H_{18}O_2$	C. H	>180	>620	> 280
13	Me	Allyl	82	119-120 (10)	1.4649	$C_7H_{14}O_2$	C, H	> 280	> 280	>280
14	Me	2-Propynyl	71	68.5-69.5		$C_7H_{12}O_2$	C, H	> 420	> 420	$>\!420$
15	Me	i-Bu	82	87-92 (0.3)		$C_8H_{18}O_2$	$H: C^{i}$	310	490	780
16	Me	t-Bu	75	192.5-194		$C_8H_{18}O_2$	C, H	355	345	570
17	Me	Am	50	51-52.5		$C_9H_{20}O_2$	С, Н	130	550	260
18	Me	1-Methylbutyl	90	150-151 (14)		$C_{9}H_{20}O_{2}$	$H; C^{j}$	120	375	390
19	Me	3-Methylbutyl	78	68-70.5		$C_9H_{20}O_2$	С, Н	149	389	> 280
20^k	Me	1-Ethylpropyl	70	45-48		$C_9H_{20}O_2$		147	295	> 280
21	Me	Cyclohexyl	87	79-80		$C_{10}H_{20}O_2$	С. Н			
22	Me	$p - ClC_6H_4CH_2$	67	67-68		$C_{11}H_{1b}O_2CI$	С, Н			
23^{l}	Et	ClCH ₂	9	65.5-66		$C_6H_{13}O_2CI$	Cl			
24^m	\mathbf{Et}	Pr	74	37-39		$C_8H_{18}O_2$		185	295	550
25	\mathbf{Et}	sec-Bu	84	90-91 (0.08)	1.4665	$C_9H_{20}O_2$	С, Н	120	330	420
26	\mathbf{Et}	<i>i</i> -Bu	83	95-97 (0.1)	1,4598	$C_9H_{20}O_2$	С, Н	150	510	250
27	\mathbf{Et}	Am	77	91-94 (0.025)	1.4585	$C_{10}H_{22}O_2$	С, Н	280	> 280	> 280
28	\mathbf{Et}	3-Methylbutyl	75	41-42		$C_{10}H_{22}O_{2}$	C, H	> 280	> 280	>280
29^{k}	\mathbf{Et}	1-Ethylpropyl	87	76-77 (0.02)	1.4643	$C_{10}H_{22}O_2$		138	280	>280
30	\mathbf{Et}	Cyclohexyl	60	59.5-61		$C_{11}H_{22}O_2$	C, H	230	>180 (ip)	>280
31	\mathbf{Et}	PhO	80	51-53		$C_{11}H_{16}O_3$	H: C^n			
32^l	\mathbf{Et}	$p-NO_2PI_1$	35	98-100		C11H15NO4	N	340	225	>420
33^{l}	\mathbf{Et}	$p-H_2NPh$	53	$188-190 dec^o$		$C_{11}H_{18}NO_2Br$	Br	> 620	280 (ip)	> 620
34^{p}	\mathbf{Et}	<i>p</i> -ClPh	41	97-99		$C_{11}H_{16}O_2CI$	С, Н	212		680
35^{l}	\mathbf{Et}	<i>p</i> -Butylmercaptophenyl		64-65		$C_{15}H_{24}O_2S$	C. H, S	> 620	$>\!620$	>620
36^{l}	Pr	Dimethylaminomethyl		95-97 (0.02)	1.4637	$C_9H_{21}NO_2$	N	325		325
37	Pr	1-Ethylpropyl	92	86-88 (0.02)	1.4666	$C_{11}H_{24}O_2$	H; C^q	212		810
38^l	p-Tolyl	p-Tolyl	38	119-120		$C_{17}H_{20}O_2$	С. Н	> 280	> 280	> 280
a Du	onered fr	an comenceding malon.	ato unloso	athonnian noted	h The DD	is the duse the	+ mundurana	a loss of	nighting not	How for a

^a Prepared from corresponding malonate unless otherwise noted. ^b The PD₅₀ is the dose that produces a loss of righting reflex for a duration of more than 1 min in 50% of the animals. The ED₅₀ is the oral dose preventing the appearance of the extensor tonic phase of electroshock seizures in 50% of the animals. The LD₅₀ was calculated by the mortality occurring 7 days after the administration of compounds. See the text for more information. ^c C: calcd, 63.60; found, 64.49. H: calcd, 12.20; found, 11.63. ^d H: calcd, 12.41; found, 11.93. ^e H: calcd, 12.41; found, 11.90. ^f C: calcd, 65.71; found, 66.47. ^g C: calcd, 67.57; found, 66.25. ^b H: calcd, 12.58; found, 12.09. ⁱ C: calcd, 65.71; found, 64.99. ^j C: calcd, 67.45; found, 67.88. ^k F. M. Berger and B. J. Ludwig, U. S. Patent 3,059,022 (1962). ^l See Experimental Section. ^mSee ref 3a. ⁿ C: calcd, 67.32; found, 68.19. ^o HBr salt. ^p Prepared by the crossed Cannizzaro reaction of α -p-chlorophenylbutyraldehyde and HCHO by the method of F. C. Whitmore, A. H. Popkin, H. I. Bernstein, and J. P. Wilkins, J. Am. Chem. Soc., 63, 124 (1941). ^g C: calcd, 70.16; found, 71.34.

single alkyl group on each N failed to yield compounds of significant effectiveness. The use of bulky groups such as xanthyl (285, 286) likewise did not increase effectiveness. Introduction of three or four alkyl substituents attached to the carbamate nitrogens as a rule did not yield compounds having interesting activities, with the exception of a tetramethyl derivative (304) which showed good paralyzing activity. N-Acylated derivatives of N-unsubstituted and N-substituted dicarbamate compounds were invariably inactive. Compounds wherein the carbamate N was substituted with a carboxy-, hydroxy-, or haloalkyl possessed insignificant activity, and, with the exception of the isopropylcarbazates (315, 319), none of the Namino-, N-alkoxy-, N-hydroxy-, N-carbamyl-, Nnitro-, or N-sulfonylcarbamates displayed interesting paralyzing or anticonvulsant activity.

Experimental Section¹⁵

All melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Boiling points are uncorrected. Where analyses are indicated only by symbols of the elements analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

Preparation of Substituted 1,3-Propanediols (I).—The diols obtained from commercial sources were used without further purification. Most of the diols used in this study, including those not previously described, were prepared by LAH reduction of the corresponding malonate esters.¹⁶ The crossed Cannizzaro reaction of the appropriate aldehyde with HCHO was also employed.¹⁷ The preparation of those diols requiring special methods is described individually. Table I lists the diols prepared for this study which are unreported in the literature.

2-Ethyl-2-*p***-nitrophenyl-1,3-propanediol** (32).—The diacetate of 2-ethyl-2-phenyl-1,3-propanediol was prepared by refluxing the diol for 20 min with excess Ac₂O containing a trace of H_2SO_4 ; bp 132-134° (0.1 mm), $n^{35}D$ 1.4975. Nitration of this ester according to the method of Bonsquet and Adams¹⁸ gave 2-ethyl-2-*p*-nitrophenyl-1,3-propanediol diacetate which was hydrolyzed to the corresponding diol by refluxing in an excess of 10% HCl for 1.5 hr. The product was purified by crystallization (C₆H₆).

2-Ethyl-2-*p*-**aminophenyl-1,3-propanediol** (**33**).—2-Ethyl-2-*p*nitrophenyl-1,3-propanediol diacetate was reduced at 2 atm of H₂ using PtO₂ catalyst. The product was saponified without isolation by refluxing with aqueous KOH for \bar{o} hr to obtain the amine which was isolated as the HBr salt.

2-Ethyl-2-(*p*-*n*-butylmercaptophenyl)-1,3-propanediol (35).

⁽¹⁵⁾ Microanalyses were performed by Schwarzkopf Microanalytical Laboatory, Woodside, N. Y., and Galbraith Laboratories. Inc., Knoxville, Tenn.

⁽¹⁶⁾ W. G. Brown, Org. Reactions, 6, 469 (1951).

⁽¹⁷⁾ R. W. Shortridge, R. A. Craig, K. W. Greenlee, J. M. Derfer, and C. E. Boord, J. Am. Chem. Soc., 70, 946 (1948).

⁽¹⁸⁾ E. W. Bousquet and R. Adams, *ibid.*, 52, 224 (1930).

TABLE II

2-SUBSTITUTED 1,3-PROPANEDIOL DICARBAMATES

 $RR_tC(CH_2OCONH_2)_2$

				Vield.		Dose, mg/kg ^a						
No.	ĸ	Rt	Method	1/0	M_{12} , °C	Formula	Analyses	11)50	ED_{b0}	1.10_{50}		
39	11	Me	13	60	187-188	$C_6 n_{52} N_2 O_4$	N	>3200	> 3200	>3200		
-10	11	ΕC	1:	64	178-179	$C_7 ID_4 N_2 O_4$	N	> 3200	1200	> 3200		
41	II	Pr	В	30	118-120	CsH56N2O4	N	660	140	1100		
42	11	(-Pr	17	58	164 - 165	$C_8H_{16}N_2O_4$	N	>3200	630	> 3200		
43^{h}	11	151	1:	-16	137-138.5	$C_2H_{28}N_2O_4$	N	1215	162	1920		
440	11	sec-130	15	4:5	113115	$C_5H_{13}N_2O_4$	N	530	225	1100		
450	11	<i>i</i> -1311	17	54	145-146.5	$C_{8}ID_{8}N_{2}O_{1}$	N	1280	1910)	3200		
46 ^b	11	t - Bot	('	90	109-111	CoHo5N2O4	N	760	420	1140		
47	11	Am DAME DE CA	13	70	131-132	$C_{19}H_{26}N_2O_4$	N ^c	730	260	1650		
48 49	11 14	l-Methylbutyl 3-Methylbutyl	B	50	113-115	$C_{59}11_{99}N_2O_4$	N	585	330	1160		
-49 -50	11	1-Ethylpropyl	17 3	$\frac{45}{30}$	151.5-153 110-111	C50H20N2O4 C50H20N2O4	N N	>3200	855	>3200 >420		
50 51	11	Cell ₁₃	B	30 50	124-125.5	C41120N2O4	N N	$\frac{420}{1725}$	<180 1400	3200		
52	11	C7ID5	1;	60	134-135	C:::11:::N::O4	N	>280	>280	>280		
53	11	2-Cyclopentenyl	15	22	148-149.5	$C_{19}I_{16}N_2O_4$	N^{il}	>420	280 (ip)	>420		
54'	11	Pb	15	-10	151-152	$C_{74}H_{54}N_2O_4$.,	2200	52	1000		
55	11	PhO	15	40	134-135	C91154N2O5	N^f	>620	>620	>620		
56	11	Cyclohexyl	14	38	170.5-172	Cm119N2O4	N	> 3200	>3200	>3200		
57	11	p-Toly1	15	37	153 - 154	Ca2H5sN 2O4	N	>420	>420	>420		
$\overline{38}$	II	PbCD ₂	15	93	176-176.5	Cr2H5aN2O4	N^{ij}	>3200	620	>3200		
<u>5</u> 9	H	3-Phenylpropyl	В	36	118-120	$\mathrm{C}_{44}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{4}$	Ν	>3200	620	>3200		
60	Εt	$ClCH_{7}$	C	7.5	188 - 188.5	$C_8 \Pi_{15} C I N_2 O_1$	N	>620	>620	>620		
61^{-6}	${ m Me}$	Pr	А		105 - 106	$C_3\Pi_{15}N_2O_4$		235	165	800		
62	Мe	2-Carbamoyloxypropyl	С	35	72-74	$C_{10}\Pi_{22}N_3O_6$	C, H, N					
63	Me	1-Propenyl	C	40	151 - 152	$C_9H_{56}N_2O_4$	N	620	280	>620		
6-1	Me	Allyl	13	19	116-118	$C_{2}II_{16}N_{2}O_{4}$	N	> 280	>280 (ip)	> 280		
65	Me	2-Propynys	13	<u>50</u>	124-125.5	$C_9 II_{54} N_2 O_4$	N/	>420	>420	>120		
66	Me	Bu	В	42	112 - 113	Crol120N2O4	N	530	285	1050		
07^k	Me	sec-Bu	14	66	77-79	C55H26N2O4	N.	175	200	460		
68	Me Me	<i>i</i> -Bn + D.,	11	24	77-79) felHasNaO4	N	280	235	660		
69 70	Ме Ме	t-Bu 1-Methylallyl	C B	$\frac{13}{73}$	1+8-119 83-86	CasH30N2O4 CasH55N2O4	N N	-140	345	690		
71	Me	Am	12	61	94-96	C ₁₀ D ₂₀ N ₂ O ₄		360	340	1200		
72	Me	1-Methylbutyl	13	19	107-109	$C_{11120}N_{2}O_{2}$		390	375	800		
73*	Me	1-Ethylpropyl	17	7	118-120	Cull ₂₂ N ₂ O ₄		175	280	490		
74	Me	3-Methylbutyl	13	40	112-114	C 51122N2O4		475	470	2600		
7.5	Me	PI	\tilde{c}	7.5	110-111.5	C121b6N2O4	N^{24}	380	102	620		
76''	Mu	p -CIPbC n_2	I:	35	181-183	CorHo7N2O4C1		>420	>420	>420		
77"	Me	Cycloliexyl	15	72	153 - 155	C5:11::N2O2		> 420	>420 (ip)	>420		
78^{n}	${ m Me}$	$PbCH_2$	C	25	170-171	$C_{13}\Pi_{18}N_2O_4$		> 620	>620			
79	Мe	O ₂ N	А	35	151~153	$C_7 \Pi_{10} N_0 O_8$	N					
80	Eυ	Dietbylaminomethyl	\mathbf{C}	36	115	$\mathrm{C}_{52}\mathrm{H}_{25}\mathrm{N}_{9}\mathrm{O}_{4}$	N	>620	> 420	420		
81	Er	EtO	13	50	142 - 143	$C_{5}\Pi_{18}N_{2}O_{5}$	N	>1400		>1400		
82	Et	1'r	13	61	115-117	$C_{10}1_{120}N_{2}O_{4}$	N	620	365	590		
83	Et	<i>i</i> -1'r	13	33	109-110	$C_{10}H_{26}N_2O_4$	N	250	320	700		
84	Et	Allyl	C .	62	106-108	$C_{10}H_5N_2O_4$	N	420		720		
85 87	Et	sec-Bu	13	56	119-120	$C_{11}H_{22}N_2O_4$	N	315	360	700		
86	Et	oʻ-Bu	15	34	115-116	$C_{12}M_{22}N_{2}O_{4}$	N	525	770 315	1100		
87 88	Et Et	A10 1 A1#1, 21	13 13	15 19	128-129 108-109	C221124N2O4		$\frac{730}{300}$	225	$\frac{1010}{510}$		
89	Et.	1-Methylbury? 3-Methylbutyl	17	20	149150	C52H24N2O4 C52H24N2O4		>420	>420	>420		
90 ⁷	Et	1-Etbylpropyl	B	33	119-121	$C_{12}\Pi_{24}N_2O_4$		>420	> 120	>420		
201	Ēŭ	Cyclohexyl	14	48	168-170	CoaldedNaO4	N	> 420	>420 (ip)	> 120		
92	Εı	3-Thienyl	14	38	140-113	C50H56N2O48	N, S	>420	>420 (ip)	>420		
93	Et	p-O₂N Ph	1)	14	160-163	$\mathrm{C}_{32}\mathrm{H}_{37}\mathrm{N}_{3}\mathrm{O}_{6}$	N	>620	>620			
<u>914</u>	Et	p-II:NP5	G	30	136-138	$C_{55}H_{15}N_3O_4$	N	>620	>620			
9.5	Et	p-Butylmercaptoplieny?	Ċ	40	71-76	$C_{17}H_{26}N_2O_4S$	C. B. 8	620		735		
96	Pr	C1	C	65	I 25-126	$C_*\Pi_{15}CIN_2O_4$	C, B , N , CI					
97	j-Pr	<i>i-</i> 1'r	13	20	139-140	$C_{15}H_{22}N_{2}O_{4}$	N	\$100	670	770		
98	1351	Bu	13	70	157 - 158	$\bigcirc_{24}\Pi_{26}N_2O_4$	N	>3200	> 3200	> 3200		
09	Ph	I'I1	1)	76	167-168	C57H58N2O4	C, N, N	>3200	1400	4700		
100	p-MePh	p-MePb	D	27	210-212	C5+H22N2O4	N	>420	>420	>420		
101	$PhCH_2$	PhC1I ₂	15	13	168.5-170	C19H22N2O4	N	> 3200	> 3200	>3200		
102		vlidens	C	40	130-131	$C_3II_4N_2O_4$	N	1060		160		
103	(CH ₂ (CH ₂		1)	Poor -0	216-218	$C_7 \Pi_{12} N_2 O_4$ $C_1 \Pi_{12} N_2 O_4$	N N					
$\frac{104}{105^{b}}$	(CH2 (CH2		1) 17	70 50	180-191 165-166	C4H6N2O4 C9H16N2O4	N	1570	490	2400		
- 100 - 11 Maria		Puble I & Defeuerae Pa							the prepar			

⁴ Footnote *b* in Table I. ^b Reference 2c reported the central depressant and anticomvulsant activity but not the preparation of these compounds. ^c N: caled, 12.06; found, 12.53. ^d N: caled, 12.27; found, 13.03. ^c F. M. Berger and B. J. Ludwig, U. S. Patent 2,884,444 (1959). ^f N: caled, 11.02; found, 11.54. ^g N: caled, 11.10; found, 11.63. ^b Meprobamate, see ref 1. ⁱ N: caled, 12.95; found, 13.50. ^j N: caled, 13.08; found, 13.50. ^k Mebutamate [F. M. Berger and B. J. Ludwig, U. S. Patent 2,878,280 (1959); F. M. Berger, J. F. Douglas, M. Kletzkin, B. J. Ludwig, and S. Margolin, J. Pharmacol. Exp. Ther., **134**, 356 (1961)] has been isolated in dimorphic crystalline forms, mp 77-79° and 91-93°. ⁱ See ref 6. ^m N: caled, 11.10; found, 10.57. ^g G. Ferrari and C. Casagrande, Farmaco, Ed. Sci., **18**, 780 (1963). ^o Prepared by PtO₂-catalyzed hydrogenation of **93**.

Diethyl ethylphenylmabonate was converted to the *p*-nitro derivative using 90% funning HNO₃ according to the method of Bonsquet and Adams;¹⁸ bp 170° (0.4 mm), n^{31} D 1.5067. Hydrogenation of the nitro compound (PtO₂) gave diethyl 2-ethyl-2-(*p*annioophenyl)mabonate, bp 150-153° (0.10 mm), n^{55} D 1.5231. The annine was converted via the diazonium salt to the xanthate ester following the procedure of Campaigne and Osborn.^{tr} Reduction of this ester with LAH afforded 2-ethyl-2-(*p*-mercapto-phenyl)-1,3-propanediol in an over-all yield from the amine of $39\%_{ee}^{2}$. The thiol was converted to the Bn ether by treating it with

(1957) E. Compaigne and S. W. Osborn, J. Org. Chem., 22, 561 (1957).

Table III

$\begin{array}{l} 2\text{-}Substituted \ 3\text{-}Hydroxypropyl \ Carbamates}^{a}\\ RR_{1}C(CH_{2}OH)(CH_{2}OCONR_{2}R_{3}) \end{array}$

					πr	$(OH_2OH)(OH_2OH)$	2000MR	2113)				
					Yield,	Mp or bp (mm),					Dose mg/k_b	
No.	R	\mathbf{R}_{1}	\mathbf{R}_2	Ra	%	°C	n^{25} D	Formula	Analyses	PD_{M}	ED_{50}	LD_{50}
106	Н	Et	н	н	95	105-112 (0.02)	1.4663	C6H13NO3	N	>620	510	
							1.4548	C7H15NO3	N	>420	>420 (ip)	
107	H	\mathbf{Et}	Н	Me	60	96-97 (0.06)					>420 (IP)	>620
108	H	Et	Me	Me	68	72-75 (0.02)	1.4522	$C_8H_{12}NO_3$	N	482	0.55 (1.)	
109	Н	\mathbf{E} t	н	$\mathbf{P}h$	40	132 - 136(0.01)	1.5346	$C_{12}H_{17}NO_3$	N	>420	355 (ip)	>420
110	н	Bu	н	Н	80	74-75		$C_{4}H_{17}NO_{3}$	N	235		580
111 ^c	н	PIι	н	Н	16	73-75		$C_{10}H_{13}NO_{3}$	N	355	254	>420
112	Me	Me	н	Me	30	89-90 (0.04)	1,4548	$C_7H_{15}NO_3$	N			
113	Me	Me	Me	Me	74	65-68 (0.06)	1.4486	C8H1:NO3	N	>420	>420	
114^{d}	Me	Et	н	Н	60	43-45		C7H15NO3				
115	Me	Et	н	Me	83	104-107 (0.04)	1.4594	C ₈ H ₁₇ NO ₃	N	>620	420 (ip)	
						• •						
116	Me	\mathbf{Et}	н	Pr	72	107-112 (0.04)	1.4590	$C_{10}H_{21}NO_3$	N	225	235 (ip)	
117	Me	Pr	н	Me	75	112-115(0.3)	1.4594	C ₉ H ₁₉ NO ₃	N	255	341	>620
118 ^d	Me	Pr	н	\mathbf{Et}	55	115-120(0.3)	1.4589	$C_{10}H_{21}NO_3$		280	>280	>280
119^{d}	Me	Pr	н	Pr	80	114-117 (0.02)	1.4579	$C_{11}H_{23}NO_3$		201	355	900
120^{d}	Me	Pr	н	<i>i</i> -Pr	55	86-88 (0,01)	1.4543	$C_{11}H_{23}NO_3$		>420	420 (ip)	>420
121^{d}	Me	Pr	н	Allyl	86	102-104 (0.05)	1.4683	$C_{11}H_{21}NO_3$		149	230 (ip)	
122^{d}	Me	Pr	H	2-Propynyl	30	120-125 (0.06)	1.4663	C11H19NO3		355	>420	
123 ^d	Me	Pr	Ĥ	Bu	88	107-108 (0.01)	1,4579	C12H25NO3		171	500	900
									N	280		>420
124	Me	Pr	Н	sec-Bu	30	104-105 (0.01)	1.4556	C12H25NO3	N		355(ip)	
125^{d}	Me	Pr	H	<i>i</i> -Bu	61	118 - 119(0.06)	1.4586	$C_{12}H_{25}NO_{3}$		246	>280 (ip)	800
126	Me	Pr	н	2-Butenyl	73	120-130 (0.04)	1.4710	$C_{12}H_{23}NO_{3}$	N	355	355 (ip)	
127	Me	Pr	Н	2-Methylallyl	21	115-116 (0.06)	1.4654	$C_{12}H_{23}NO_{3}$	N	355	280 (ip)	420
128	Me	Pr	н	Pentyl	68	144 - 146(0.07)	1.4591	C13H97NO3	N	620	420	> 620
129	Me	Pr	н	3-Methylbutyl	72	130-136 (0.07)	1.4580	C13H27NO3	N	620	520 (ip)	
130¢	Me	Pr	н	Ph	84	85-86		$C_{14}H_{21}NO_3$	N	>420		>420
131	Me	Pr	11	$PhCH_2$	25	173-175 (0.02)	1.5032	C15H23NO3	N	420	180 (ip)	>420
132							1.0052			1185	100 (1)	1180
	Me	Pr	Н	$p-HO_2CPh$	40	183-185	1 1510	$C_{15}H_{21}NO_5$	N		000 (*)	
133 ^e	Me	Pr	Me	Me	72	78-80 (0.02)	1.4542	$C_{10}H_{21}NO_3$		238	230 (ip)	650
134	Me	Pr	\mathbf{Et}	Et	75	112-116 (0.03)	1.4491	$C_{12}H_{25}NO_{3}$	N	280		<420
135	Me	Pr	-(0	CH_2) $_2O(CH_2)_2$	70	102-104 (0.02)	1.4726	$C_{12}H_{13}NO_{4}$	N	$>_{280}$		> 280
136	Me	Pr	Me	1-Phenyl-2-	55	160-162(0.07)	1.5008	$C_{18}H_{29}NO_3$	N	1345		2050
				propyl								
137	Me	Pr	Bu	Bu	60	114 - 115(0.01)	1,4546	C16 H33 N O3	С, Н	>420	>420	>420
138 ^d	Me	o-Pr	H	н	70	73-74	1.1010	C ₈ H ₁₇ NO ₃	0, 11	520	280 (ip)	1550
							1 4055		37			1000
139	Me	i-Pr	H	Me	42	101-103 (0.07)	1.4655	$C_9H_{19}NO_3$	N	>420	>280	
140 ^d	Me	Bu	н	Н	64	65 66		$C_9H_{19}NO_3$		193	319	520
141^{d}	Мe	Bu	н	Me	63	96-99 (0. 0 4)	1.4592	$C_{10}H_{21}NO_{3}$				
142	Me	sec-Bu	н	н	65	35-37		$C_9H_{19}NO_3$	N			
143^{d}	Мe	sec-Bu	н	Pr	80	127-132 (0.07)	1.4655	$C_{12}H_{25}NO_{3}$				
144^{d}	Me	sec-Bu	н	<i>i</i> -Pr	71	126-128 (0.07)	1.4631	$C_{12}H_{25}NO_3$		182		>280
145^d	Me	sec-Bu	H	Allyl	71	147-148 (0.07)	1,4742	$C_{12}H_{28}NO_3$				-
146^{d}	Me	sec-Bu	н	2-Propynyl	50	123-126 (0.04)	1.4790	C12H21NO3		235		440
									27	200		440
147	Me	sec-Bu	Н	Bu	88	145-147 (0.07)	1.4650	C13H.7NO3	N			100
148	Me	<i>i</i> -Bu	н	Н	71	122-127(0.2)	1.4652	$C_9H_{19}NO_3$	N	280		480
149	Me	\mathbf{Ph}	н	н	55	f	1.5465	$C_{11}H_{16}NO_3$	N			
150 <i>c</i>	\mathbf{Et}	ClCH ₂	н	н	38	86-87		$C_{17}H_{14}CINO_3$	N	420	420 (ip)	
151	\mathbf{Et}	\mathbf{Et}	н	Et	68	109-110(0.1)	1.4624	$C_1 H_{21} N O_3$	N^{g}	210	280 (ip)	
152	\mathbf{Et}	\mathbf{Et}	H	Ph	80	73-74		$C_{14}H_{21}NO_3$	N	>420	280 (ip)	>420
153	Et	Pr	н	н	60	71-73		C ₉ H ₁₉ NO ₃	N	138	212	710
154^{d}	Et	Pr	н	i-Pr	81	130-132 (0, 5)	1,4619	C12H25NO3		100		,,,,
155^{d}	Et	Bu	н		81					215	980 (:)	
				Me		128-130 (0.06)	1.4645	$C_{11}H_{23}NO_3$			280 (ip)	050
156	Et	Bu	н	\mathbf{Et}	70	104-106 (0.03)	1.4627	$C_{12}H_{25}NO_{3}$	N	250	180 (ip)	950
157 ^d	\mathbf{Et}	<i>i</i> -Pr	н	н	58	5 8-6 0		$C_9H_{19}NO_3$				
158	\mathbf{Et}	Bu	н	Pr	79	132-136 (0.01)	1.4625	$C_{18}H_{27}NO_{8}$	N	420		>420
159	\mathbf{Et}	Ρlι	Me	Me	60	127-128 (0.06)	1.5235	C14H21NO3	С, Н	185	340	680
160	\mathbf{Et}	PhO	н	Н	15	98-100		$C_{12}H_{17}NO_4$	C, H	482		>620
161^{h}	\mathbf{Ph}	\mathbf{Ph}	н	Н	65	121-122		$C_{16}H_{17}NO_3$		720	152	1400
162^{i}	\mathbf{Ph}	Ph	н	Me	93	87-89		C17H19NO3		168	210	1280
163	\mathbf{Ph}	Ph	н	Et	64	5135 f			СН		318 (ip)	180
								$C_{18}H_{21}NO_3$	C, H	155	-	
164	Ph	Ph	H	Pr	86	90-91		C19H23NO3	H; C'	420	280 (ip)	>420
165	Ph	Ph	H	i-Pr	70	112-115		$C_{19}H_{23}NO_3$	N	630		>2100
166	p-Tolyl	p-Tolyl	н	H	90	133-136		$\mathrm{C}_{18}\mathrm{H}_{21}\mathrm{NO}_3$	H; C^k			
167	p-Toly1	p-Tolyl	н	Me	70	106-107		$C_{19}H_{23}NO_3$	C; H^l	>1400	>1400	>1400
a Pr	mared fr	om the e	orreen	onding diovano	ne (met)	nod H) unless otl	horwise no	ted b See foo			See Exper	rimental

^a Prepared from the corresponding dioxanone (method H) unless otherwise noted. ^b See footnote b in Table I. ^c See Experimental Section. ^d See ref 3a. ^e See ref 11. ^f Compound was purified by short-path distillation at 100-120° bath temperature (0.001 mm). ^g N: calcd, 6.89; found, 7.54. ^b F. M. Berger and B. J. Ludwig, U. S. Patent 2,656,378 (1953). ^f F. M. Berger and B. J. Ludwig, U. S. Patent 3,222,392 (1965). ^f C: calcd, 72.82; found, 73.24. ^k C: calcd, 72.22; found, 71.56. ^l H: calcd, 7.40; found, 6.84.

2 moles of *n*-BnBr in EtOH in the presence of 1 mole of NaOMe. Recrystallization (CH₂Cl₂-pentane) gave a 50% yield of purified compound.

2-Chloromethyl-2-ethyl-1,3-propanediol (23).—3-Ethyl-3-oxetanemethanol, prepared by the method of Pattison,²⁰ was treated in CHCl₃ with an excess of dry HCl at 0° for 4 hr. The excess HCl was removed by aspiration, and the product was distilled at $92-102^{\circ}$ (0.02 mm). It was purified by recrystallization (PhMe).

2-Propyl-2-diethylaminomethyl-1,3-propanediol (36) was prepared by the Mannich condensation of 0.3 mole of diethyl propylmalonate, 0.3 mole of Et_2NH , and 0.33 mole of 37% HCHO in 200

(20) D. B. Pattison, J. Am. Chem. Soc., 79, 3455 (1957).

ml of EtOH. Vacnum distillation of the crude product gave the desired malonate in 80% yield, bp $87-88^{\circ}$ (0.04 mm). Reduction of the malonate with LAH afforded the corresponding diol in 81% yield.

2,2-Di(*p*-tolyl)-1,3-propanediol (38).—A mixture of 0.41 mole of 4,4'-dimethylhydrobenzoin and 500 ml of 90% HCO₂H was refluxed for 4 hr. The H₂O and excess acid were removed under reduced pressure, the residue, dissolved in Et₂O, was washed (saturated NaHCO₃, saturated NaCl), and the solvent was removed. The crude 2,2-di-*p*-tolylacetaldehyde was added to 300 ml of 37% HCHO containing 30.3 g of K₂CO₃. This mixture was refluxed for 22 hr during which time sufficient EtOH was added to

$TABLE \ IV$ 2-Substituted 1,3-Propanediol N-Monosubstituted Dicarbamates $RR_1C(CH_2OCONH_2)(CH_2OCONHR_2)$

$RR_1C(CH_2OCONH_2)(CH_2OCONHR_2)$											
					Yiebl,	Mp or bp (inni),				-Dose, mg/kg ^{),}	
No.	\mathbf{R}	\mathbb{R}_1	\mathbf{R}_2	Method	C_{c}^{*}	°C	n^{25} b	Formula ⁴	PD_{50}	$\mathrm{ED}_{\mathfrak{s}\mathfrak{d}}$	LD_{50}
168	H	$\mathbf{E}\mathbf{t}$	Me	I	79	110.5-111		C8H16N2O4	>420	360 (ip)	420
169	11	Et	\Pr	K	76	93-94		C10H20N2O4	236	500	831
170	Η	Et	Ph	K	65	118-119		C13H18N2O4	>420	>420 (ip)	
171	II	1-MetbyIbuty1	2-Propynyl	1.	88	81-82		$C_{14}H_{22}N_2O_4$	$<\!420$		$>\!420$
172	н	Ph	Me	J	60	96-98. <i>5</i>		C)2H16N2O4	355	52	
173	н	$\mathbf{P}\mathbf{h}$	Pr	Ъ	64	58-62		154H20N2O4	305	150	
174	П	PI	Ph	K	90	147-148.5		C17H18N2O4	>620	>620	>620
175	Me	Me	Me	M	60	88-91		C8H16N2O4	>620	765	,
176	Me	Me	Pr	К	95	110-113		C15H20N2O4	420	420	
177	Me	Me	I'lı	K	65	112-114		$C_{15}H_{18}N_2O_4$	>420	224	
178	Me	Et	Me	M	73	78-79.5		C5H15N2O4	520	280 (ip)	620
179	Me	Et	Et	L	75 50	87-89		CieH20N2O1	235	280 (ID) 590	800
180°		Et	Pr	M	$\frac{30}{72}$	71.5-73.5					5 8 0
	Мe							CuH ₂₂ N ₂ O ₂	165	265	
181*	Ma	Et	i-Pr	K	86	86-88		$C_{11}H_{22}N_2O_4$	130	385	730
182°	Me	Et	Ally1	I.	23	51-52		$C_{11}H_{26}N_2O_3$	180	385	510
183	Me	Et	2-Propynyl	L	5	đ	1.4998	$C_{11}H_{18}N_2O_4$	510		1000
184	Me	Et	Bu	ĸ	77	<i>d</i>	1.4682	$C_{12}H_{24}N_2O_4$	136	265	570
185	Me	\mathbf{E} t	Ph	K	33	88-99		$C_{14}H_{25}N_2O_4$	520	315	
186	Мe	\mathbf{Pr}	Me	I	63	148 - 150 (0.05)	1.4662	$C_{10}H_{25}N_2O_4$	295	460	730
187^{c}	Me	Pr	\mathbf{Et}	I	72	154-156 (0.05)	1.4677	$C_{11}h_{22}N_2O_4$	170	400	700
188°	Me	Pr	Vinyl	N	36	90-92		$C_{13}H_{26}N_2O_4$	180	>280	620
189	Me	Pr	$2 \cdot HOCH_2CH_2$	J	20	120-140(0.02)	1.4809	$C_{11}H_{22}N_2O_b$	>420		
190	Me	Pr	COMe	K	80	88-89		C_1 , H_2 > N_2O_5	213	180	261
191°	Мe	Pr	Pr	Ι, J	72	144 - 147(0.02)	1.4694	C12H24N2O	146	326	790
192^{cof}	Me	\mathbf{Pr}	i-Pr	1	63	89-91.5		$\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{N}_2\mathrm{O}_4$	153	280	790
193°	Мe	\mathbf{Pr}	Allyl	I	62	110-130 (0.025)	1,4760	C12H22N2O4	114	154	500
194^{c}	Мe	Pr	2-Propynyl	Ī	35	94-96		C_1 : $H_{26}N_2O_4$	172	154	650
195	Me	Pr	Cyclopropyl	J	60	79-81		C::H22N:O	138	215	452
196 ^{C+g}	Me	Pr	Bu	Ĩ	18	49-51		C1:1126N2O4	940	198	514
197	Me	Pr	sec-Bu	Ī	41	86-98		C13II 26N 2O4	>420	280	>420
198^{c}		Pr	i-Bu	I	33	100-110 (0.01)	1,4645	C13H26N2O4	175	690	>940
	Me			I			1.4040				
109°	Me	Pr	2-Butenyl		66	88-89		$C_{19}H_{24}N_2O_4$	385	040 100 G 1	>940
200	Мe	Pr	2-Methylallyl	I	40	64-65		$C_{12}H_{24}N_{2}O_{4}$	253	180 (ip)	900
201	Мe	Pr	2-Furyl	N	5	84-86		$C_{43}H_{20}N_2O_5$	630		630
202	Мe	Pr	Pentyl	\mathbf{M}	70	79-81		$C_{14}H_{28}N_2O_4$	450	>940	> 940
205	${ m Me}$	Pr	3-Methylbutyl	I	30	il -	1.4664	C14H28N2O4	620		>940
204	Me	Pr	1,1-Dimethyl-2-	J	10	123-125(0.01)	1,4774	C19H24N2O4	240		490
			propynyl								
205	${\rm Me}$	Pr	\mathbf{PI}_{1}	17	92	98-99		$C_{15}M_{22}N_2O_4$	>420		>420
206	Me	Pr	$\mathbf{P}_{\mathrm{hCH}_2}$	I	50	131-132		$C_{16}H_{24}N_2O_4$	>1400		>1400
207	Me	Pr	$PhCOCH_2$	h	5	116-118		$C_{17}\Pi_{24}N_2O_5$	510	420 (ip)	
208	Me	Pr	3-PyridyI	J	50	136-138		$C_{14}H_{22}CIN_2O_4$	210		>280
209	Мe	i-Pr	Me	м	56	d	1.4750	$C_{10}H_{20}N_1O_4/$	520	373	>620
210	Me	i-Pr	Pr	K	46	58-6 0		$C_{12}H_{24}N_2O_4$	236	480	765
211°	Me	i-Pr	í-Pr	Ţ	50	58		CreH24N2O4	130	510	760
2120	Me	<i>i</i> -Pr	Allyl	J	60	120-125 (0.02)	1.4824	C52H22N2O4	197	304	530
213	Me	i-Pr	2-Propynyl	1	63	4	1.1872	C12H25N2O4	225	255	530
214	Me	<i>i</i> -Pr	Bu	J	73	63-65	1.10/2	C_1 : $H_{25}N_2O_4$	160	240	590
$\frac{214}{215}$	Me	i-Pr	Ph	ĸ		96-98		CoH ₂₅ N ₂ O ₄	>420	280	>420
$\frac{210}{216^{e}}$			Me	M	85 70	75-77		$C_D \Pi_{22} N_2 O_4$	160	280	515
	Me	Bu									660
217	Me	Bu	$\mathbf{E}\mathbf{t}$	J *-	17	91-92		Ca2H ₂₂ N ₂ O ₄	225	580	
218°	Me	Bu	Pr	ĸ	62	62-64		$C_{14}H_{26}N_2O_4$	114	305	532
219°	Me	Bu	j- Pr	L	15	74-76.5		$C_{13}H_{26}N_2O_4$	102	>420	840
220°	Me	Bu	Allyl	J	74	62-63		$C_{13}H_{24}N_2O_4$	136	280	345
251.	${\rm Me}$	Bu	2-Propynyl	,1	17	55-57		C_3H22N2O4	136	90	345
222	M c	Ռել	Bu	J	50	54-57		C14H23N2O4	305	900	760
223	Мe	Bu	Ph	K	94	112-113		C10H2:N2O4	>620	620 (ip)	>620
224^{c}	Мe	sec - 1311	Pr	М	50	61-63		$C_{10}H_{26}N_{2}O_{4}$	105	380	620
225^{c}	Me	sec_Bu	<i>i</i> -Pr	м	95	89-90		$C_{15}H_{26}N_{2}O_{4}$	92	225	750
226°	${ m Me}$	sec=B11	Allyl	м	50	đ	1,4830	$\mathrm{C}_{33}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{4}$	102	142	:544
227°	Me	sec_Bu	2-Propynyl	м	55	120-125 (0.01)	1,4862	$\mathrm{C}_{13}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{O}_{4}$	171	130	510
228	Me	i-Bu	Bu	м	60	d	1,4714	$C_{14}H_{25}N_2O_4$	420		760
229	Me	i-Bu	2-Propynyl	J	77	47-49		$C_{13}H_{22}N_2O_4$	305		> 120
230	Me	$\mathbf{P}\mathbf{h}$	Pr	Ι.	43	113-114		$C_{16}H_{22}N_2O_4$	280	180	586
231	Ме	Pli	2-Propynyl	Ι.	42	d	1,5409	$C_{15}H_{18}N_2O_4$	530		>940
232	Me	Ph	Ph	K	80	113-114		C13H20N2O4	520	280 (ip)	520
233	Et	EG	Et	ī	57	111-113		$C_{21}H_{22}N_2O_4$	530		>940
234 6	Et	Et	Pr	1	42	83-84		$C_{12}H_{24}N_{2}O_{4}$	147	490	760
2350	Et	Et	i-Pr	Ĵ	45	91-93		C1:H24N2O.	130	530	1280
236 ^c	EC	Et	Allyl	" L	50	84-85		C12H32N2O4	205	370	330
237	Et	Et	2-Propynyl	J	75	75-78		C12H20N2O4	305		
238	Εt	Et	Bu	J	81	62-64		C15H26N.O4	255	305	820
238 239	Et	Et	Ph	K	86	98.5-100		C15II22N2O4	2.00 510	420	010
239 240¢	Et	Pr	i-Pr	M		98.5-100 82-84		C13H26N2O4	225	420	880
240^{c} 241^{c}	Rt	i-l'r	i-Pr i-Pr	_V1 J	58 55	82-84 72-74		C13H26N2O4	120	480	730
241 242°				J	55 60	72-74 74-75.5		C12H26N2O4 C12H24N2O4	120	480 246	730 509
	Et	Bu	Me	I	60 50				235	240 680	809 800
243	Et	Bu	Et Bu	1	50 #0	79-81		$C_{15}H_{28}N_2O_4$	$\frac{235}{420}$	000	300
244	Ei	Bu	Pr 9. Bernary		69	81.5-83		C14H28N2O4 C14H28N2O4		150	510
245¢	Et	Bu D.,	2-Propynyl	.l **	30	01-64		$C_{14}H_{24}N_2O_4$	153 > 120	150	>420
246	120 724	Ba	Ph Ph	K	95 50	128-130.5		C17H26N2O4	>420	>420	
247	Ei	PL	Et	L	50	69-71		$\mathrm{C}_{4^{j}}\mathrm{H}_{2^{j}}\mathrm{N}_{2}\mathrm{O}_{4}$	280		>280

					TABLE	IV (Continued	<i>l</i>)				
					Yield,	Mp or bp (mm).				Dose, mg/l	g ^b
No.	\mathbf{R}	\mathbf{R}_{1}	\mathbf{R}_2	\mathbf{Method}	%	°C	n^{25} D	Formu.a ^a	PD_{50}	ED_{50}	LD_{0}
248	\mathbf{Et}	$\mathbf{P}\mathbf{h}$	\mathbf{Ph}	к	90	137-138		$C_{19}H_{20}N_{-}O_{4}$	>620	>620	>620
249	\mathbf{Ph}	\mathbf{Ph}	Мe	м	30	$103-105^{k}$		$C_{18}H_{20}N_{-}O_{4}$	>620	>620	>020
						132-135					
250	\mathbf{Ph}	\mathbf{Ph}	Pr	K	83	145-146		$C_{20}H_{24}N_2O_4$	>420	>420	>420
251	\mathbf{Ph}	$\mathbf{P}h$	\mathbf{Ph}	К	90	201 - 202.5		$C_{23}H_{12}N_2O_4$	>420	>420	>420
		,			1 4 37	10 0	7 * 75 11	T . C . TO	10 0		TT II TTT

^a All previously unreported compounds were analyzed for N. ^b See footnote b in Table I. ^c See ref 3a. ^d See footnote f, Table III. ^c Polymerizes on heating at melting point or on standing at 50°. See ref 11. ^f Carisoprodol; see ref 3b. ^g Tybamate; see F. M. Berger, M. Kletzkin, and S. Margolin, *Med. Exp.*, 10, 327 (1964). ^k Prepared by the reaction of meprobamate and NaH in DMF with phenylacetyl chloride. ^j HCl salt. ^j N: calcd, 12.06; found, 11.50. ^k Dimorphic crystalline forms.

maintain the reactants in solution. The solvents and excess HCHO were removed under reduced pressure and the residue was heated on the steam bath with 10% NaOH for 5 hr. The mixture was extracted into Et₂O and the crude product obtained upon removal of the solvent was purified by recrystallization (PhMe).

Preparation of 2-Substituted 1,3-Propanediol Dicarbamates (II).—The majority of the 2-substituted 1,3-propanediol dicarbamates listed in Table II were prepared by either the phosgenation procedure¹ (method A) or the ester-exchange method⁶ (method B) previously described. Other methods employed for this purpose were as follows.

Solium cyanate procedure (method C) is illustrated by the preparation of 2-allyl-2-ethyl-1,3-propanediol dicarbamate (84). A mixture of 18.7 g (0.13 mole) of the diol, 18.8 g (0.29 mole) of anhydrous NaOCN, and 400 ml of dry CHCl₃ was stirred and maintained at 0° while dry HCl was passed into the mixture for a period of 6 hr. The mixture was allowed to warm to room temperature and to stand overnight, and the HCl and the CHCl₃ were removed by distillation under reduced pressure. Recrystallization of the residue (H₂O) yielded 24.4 g (85%) of purified product.

Phenyl Chlorocarbonate Procedure (Method D).—The use of the intermediate phenyl carbonate in the synthesis of dicarbamates is illustrated by the preparation of 2,2-diphenyl-1,3propanediol dicarbamate (99). 2,2-Diphenyl-1,3-propanediol²¹ (20 g, 0.088 mole) was dissolved in 100 ml of CHCl₃ to which 40 g (0.5 mole) of pyridine had been added. To this was then added 31.2 g (0.2 mole) of phenyl chlorocarbonate in 50 ml of CHCl₃. The reaction mixture was refluxed for 1 hr and then poured into ice water. The CHCl₃ layer was washed (10% HCl, 10%NaOH, H₂O) and the CHCl₃ was distilled. The crude 2,2-diphenyl-1,3-propanediol bis(phenylcarbonate) was added to 200 ml of NH₄OH and 50 ml of EtOH. This mixture was treated with NH₃ for 2 hr nuder reflux and then poured into 300 ml of H₂O. The solid which separated was recrystallized from 3 l. of 90%Me₂CO and yielded 21 g (76%) of white crystalline product. Condensation with Urea.—We were unable to obtain yields

Condensation with Urea.—We were unable to obtain yields comparable to those of Paquin²² who reported $78\frac{7}{50}$ of 1,3-bntylene glycol dicarbamate from the glycol, using mea and Zn(OAc)₁ catalyst at 175-185°. When 66 g (0.5 mole) of 2-methyl-2propyl-1,3-propanediol, 120 g (2.0 mole) of mea, and 6 g of Zn-(OAc)₂ were stirred and heated at an internal temperature of 150° for 7.5 hr, a $25\frac{7}{6}$ yield of meprobamate was obtained. Several variations in the ratio of reactants, time, temperature, and choice of catalyst failed to improve the yield. The isolation of the product obtained in this manner was complicated by the presence in the reaction mixture of mea decomposition products.

Cyclic Carbonates (V, Method G).—The cyclic carbonate esters used as intermediates in the synthesis of the monocarbamates were obtained substantially by the procedure of Berger and Ludwig.^{3a}

Previously undescribed 5-substituted *m*-dioxanones prepared by this method were 5-ethyl-*m*-dioxanone, bp 80-83° (0.02 nim), n^{25} D 1.4523; 5-butyl-, 178-180° (0.3 mm), 1.4448; 5-methyl-5isobntyl-, 114-117° (0.02 mm), 1.4558; 5-methyl-5-phenyl-, mp 97-98°; and 5,5-di-*p*-tolyl-, mp 168-171°.

1,3-Propanediol Monocarbamates (VI).—The N-unsubstituted-3-hydroxypropyl carbamates and most of the N-alkyl(aryl) monocarbamates described in Table III were produced from the corresponding *m*-dioxatione and NH₃ or the appropriate amine by the method described earlier^{3a} (method H). Procedures for the preparation of other compounds of this type requiring special methods are as follows.

 bamate and 2-ethyl-2-chloromethyl-1,3-propanediol when 1 mole of 3-ethyl-3-oxetanemethanol²⁰ was treated in CHCl₃ with 1 mole of NaOCN and excess dry HCl. The 2-ethyl-2-chloromethyl-1,3-propanediol dicarbamate (38%) remained insoluble in the CHCl₃ and was filtered off. The filtrate was distilled and separated into two fractions. Fraction 1, bp 92-100° (0.02 mm), was recrystallized (CH₂Cl₂) to a constant melting point of 65.5-66° and proved to be 2-ethyl-2-chloromethyl-1,3-propanediol (24%). Fraction 2, bp 102-150° (0.02 mm), after recrystallization (CH₂Cl₂) melted at 86-87°. Analysis showed it to be 2-ethyl-2chloromethyl-3-hydroxypropyl carbamate (38%).

2-Phenyl-3-hydroxypropyl Carbamate (111).-Since the cyclic carbonate of 2-phenvl-1,3-propanediol could not be obtained by method G, the desired monocarbamate was prepared by an a'ternate route. 2-Phenyl-1,3-propanediol (0.4 mole) in 500 ml of THF was treated at room temperature with 0.42 mole of COCl₂ in 100 ml of THF. The reaction mixture was stirred 2 hr and then poured with cooling into 250 ml of concentrated NH4OH. The THF layer was separated and the solvent was removed by distillation. The residue was dissolved in Et₂O and the solution was washed (10% HCl, H₂O). After removal of the Et₂O, the residue was recrystallized (Me₂CO-CHCl₃). The dicarbamate of 2phenyl-1,3-propanediol, which also formed in the reaction, crystallized out first (mp 148-150°), and by adding petroleum ether to the filtrate the monocarbamate was obtained, mp 71-74°. After recrystallization (PhMe), the monocarbamate melted at 73-75

N-Phenyl-2-methyl-2-propyl-2-hydroxypropyl Carbamate (130).—A solution of 26.4 g (0.2 mole) of 2-methyl-2-propyl-1,3-propanediol in 400 ml of dry C_6H_6 was heated to reflux and 11.8 g (0.1 mole) of phenyl isocyanate in dry C_6H_6 was added slowly with stirring over a period of 1 hr. The C_6H_6 was then removed and the residue was distilled. Unreacted diol (12 g), bp 80° (0.1 mm), was obtained. The residue was recrystallized from heptane; yield 20.7 g (84%).

1,3-Propanediol N-Monosubstituted Dicarbamates (VIIa, Y = H, Table IV).—The urethan-exchange method (method I), the phosgenation-amidation procedure (method J), and the cyanic acid reaction (method M) were employed in the synthesis of these compounds.^{3a}

2-Substituted 1,3-Propanediol N,N'-Di-, -Tri- and -Tetrasubstituted Dicarbamates (IV, VIIa, VIIb, VIIc, Table V). 2-Methyl-2-propyl-1,3-propanediol N-(3-Methylbutyl)-N'-butyldicarbamate (279, Method K).—A mixture of 24.5 g (0.1 mole) of 2-methyl-2-propyl-3-hydroxypropyl N-(3-methylbutyl)carbamate and 11 g (0.11 mole) of butyl isocyanate in 100 ml of dry C_6H_6 was refluxed for 6 hr and then concentrated to an oil. The residue was distilled at 165-170° (0.0015 mm) to yield 30.5 g (88%) of a viscons liquid.

1,3-Propanediol N,N'-Alkyl(aryl)dicarbamates. Isocyanate Procedure (Method E).—The use of alkyl or aryl isocyanates in the preparation of symmetrically N,N'-substituted dicarbamates is illustrated in the preparation of 2-methyl-2-propyl-1,3-propanediol N,N'-diphenyldicarbamate (281). 2-Methyl-2-propyl-1,3propanediol (10 g) was mixed with 95% of the theoretical quantity of phenyl isocyanate (17.1 g) and the mixture was warmed. A vigorous reaction took place and, after subsiding, the mixture set to a viscous gum. Crystallization of the product (EtOH-H₂O) gave 17.2 g (79%) of purified compound.

Acyl Azide Procedure (Method F).¹¹—This method, useful for the laboratory preparation of selected N-substituted dicarbamates, is illustrated by the preparation of 2-methyl-2-propyl-1,3-propanediol N,N'-diisopropyldicarbamate (271). A solution of 26.8 g (0.25 mole) of isobutyryl chloride in PhMe (60 ml) was added to a stirred solution of 18.8 g (0.29 mole) of NaN₃ in 50 ml of H₂O maintained at 0-10°. The mixture was stirred rapidly for 0.5 hr and then the PhMe layer was removed and washed

 ⁽²¹⁾ D. G. Markees and A. Burger, J. Am. Chem. Soc., 71, 2031 (1949).
 (22) A. M. Paquin, Z. Naturforsch., 1, 518 (1946).

TABLE V 2-Substituted 1,3-Propanediol N-Polysubstituted Dotarbamates RR_1C:CH_2OCONR_2B_3)(CH_2OCONB_1R_3)

							Ň	LL I	Mp or bp					ose, ing/k	
3No.	R	R,	R 2	R_z	\mathbf{R}_{3}	It.	Method		Cumb, °C	$\mathbf{h}^{23}\mathbf{p}$	Forioda	Analyses		ED _{F0}	LDie
52	n	Ε¢	Ш							a 1.					> 620
				11	Me	Me	м	155	5860		$C_{4}L_{5}N_{2}O_{5}$	N	5 <u>2</u> 0	> 420	Z 620
253	Н	Ph	H	14	Me	Me	,1	.5D	9092		C43H54N2O4	N	247	126	
254	Мe	${ m Me}$	Н	Н	Me	Mo	м	·4))	95-97		C 2H18N2O.	N	620	355	520
											/ /.			$\{0\mathbf{p}\}$	
255	Me	Pr	11	11	Me	Me	1	20	819-1103		C : 1H 22N 2O4	N	570		9110
256	Me	Pr	FI 	14	Me	Pr	1.	56	43-46		C52H24N2O5	N	180	>280	<620
257	M_{P}	\mathbf{Pr}	Н	11	Eэ	Εt	I	4.5	78-80		$\mathrm{C}_{48}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}_{4}$	N	370		232
2.58	${\rm Me}$	Pr	H	H	{CH ₂) ; O(CH9*~	Ι	62	74-76		$C_{13}H_{34}N_2O_4$	N	245	> 420	200
259	Me	i-l'r	н	Н	Me	Me	Ι,	50	76 - 78		CurHaiN:Or	N	420	420	
260	${\rm Me}$	Bu	ŀI	H	Me	${ m Me}$.1	30	76 - 78		$C_{12}H_{24}N_2O_4$	N	265		650
261	Me	sec-Ba	11	Н	Me	Me	.1	58	55~5 T		$C_{12}H_{14}N_2O_3$	N	272		710
262	Et	115	11	PI	Me	Me	М	40	<u>92</u> 93		$C_{3,5}H_{22}N_2O_4$	N	420	280	
														(ip)	
263^{6}	11	$PhCH_2$	FI	125	Н	ΓΊι	Е	88	150		$C_{23}H_{25}N_{2}O_{3}$	N	> 620	> 1800	
264	Me	Pr	n	Me	н	Me	Ā		160162	1.4640	$C_{49}H_{12}N_2O_4$	N	315	315	730
		• •	••	A10	11	.110		00	(0.2)	1.1010	())11021N2004			.,10	
265	11.	Pr	11	1.5	11	7°.	4			1 4000	ON NO	、 ·	500		1020
200	Мı	11	11	Εı	11	$E\iota$	А	70	152156	1.4608	$C_{O}H_{22}N_{2}O_{3}$	N	56H		***=**
									(0,2)				×	S 4.10	× 140
266	M_{2}	1'r	Ił	$CICH_2CH_2$	14	CICH ₂ CH ₂		88	C.	1.4849	$C_{33}H_{43}CI_{2}N_{2}O_{3}$	N	> 420	> 420	>420
									,					(ip)	.
267	Me	Pr	11	Ae	11	Ae	0	80	$125~120.5$, $^{\prime\prime}$		$C_{12}H_{22}N_2O_\ell$	N	620		> 05n
									135-136						
268	Me	Pr	II	HO_2CCH_2	11	HO ₂ CCH ₂	e	65	$133 - 140^{f}$		CasHasNaOs	N	> 940	> 940	> 940
269)	Me	1'r	n	CICH ₂ CO	Н	CICH ₁ CO	0	3	141-142.5		$C_{14}H_{20}CIN_2O_6$	N	> 620	< 620	
270	Me	Fr	Ы	2.2.2-Tri-	H	2,2,2-Tri	e	82	105~107		C12H20CIN2O6		> 1400		0)45
				chloro-	•••	ehloro-		•/-							
				ligdroxy-		liydroxy-									
2719.3	· 12.	1)	11	etbyl A IIa	D	ethyl	12		co • ;		O H NO	N.	S (191)	420	>620
± (1 % · ·	276	1,	11	i-I'r	n	<i>i-</i> Pr	Ŀ,	87	69-73		$\mathrm{C}_{14}\mathrm{H}_{34}\mathrm{N}_2\mathrm{O}_8$	N	> 620		2010
				13									200	(ip)	T.A.co.
2725	Me	Pr	11	Ei	11	2-Butenyl	N	31	с	1.4732	$C_{15}H_{28}N_2O_3$	C, H ^e	720		I460
273	Me	170	n	i-170	11	EtCO	()	75	94-05.5		$C_{14}H_{28}N_2O_5$	N	270	665	> 1400
274	Me	Pr	11	ActvIov1	11	Acryloyl	e	30	170-171		$C_{32}H_{22}N_2O_6$	N	1400		<1400
275	Me	Pr	н	EtCO	11	EtCO	0	7.5	164 - 166		$C_{15}H_{26}N_2O_E$	N	> 1400		> 1400
276	Me	\mathbf{Pr}	n	2-Bromo-	14	2-Bronto-	P	1 0	140-141		$C_{13}H_{24}Br_2N_2O_3$	C, H, N	> 1400		> 1400
				propionyl		propiony	I								
277	Me	1'r	Н	Bu	Н	Bu	А	80	164-168	1.4619	$C_{c}H_{24}N_{2}O_{c}$	N			
									(0,01)						
278	Me	171	H	EtO ₂ CCII ₂	н	EtO ₂ CCH ₂	E	96	c	1.4652	Γ_1 :H $_0$ N $_2$ O $_6$	N	≥ 620	> 620	> 620
279	Me		H	Bit	H	3-Methyl-	ĸ	88	e	1.4613	$C_{18}H_{3\ell}N_2O_4$	C, H, N	> 620	> 520	> 620
- ()		• •		1,711		butyl		00		1.1.71.7	((MAT 86-12074	. , . , . ,			
280	Me	D-	Н	3 (3)	TT				1000		CUNO	C, H, N	> 420	> 420	> 420
				2-GlueosyI		2-Gbicosyl	A	35 	LDO		CgrH35NgO54				2 4-0
281	Me	Pr	Н	Ph	Н	1 ² h	E	79	118-119		C 25H 26N 2O 4	N	> 620	> 1700	
282	Me		FI	PhCH ₂	н	PI_1CH_2	A.	50	73-74		$C_{23}H_{34}N_2O_0$	N	> 420	> 420	
283	Me	\Pr	H	p-EtOPh	ŀI	p-EtOPIi	E	90	173.5 - 176.5		$C_{23}H_{34}N_2O_6$	N	2000	< (400	1710
														$(i_{\rm P})$	
284	Me	1 <i>'</i> 1'	14	PhCOCH ₂	Н	$PhCOCH_2$	Ĵ	9	200-201		$\mathrm{C}_{25}\mathrm{H}_{39}\mathrm{N}_2\mathrm{O}_6$	N	> 620	> 620	
285	Me	l'r	H	i-1"r	Н	9-Xnothy1	e	30	137-139		$C_{22}H_{32}N_2O_3$	C, H, N	> 620	> 620	
286	Mc	l'r	Н	9-Nanthy1	H	9-Nanthyl	e	$\overline{70}$	184-184.5		CalH34N2O8	C, H	> 400	> 420	
287	Me	i-Pr	Н	Me	н	Me	A	50	110112		15.11 22 N 2O 5	N	> 620	> 1700	
288	Me	<i>i</i> -1'r	н	Ac	Н	Ap:	0	80	149-150		C55H22N2O4	N	1740		2340
289		i-I't	H	1211	н	171:	E	57	142-143		$C_{23}H_{26}N_2O_1$	N		> 1500	
290		sec-Bn	H	Ae	н	Ac	0		146-147		$C_{44}H_{44}N_2O_4$	N	690		> 4700
291				EtCO					· · - · · · · ·		C56H28N2O6		> 1400		> 1400
291 292	Me Et	sec-Bu Et	H		II	EtCO	0	75	147~149		$C_{33}H_{23}N_2O_3$	N .	457		800
			н	Et	Н	Et	A	65	70-72						> 280
293 101	Et	Et D-	H	PhCH ₂	H	PhCH ₂	A	25	100-101		$C_{24}H_{30}N_2O1$	N	> 280		
204	Et	Pr br	H	Ac	H	Ae	0	80			$C_{13}H_{43}N_2O_6$	N .	1290		$1725 \\ > 1400$
295	Et	l'r	н	EtCO	н	EtCO	O D	75	163165		$C_{15}H_{28}N_2O_4$		> 1400	× 1000	> 1400
296	Et	Bu	Ы	Ph	н	1'Iı	E	60	107109		$C_{25}H_{32}N_{2}O_{4}$	N		> 1800	
297	Εt	Ph	Н	$1'I_1$	H	Ph	E	55	138139		$\mathrm{C}_{35}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}_{4}$	N	>620	> 1900	
298	Me	Pr	ŀI	<i>i-</i> 1'r	Н	Et ₂ NCH ₂	k	60		1.4677	(`17H 34N 3O4	N			
299	Me	l'r	n	Eτ	Me	Me	K	45	126-128	1.4575	CmH2cN2O4	N'	4 <u>2</u> ()		420
									(0,03)						
300	Me	Pr	II	17r	Me	Me	K	60	146-142	1.4578	$\rm C_{24}H_{28}N_2O_4$	N	342		>420
									(0.075)						
3014	Me	1'r	11	i-Bu	Me	Me	N	46	110 (0.012)	1.4600	$\Gamma_{45}H_{45}N_2O_4$		40.5		1525
302	Me		11	E	Et	Et	L		126-127	1.4581	C35H40N2O4	N	> 420	235	> 420
						110	••		(0.02)						
303	Me	Pr	н	1'r	Eτ	Et	К	ti?	132-137	1.4568	Cs(HatNaO)	N	> 420	355	> 420
				- •				-	(0.03)					(ip)	
304	М	Pr	Me	Me	Me	Me	e	59	114-118	1.4561	C15H26N1O4	N	180	> 420	
· // *		• •	171 K.			19.1.2	L		(0.06)	63001	C 131126191(74		100		
305	11.	170	-040	H	-04.01	I	\$	<u>to</u>		1.36-0	CULLING	N			
.,,	Me	T 1	$\sim CH_3C$	**2-	-CH2CH	1 2	А	0 <u>-</u> 2	119-122	1.4676	$C_{43}H_{22}N_2O_3$	• •			
20.57	<u>۱</u> .	17.	12+	E)	124	T2+		- 4	(0.01)	1.47.97	0.0.80	N	> 1400		1000
306	Me	1.1.	Et	Εt	Et	Et	A	74	119-125	1.4537	C_3 :H ₄₀ N ₂ O ₃	_N	~ 1400		1. 1. 1. 1.
	37	••	out of	CHOIL CIT	out ott of	an an a			(0.02)	1 1/ 70	21 11 CT 17 21	C906	× 000	> 620	> 620
3117	Me	171	CICH2CH2	CICH2CH2	CH₂CH₂CI	CH ₂ CH ₂ CI	A.	40	155-165	1.4950	C_{t} : $H_{e4}CI_{t}N_{2}O_{4}$	CT.,	> 620	× 020	~ 020
0.00		••		overn	//·····				(0.01)		0 H M 0	N7			42.0
308	Me	Pr	(CH ₂) ₂	O(CH3):	-(CH2)2C	P(CH]) : -	А	47	162-163	1.4863	C4-H20N2O4	N	95		3532
									(0.02)						

TABLE V (Continued)

							$Dose, mg/kg^a$								
No.	R	\mathbf{R}_1	\mathbf{R}_2	Rs	\mathbf{R}_{4}	R_5	Method	%	(mm). °C	n^{25} D	Formula	Analyses	PD ₅₀ E	ED_{50}	$\mathrm{LD}_{\mathfrak{b0}}$
309	Me	Pr	-(CH	[₂) ₅	-(C)	H₂)₅ ~	А	60	158-160 (0.02)	1.4858	C_1 9H 34 N_2O_1	Ν	> 420		>420
310	Et	\mathbf{Et}	Εt	\mathbf{Et}	\mathbf{Et}	Εt	Α	40	129-132 (0.5)		$C_{1}H_{34}N_{3}O_{3}$	C; H^n	810		720

^a See footnote *b* in Table I. ^b H. Adkins and H. R. Billica [*J. Am. Chem. Soc.*, **70**, 3121 (1948)] reported mp 68-70°. ^c See footnote *f* Table III. ^d Dimorphic crystalline forms: mp 125-126.5° from EtOH-H₂O, mp 135-136° from PhMe. ^e See Experimental Section. ^f Monoammonium salt. ^g Pharmacological properties reported by R. Inoki, K. Otori, and I. Komura, *Folia Pharmacol. Japon.*, **57**, 280 (1961). ^h See ref 11. ⁱ H: calcd, 9.40; found, 9.88. ^j See footnote *h*, Table IV. ^k Prepared from 2-methyl-2-propyl-1,3-propanediol N-isopropyldicarbamate, Et₂NH, and 37% HCHO. ^l N: calcd, 10.21; found, 10.68. ^m Cl: calcd, 30.29; found, 29.87. ⁿ H: calcd, 10.37; found, 9.74.

(Na₂CO₃, H₂O). The toluene solution was dried (CaCl₂) at 5° for 1 hr and was added slowly to 13.2 g (0.1 mole) of 2-methyl-2propyl-1,3-propanediol dissolved in 100 ml of anhydrous PhMe. The solution was heated at reflux during the addition and for an additional 8 hr. PhMe was removed under reduced pressure and the residue was crystallized from hexane; yield 26.3 g (87%), mp 72-73°.

The unsymmetrical 1,3-propanediol N,N'-tri- and -tetrasubstituted dicarbamates listed in Table V were prepared from the appropriate 3-hydroxypropyl N-substituted carbamates using the various carbamoylation reactions described earlier.

2-Methyl-2-propyl-1,3-propanediol N,N'-bis(2,2,2-trichlorohydroxyethyl)dicarbamate (270) was prepared in 82% yield by stirring a mixture of 0.1 mole of 2-methyl-2-propyl-1,3-propanediol dicarbamate and 0.25 mole of chloral on the steam bath for 1 hr. The reaction product was recrystallized (C₆H₆), mp 105-107°.

2-Methyl-2-propyl-1,3-propanediol N,N'-Bis(9-xanthyl)dicarbamate (286).—Following the procedure of Sawicki and Oliverio,²³ 2.75 g of 2-methyl-2-propyl-1,3-propanediol dicarbamate was dissolved in 15 ml of EtOH-AcOH (1:1) and mixed with 5 g of xanthydrol dissolved in 15 ml of the same solvent. The solution was warmed and allowed to stand overnight. The product (4.5 g) was recrystallized (PhMe), mp 184–184.5°.

The monoxanthyl derivative of 2-methyl-2-propyl-1,3-propanediol N-isopropyldicarbamate (285) also prepared by this method was obtained in crystalline form in low yield.

2-Methyl-2-propyl-1,3-propanediol N,N'-bis(carboxymethyl)dicarbamate monoammonium salt (268) was prepared by treating 1 mole of 2-methyl-2-propyl-1,3-propanediol with 2 moles of carbethoxymethyl isocyanate in C_6H_6 . The reactants were refluxed for 3 days, the solvent was removed by distillation, and the residue was distilled in a molecular still. The fraction distilling at 162-187° (0.001 mm) was collected, n^{25} D 1.4652. This intermediate, 2-methyl-2-propyl-1,3-propanediol N,N'-bis(carbethoxymethyl)dicarbamate (278) was saponified by refluxing 1 hr with excess NaOMe in EtOH. The EtOH was removed by distillation, and the residue was taken up in H₂O and extracted with Et₂O, discarding the Et₂O extracts. The aqueous solution was acidified with HCl, the product was extracted into Et₂O, and the solution was dried (CaSO₄) and distilled to dryness to give a viscons residue. The product was isolated as the monoammonium salt by dissolving the gum in anhydrous *i*-Pr₂O and introducing NH₃. It was crystallized from *i*-PrOH saturated with NH₃, mp 133-140°.

2-Methyl-2-propyl-1,3-propanediol N,N,N',N'-tetramethyldicarbamate (304) was prepared by the reaction of 1 mole of the diol with 2 moles of dimethylcarbamoyl chloride in PhMe, using 2.5 moles of pyridine as the acid acceptor. The reaction mixture was refinxed for 20 hr and then poured into ice H₂O. Et₂O was added and the Et₂O layer was washed with dilute HCl, dried, and concentrated. Distillation of the residue gave a fraction boiling at 114-118° (0.06 mm), n^{26} D 1.4561, in a yield of 58%.

1,3-Propanediol N-Acylated Dicarbamates (Method O).—The diacyl derivatives of N-insubstituted and N-monosubstituted dicarbamates were prepared by treating 1 part of dicarbamate with 2 parts of the appropriate acid anhydride to which a trace of concentrated H_2SO_4 had been added. After 0.5 hr, the reaction mixture was poured into excess H_2O and the diacyl derivative was collected and recrystallized from dilute alcohol or other solvent. The acyl derivatives requiring special methods are described individually.

2-Methyl-2-propyl-1,3-propanediol N-Acetyldicarbamate (190).

—One mole of acetyl isocyanate, prepared by the method of Hill and Degnan,²⁴ was treated with 1 mole of 2-methyl-2-propyl-3-hydroxypropyl carbamate dissolved in anhydrons C_6H_6 . The product, insoluble in C_6H_6 , was crystallized (H₂O); mp 88-89°, yield 80%.

2-Methyl-2-propyl-1,3-propanediol N,N'-Bis(β -bromopropionyl)dicarbamate (276).—One mole of β -bromopropionyl isocyanate, prepared by the method of Johnson,²⁸ was mixed with 0.5 mole of 2-methyl-2-propyl-1,3-propanediol in CHCl₈. The reaction mixture was heated at reflux for 2 hr and then the solvent was removed by distillation under reduced pressure. A 70% yield of product, mp 138-139°, was obtained; after recrystallization (EtOH), mp 140-141°.

2-Methyl-2-propyl-1,3-propanediol N,N'-diacryoyldicarbamate (274) was prepared in 30% yield from the above compound by dehydrohalogenation with excess Et_3N in PhMe. The mixture was warmed on the steam bath and allowed to stand 1 hr. The amine HBr was separated by filtration and the excess Et_3N was removed by warming. The product crystallized on cooling. Repeated crystallization (EtOH-H₂O) gave a product melting at 170-171°.

The preparation of the miscellaneous N-substituted dicarbamates appearing in Table VI which required special procedures are given below.

2,2-Diethyl-3-hydroxypropyl allophanate (328) was prepared in low yield by treating a dioxane solution of the diol with HOCN, obtained by the thermal depolymerization of cyanuric acid. It was isolated by diluting the dioxane solution with H_2O and was crystallized from EtOH, mp 154.5-156°. The 2,2-dimethyl analog (327) was also prepared by this method.

2,2-Diethyl-1,3-propanediol diallophanate (338) was prepared in 66% yield by treating 1 mole of the diol bis(chlorocarbonate) with 2 moles of urea in C₆H₆ solution. A trace of H₂SO₄ was added and the mixture was refluxed for 18 hr. The product was crystallized from EtOH, mp 191-193°. The 2-methyl-2-propyl analog (337) was prepared in a similar manner.

2,2-Diethyl-1,3-propanediol N,N'-Dinitro-N,N'-diethyldicarbamate (334).—Following the method of Curry and Mason,²⁶ 2,2-diethyl-1,3-propanediol N,N'-diethyldicarbamate was nitrated using a mixture of 90% fuming HNO₃ and Ac₂O (1:3), prepared at 0-10°. The dicarbamate was added to this mixture at such a rate as to maintain its temperature under 10°. After stirring for 0.5 hr, the mixture was poured into excess H₂O to precipitate the dinitro derivative. It was recrystallized from EtOH, mp 43.5-44.5°. The same procedure was employed to prepare 2-methyl-2-propyl-1,3-propanediol N,N'-dinitrodicarbamate (333).

The preparation of 2-substituted 3-hydroxypropyl carbazates (method H) is illustrated by the preparation of 2-methyl-2-propyl-3-hydroxypropyl carbazate (311). One mole of 5-methyl-5propyl-2-m-dioxanone was treated at room temperature with 1 mole of hydrazine (85% hydrazine hydrate) for 12 hr. The product was crystallized from CHCl₃, mp 75-77° (60%).

2-Methyl-2-propyl-1,3-propanediol Dicarbazate (321).—2-Methyl-2-propyl-1,3-propanediol bis(methylcarbonate) was prepared by reaction of 2 moles of MeOH with 0.5 mole of 2-methyl-2-propyl-1,3-propanediol bis(chlorocarbonate) in 2 moles of pyridine. The mixture was warmed on the steam bath for 3 hr and the upper layer, containing the carbonate, was combined with the Et₂O extract of the acidified lower layer. The Et₂O solution

⁽²³⁾ E. Sawieki and V. T. Oliverio, J. Org. Chem., 21, 183 (1956).

 ⁽²⁴⁾ A. J. Hill and W. M. Degnan, J. Am. Chem. Soc., 62, 1595 (1940).
 (25) H. W. Johnson, Jr., R. E. Lovins, and M. Reintjes, J. Org. Chem., 24,

^{1391 (1959).}

⁽²⁶⁾ H. M. Curry and J. P. Mason, J. Am. Chem. Soc., 73, 5043 (1951).

Vol. 12

TABLE VI MISCELLANEOUS 1,3-PROPANEDIOL CARBAMATES RR₁C(CH₂OCONR₂R₃)(CH₂OCONR₄R₅)

				Yield, Mp or bp										Dose, blg/kg ⁿ		
No.	R	к.	\mathbf{R}_{2}	R.	R :	R.			(mm), °C	n [‰] D	Foropila	Abelyses			1.1)	
311	Me	I7r	ь		II	NH_2	11	GÐ	13-77		CałbaNaOa	N				
312	Εt	Et	Ь		Η	NH:	Ν	76	82-83		ChHerN ₂ O ₂	N ^r				
313	Me	Pr	b		11	PhCH==N	d	55	116-118		C 15H 22N 2O 3	11, 11, N				
314	Me	Pr	6		н	i-PrNH	d	GH	r		$C_{3}H_{23}N_{2}O_{3}$	C. H. N	350		350	
315	Me	Вл	ti		11	i-PrNH	it	85	(2513)	1.4661	$C_{12}H_{25}N_2O_3$	N	\$80		680	
									(0.01)							
316	Εt	115	ò		11	$\rm NH_2$	Н	80	131-112		$C_{12}\Pi_{138}N_2O_{11}$	C, H, N				
317	1'h	14	6		Н	NH_4	11	92	145-146		$C_{14}M_{18}N_2O_3$	N				
318	Me	Pr	H	н	ŀI	NH2	1.	24	9 <u>9</u> 96		$C_{3}II_{3}N_{3}O_{4}$	\mathbf{N}^{f}				
319	Me	Ba	H	H	11	<i>i</i> -PrNH	d	85	83-85		$C_{13}H_{27}N_{3}O_{4}$	N	180		278	
320	Мe	86 c- Bu	11	H	11	NH:	.1	58	129 - 131		$C_{10}H_{21}N_{*}O_{*}$	-C, H, N				
321	Me	Pr	н	$\rm NH_4$	Н	NH_{S}	d	કલ	228-2292		$C_2H_{32}N_4O_4S$	N, S'			120	
322	Et	Εt	н	\mathbf{NH}_2	н	\mathbf{NH}_{2}	A	27	5456		$C_{2}H_{2}(N_{3}O_{4}$	N	> 400		195	
323	Me	\mathbf{Pr}	Н	н	11	i - Γ rNH	М	17	96-98		$C_{14}H_{25}N_2O_3$	-C, H, N	280		$<\!280$	
324	Me	Pr	н	<i>i</i> -PrNH	II	i-PrNH	A	30	$191 - 192^{\circ}$		$C_{45}H_{35}CI_2N_2O_3$	CI	550		≥ 620	
325	-Me	1''	FI	Me ₂ C==N	11	Me ₂ C==N	d	50	180~182		$C_{15}H_{23}N_3O_3$	- C. II, N	> 620		420	
326	Me	Pr	Н	l'hCH==N	11	PhCH≔N	d	52	195-196		$C_{22}\Pi_{23}N_4O_3$	N	> 620	>520		
327	Me	Me	Ь		n	CarbamoyI	d	20	lii8~169.5		$C: H_{2}(N_{2}O)$	N				
328	Εt	Et.	Ь		14	CarbamoyI	d	30	154.5 - 156		$\Box_{2}H_{\alpha}N_{2}O_{\lambda}$	N	> 1400			
329	Εı	Εt	Ь		MeO	Мe	h	37	127-134 (0,1)	1.4572	CMHONO	-C, H, N	> 420		460	
330	Me	Pr	H	FI	Н	OH	d	65	100 (b)e		CsH38N2O3	C, H, N				
331	Me	\mathbf{Pr}	$M\alpha$	MeO	Me	MrO	A	81	153159 (1.5)	1.4503	CasHaeNgOr	C. H. N	325		> 420	
332	Εt	Eτ	Me	MeO	Me	Mr	А	30	130-135	1.4537	$\mathrm{C}_{13}\mathrm{H}_{25}\mathrm{N}_{2}\mathrm{O}_{7}$	C, H, N	620	420		
									(0,0 <u>2</u>)					(ip)		
333	Me		ΙI	O_2N	II .	NO:	d	25	116~118		C #H36N3O *	C, H, N	>420	>420	$<\!420$	
334	Εt	15(Et	O_2N	Εt	NO ₁	d	$\mathbf{S}5$	43.5-44.5		$C_{10}H_{20}N_{0}O_{\infty}$	C. H, N	> 620	420		
335	Me	Pr	Н	Н	Н	$PhSO_2$	K	60	124 - 125		Cc;Hu2N2O2S	H, N; C,	82			
336	Мe	17 0	Н	H	H	Sulfamoyl	ĸ	25^{-}	135136		$C_{*}H_{2}sN_{2}O_{2}S$	C, H. N.	s			
337	Me	17r	Η	Carbamoy1	Н	Carbamoyl	d	25	200~201		$C_{11}\Pi_{21}N_{3}O_{2}$	Ν	> 620			
338	Εt	Εt	Н	CarbamoyI	Н	Carbainoyl	d	ы	191-193		$C_{11}H_{22}N_{1}O_{3}$	N		> 9421		
339	Εt	Et ₂ NCH	H	н	Н	Carbamoyl	1	20	148 - 150		C_1 : H_2 (N · O_5)	N	> 620			
- 4												• • • •				

* See footnote b in Table I. * Compound is a 3-hydroxypropyl N-substituted carbamate. * N: raled, 14.72; found, 15.17. * See Experimental Section. * See footnote f, Table III. * N: calcd, 18.01; found, 17.50. * H₂SO₄ sub. * S: calcd, 9.25; found, 8.78. ⁱ HCl salt. * C: calcd, 50.25; found, 50.67. S: calcd, 8.93; found, 8.44. * Prepared from the product of the reaction of 2-methyl-2-propyl-3-hydroxypropyl carbamate and COCl₂, without purification, with 1 equiv of noncosodium sulfamide. * Obtained as a by-product in the preparation of **80** (Table II).

was washed $(10\% \text{ HCl}, \text{H}_2\text{O})$, dried (Na₂SO₄), and distilled. The fraction, bp 95-98° (0.07 mm), weighed 92.4 g (75%). This carbonate was converted to the desired dicarbazate by treating it with 2 equiv of hydrazine hydrate for 16 hr at room temperature. It was isolated as the sulfate by treating the *i*-PrOH solution of the base with a slight excess of H₂SO₄. Crystallization from EtOH-H₂O gave a product, mp 228-229°.

The N-alkylene- and N-alkylearbazates listed in Table VI were prepared from the corresponding carbazates by treatment with the appropriate aldehyde or ketone followed by catalytic reduction. Typical examples of the preparation of these compounds are as follows.

2-Methyl-2-propyl-1,3-propanediol N,N'-bis(isopropylimino)dicarbamate (325) was obtained by treating the corresponding anniho compound with Me₂CO. The two materials were warmed on the steam bath for a short time and then diluted (H₂O). After recrystallization (EtOAc), the product melted at 180-182°.

2-Methyl-2-propyl-1,3-propanediol N,N'-Bis(isopropylamino)dicarbamate (324).—The corresponding innino compound was hydrogenated in EtOH using PtO₂ catalyst at 3 atm of H₂. It was isolated as the HCl salt and recrystallized from dioxane EtOAc (1:2), mp 191-192°.

2-Methyl-2-propyl-1,3-propanediol N,N'-bis(benzylimino)dicarbamate (326) was readily formed when the corresponding diamino compound was treated with benzaldehyde in the presence of a trace of HCl. It crystallized from EtOH, mp 195-196°.

The corresponding monocarbazate 313 was obtained in a similar manner by the reaction of 2-methyl-2-propyl-3-hydroxypropyl carbazate with benzaldehyde, and 314, 315 and 319 by reaction of the monocarbazate with Me₂CO followed by catalytic reduction.

2-Methyl-2-propyl-1,3-propanediol N-Hydroxydicarbamate (330).—The reaction product of molar equivalents of 2-methyl-2propyl-3-hydroxypropyl carbaniate and COCl₂ in THF was isolated in the crude form by removal of the solvent at 40°. Its solution in Et₂O was stirred for 2 hr with excess benzyloxyamine, and the excess anine was removed under reduced pressure. The residual oil was dissolved in EtOH and reduced at 2 atm of H₂ osing 5⁴C Pd-C. The product was isolated as an oil by removal of the EtOH inder reduced pressure and was purified by sublimation at $0.01\ {\rm mnn}.$

2-Methyl-2-(2-hydroxypropyl)-1,3-propanediol Tricarbamate (62).—The synthesis of α -methyl- α -carbethoxy- γ -valerolactone was achieved according to the method of Seidel and Stoll,²⁷ using propylene oxide in place of ethylene oxide. A 75% yield of lactone, bp 55-57° (0.02 mm), was obtained. Anal. (C₃H₁₄O₄) C, H.

The lactone was reduced to 2-methyl-2-(2-hydroxypropyl)-1,3propanediol using LAH. A yield of 37^{+}_{-c} , bp $105-109^{\circ}$ (0.02 mm), was obtained. Anal. ($C_7H_{16}O_3$) C, H.

The tricarbaniate was prepared by treating this Iriol with 3 equiv of NaOCN and dry HCl. Crystallization was effected using EtOAc, mp 72-74°.

Attempted Transesterification Reaction Using an N-Substituted Urethan.--2-Methyl-2-propyl-3-hydroxypropyl carbamate (17.5 g, 0.1 mole) and N-methylurethan (11.3 g, 0.11 mole) were dissolved in excess PhMe. The system was dried by the distillation of a small amount of PhMe, cooled to room temperature, 2 g of aluminum isoproposide was added, and distillation was continued. After heating for 11 hr, only 3.0 ml of EtOH had distilled, which is approximately the volume which can be liberated from the aluminum isopropoxide employed. The reaction mixture was worked up in the usual manner and 6 g of an oily product was obtained. Fractional distillation (0.01--0.02 mm) gave two fractions: (1) bp 38-120°, (2) bp 120-160°. From 1 there was obtained 1.35 g of crystalline 2-methyl-2-propyl-1,3-propanediol, identified by ir and mixture melting point with an anthentic sample of this material. From 2 there was obtained 3 g of 2methyl-2-propyl-1,3-propanediol dicarbamate, also identified by ir and mixture melting point with an authentic sample. Fraction 2 also yielded a small quantity (1 g) of unchanged monocarbamate.

Acknowledgment.—The authors wish to acknowledge the valuable assistance of H. A. Bronner, T. Cebalo, M. Meyer, E. Simon, and F. J. Stiefel for their contributions in the preparation of some of the compounds described in this publication.

(27) O. F. Seidel and M. Stoll, Helv. Chim. Acta, 42, 1830 (1959).