Experimental Section

All analytical samples had proper uv and ir spectra; each moved as a single spot on Brinkman silica gel GF and gave combustion values for C, H, and N or F within 0.4% of theoretical. Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. The physical properties of some compounds are given in Tables II and III.

4-Cyano-3-methylphenol.—A mixture of 35.5 g (0.25 mole) of 4-chloro-3-methylphenol, 31.3 g (0.35 mole) of CuCN,¹⁸ and 100 nil of dry N-methylpyrrolidone was refluxed with stirring for 18 hr. The mixture was concentrated *in vacuo* to near dryness, then stirred with 50 ml of warm 6 N HCl for 30 min. After the addition of a solution of 100 g of FeCl₃·6H₂O in 100 ml of H₂O, the mixture was heated on a steam bath for 1 hr. The cooled

(18) H. J. Barber, J. Chem. Soc., 79 (1943).

mixture was extracted with Et₂O (four 200-ml portions). The combined extracts were washed with H₂O, then evaporated to a residue which was crystallized from 25 ml of CH₂Cl₂. One recrystallization from H₂O and three from C₆H₆ gave 15 g (43^{c}_{c}) of product, mp 134–136° (lit.¹⁹ mp 135-136° from an alternate process). This process has been previously employed for other benzonitriles.²⁹

4-Cyano-2-methoxyphenol was synthesized in 80% yield, mp 87-89°, according to the general method of var Es;²¹ lit.²² mp 89-90° from an alternate method.

(19) R. J. S. Beer, K. Clark, H. G. Khorana, and A. Roberts, *ibid.*, 885 (1949).

(20) H. E. Harris and H. L. Herzog, U. S. Patent 3,259,645 (1966); Chem. Abstr., 65, 13621f (1966).

(21) T. van Es, J. Chem. Soc., 1564 (1965).

(22) H. Rupe, Ber., 30, 2449 (1897).

Irreversible Enzyme Inhibitors. CLVIII.^{1,2} Effect of Bridge Modification on the Selective Irreversible Inhibition of Dihydrofolic Reductase from L1210 Mouse Leukemia and Liver by 2,4-Diamino-5-(3,4-dichlorophenyl)-6-[p-(m-fluorosulfonylbenzamidomethyl)phenoxymethyl]pyrimidine. II

B. R. Baker and Nicolaas M. J. Vermeulen³

Department of Chemistry, University of California, Santa Barbara, California 93106

Received April 1, 1969

The title compound (1) is an active-site-directed irreversible inhibitor of the dihydrofolic reductase from L1210 monse leukemia that also showed specificity by its failure to inactivate this enzyme from three normal monse tissues. However, 1 still had two shortcomings; its $K_1 = 0.06 \,\mu M$ was considered too large to be effective *in vivo* and it showed poor transport through the L1210 cell wall. Thirty variants of the bridge between the pyrimidine and benzenesulfonyl fluoride moieties have now been investigated, such as (1) replacement of the oxymethyl group by thiomethyl, $(CH_2)_2$, or $(CH_2)_4$, (2) substituent effects on the phenoxy group, (3) variation of the CH_2NH molety by NH and $(CH_2)_2NH$, and (4) variation of the amide linkage by CONH, NHCONH, and SO₂NH in the three previous classes. Sixteen of the compounds showed a predictable decrease in $I_{50} = 6K_i \leq 0.1 \,\mu M$, but specificity was decreased or lost. The best five compounds showed inhibition of L1210 cell culture in the 0.5-1 μM range; this range is several magnitudes higher than that shown by the standard compound, 2,4-diamino-5-(3,4-dichlorophenyl)-6-methylpyrimidine (**35**).

One of the types of active-site-directed irreversible inhibitors⁴ that can inactivate dihydrofolic reductase from L1210 mouse leukemia with no inactivation of the enzyme from normal mouse liver, spleen, or intestine⁵ is 1.6 The latter with its $I_{50} = 6K_i = 0.4 \ \mu M$ was not considered a sufficiently good reversible inhibitor for in vivo activity⁵ since too high an intracellular concentration of 1 would be required to form 50% reversible enzyme complex, the rate-determining species for active-site-directed irreversible inhibition.⁷ Furthermore, 1 required the relatively high concentration of 4 μM for 50% inhibition (ED₅₀) of L1210 cell culture,² showing insufficient cell wall penetration. Several types of studies, such as 2-4, have been performed to try to increase the effectiveness of reversible inhibition without loss of irreversible specificity; compounds with $I_{50} = 6K_i$ as good as 0.03 μM were obtained, but either

(7) See ref 4, pp 122-129, for the kinetics of irreversible inhibition.

irreversible inhibition or selectivity was decreased.^{2.8-10}

Since specificity is most apt to be obtained by bridge modification,^{9,11} the following types of compounds have now been made: (1) the R_2 group of 1 and 2 was moved to the *meta* position, (2) analogs of 3 were made with substituents on the phenyl bearing R_2 , (3) the oxygen bridge was replaced by sulfur or $-(CH_2)_3$ -, and (4) the R_2 bridge of 1 was extended to $-(CH_2)_2$ -. The results are the subject of this paper.

Assay Results.--Of the compounds of type 1 in Table

⁽¹⁾ This work was generously supported by Grant CA-08695 from the National Cancer Institute, U. S. Public Health Service.

⁽²⁾ For the previous paper in this series, see B. R. Baker and N. M. J. Vermeulen, J. Med. Chem., 12, 680 (1969).

⁽³⁾ N. M. J. V. wishes to thank the Council of Scientific and Industrial Research, Republic of South Africa, for a tuition fellowship.

⁽⁴⁾ B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors," John Wiley and Sons, Inc., New York, N. Y., 1967.

⁽⁵⁾ B. R. Baker, G. J. Lourens, R. B. Meyer, Jr., and N. M. J. Vermeulen, J. Med. Chem., 12, 67 (1969), paper CXXXIII of this series.

⁽⁶⁾ B. R. Baker and P. C. Huang, *ibid.*, **11**, 495 (1968), paper CXX of this series.

⁽⁸⁾ B. R. Baker and N. M. J. Vermeulen, J. Med. Chem., 12, 86 (1969), paper CXXXVII of this series.

⁽⁹⁾ B. R. Baker and N. M. J. Vermeulen, *ibid.*, **12**, 89 (1969), paper CXXXVIII of this series.

⁽¹⁰⁾ B. R. Baker and N. M. J. Vermeulen, *ibid.*, **12**, 82 (1969), paper CXXXVI of this series.

⁽¹¹⁾ See ref 4, pp 172-184, for discussion of the bridge principle of specificity.

TABLE I

INHIBITION^a OF DIHYDROFOLIC REDUCTASE BY

No.	\mathbf{R}_1	\mathbf{R}_2	Enzyme source	$\mathbf{I}_{\mathfrak{6}0}.^{b}$ μM	$\substack{ \text{Inhib}, \\ \mu M }$	Time. min	% inactvn ^c	$\mathrm{ED}_{50,}{}^{d}$ μM	ED50/ I50
5	0	$COC_6H_4SO_2F-m$	L1210/DF8		0.11	60	88	6	100
			Liver	0.057	0.11	60	46		
6	0	$COC_6H_4SO_2F_p$	L1210/DF8	0.066	0.13	60	85	0.5	8
			Liver		0.13	60	72		
7	0	CONHC6H4SO2F-m	L1210/DF8	0.068	0.068	60	93	0.6	9
			Liver		0.34	60	88		
					0.14	60	34		
8	0	$\mathrm{CONHC_6H_4SO_2F}$ -p	L1210/DF8	0.085	0.17	60	95	3	4 0
			Liver		0.17	60	68		
9	0	$CONHC_6H_3$ -4-Me-3- SO_2F	L1210/DF8	0.054	0.11	60	93	1	20
			Liver		0.16	60	7		
					0.75	60	74		
10	0	CONHC ₆ H ₃ -2-Cl-5-SO ₂ F	L1210/DF8		0.66	60	97	6	20
			Liver	0.33	1.2	60	93		
11	0	$SO_2C_6H_4SO_2F$ -m	L1210/DF8		0.22	60	22	2	20
			Liver	0.11	0.22	60	25		
12	0	$SO_2C_6H_4SO_2F$ -p	L1210/DF8		0.12	60	54	6	100
			Liver	0.056	0.12	60	17-41 ^e		
13	CH_2	$COC_6H_4SO_2F-p$	L1210/DF8		0.084	60	98	4	100
		-	Liver	0.042	0.13	60	82		
14	CH_2	$\mathrm{CONHC_6H_4SO_2F}$ -p	L1210/DF8		0.084	60	98	0.6	7
			Liver	0.084	0.25	60	93		
15	CH_2	$\text{CONHC}_{6}\text{H}_{4}\text{SO}_{2}\text{F}$ -m	L1210/DF8		0.16	60	100	2	30
			Liver	0.080	0.24	60	92		
16	CH_2	$SO_2C_6H_4SO_2F$ -p	L1210/DF8		0.11	60	83	5	90
			Liver	0.060	0.18	60	69		
17	CH_2	$SO_2C_6H_4SO_2F$ -m	L1210/DF8		0.11	60	84	3	60
			Liver	0.056	0.17	60	73		

^a The technical assistance of Diane Shea and Sharon Lafler with these assays is acknowledged. ^b $I_{50} = \text{concentration for } 50\%$ inhibition when measured with 6 μM dihydrofolate and 0.15 M KCl at pH 7.4 as previously described.⁵ ^c Enzyme was inclubated with inhibitor at 37° in pH 7.4 Tris buffer containing 60 μM TPNH, then the remaining enzyme was assayed as previously described.⁵ ^d Concentration for 50% inhibition of L1210 cell culture. ^e Difficulty was encountered in determining the zero-time point.⁵

I, ten (5, 6-9, 13-17) showed the desired $I_{50} = 6K_i \leq 0.1 \ \mu M$ and gave good irreversible inhibition of the dihydrofolic reductase from L1210. Unfortunately, none showed complete specificity by failure to inactivate the mouse liver enzyme; the greatest selectivity was shown by 9. When measured for their ability to inhibit L1210 cells in culture,¹² the best ED₅₀'s (0.5-1 μM) were shown by 6, 7, and 9, although the range in the whole table was only about tenfold.

Of the compounds of types 2-4 in Table II, six (22, 25-29) showed the desired $I_{50} = 6K_i \leq 0.1 \ \mu M$ as expected and gave good irreversible inhibition of the L1210 enzyme; however, all six also showed extensive inactivation of the mouse liver enzyme. The best compounds for inhibition of L1210 cell culture were 25, 27, and 29, which showed ED₅₀'s in the range of 0.5-0.7 μM . Since this range is several magnitudes less effective than 35 with ED₅₀ = 2 × 10⁻⁵ μM ,¹³ the compounds in Tables I and II are transported too inefficiently through the L1210 cell wall to be effective. No

generalizations on the best structures for transport were apparent from the data in Tables I and II.

Studies of other bridge modifications on the 6 position of the pyrimidine ring are continuing to see if irreversible inhibitors with good specificity and good L1210 cell wall transport can be obtained.

Chemistry.—Alkylation of 36^{14} with *m*-cyanophenol in DMF in the presence of K₂CO₃¹⁵ afforded **37** (Scheme I). Hydrogenation of **37** in acid solution with Adams catalyst gave **39**.⁹ Reaction of **39** with the appropriate acid chloride⁹ or O-(*p*-nitrophenyl)-N-phenylurethan^{15,16} gave irreversible inhibitors of type **42** (5–12 in

⁽¹²⁾ We wish to thank Dr. Florence White of the CCNSC for these data obtained by Dr. Philip Himmelfarb of Arthur D. Little, Inc.

⁽¹³⁾ B. R. Baker and R. B. Meyer, Jr., J. Med. Chem., 12, 668 (1969), paper CLIV of this series.

 $^{(14)\,}$ B. R. Baker, P. C. Huang, and R. B. Meyer, Jr., ibid., 11, 475 (1968), paper CXVI of this series.

⁽¹⁵⁾ B. R. Baker and N. M. J. Vermeulen, *ibid.*, **12**, 74 (1969), paper CXXXIV of this series.

⁽¹⁶⁾ B. R. Baker and N. M. J. Vermeulen, ibid., ${\bf 12},$ 79 (1969), paper CXXXV of this series.

TABLE II: INHIBITION^a OF DIHYDROFOLIC REDUCTASE BY

No.	к.	\mathbf{R}_2	Rs	Enzyme source	$rac{1_{50},^h}{\mu M}$	$10bib, \ \mu M$	Time. min		$\operatorname{ED}_{\mathfrak{so}, \mathcal{T}}^{d}$ μM	ED;#// 1 50
18^{e}	()	NHCONHC ₆ H ₄ SO ₂ F-m	Н	L1210/DF8	1.6	0.5	60	90	80	50
				Liver		1.0	60	43		
19	S	NHCONHC ₆ H ₄ SO ₂ F-m	H	L1210/DF8		0.14	60	72	6	40
				Liver	0.14	0.42	60	58		
20	$(CH_2)_a$	$\rm NHCOC_6H_4SO_2F$ -m	11	L1210/DF8		0.30	60	98	10	80
				Liver	0.15	0.30	60	61		
21	$(CH_2)_{3}$	$\rm NHCOC_6H_4SO_2F$ - p	11	L1210/DF8		0.11	60	66		
				Liver	0.11	0.22	60	77		
22ℓ	CH_2	$\mathrm{NHCOC_6H_4SO_2F}$ -m	11	L1210/DF8		0.19	60	7.5	3	90
				Liver	0.034	0.19	60	31		
23^{j}	0	$\rm NHSO_2C_6H_4SO_2F$ -m	Н	L1210/DF8	0.018	0.036	60	42	1	60
				Liver		0.090	60	58		
24	0	NHSO ₂ C ₆ H ₄ SO ₂ F-m	2-Cl	L1210/DF8		0.058	60	23	6	200
				Liver	0.029	0.087	60	23		
25	0	$\rm NHSO_2C_6H_4SO_2F$ -m	3-Me	L1210/DF8		0.06	60	96	0.5	20
				Liver	0.020	0.10	60	97		
26^{f}	0	$\rm NHSO_2C_6H_4SO_2F$ - p	Н	L1210/DF8	0.049	0.098	60	93	.5	100
		-		Liver		0.098	60	73		
27	0	$\rm NHSO_2C_6H_4SO_2F$ - p	2-Cl	L1210/DF8		0.094	60	72	0.7	10
				Liver	0.047	0.14	60	57		
28	0	$\rm NHSO_2C_6H_4SO_2F$ -p	3 - Me	L1210/DF8		0.11	60	97	ā	100
		•		Liver	0.053	0.11	60	46		
29	0	(CH ₂) ₂ NHCOC ₆ H ₄ SO ₂ F-m	П	L1210/DF8		0.11	60	91	0.6	10
				Liver	0.056	0.11	60	.). <u>)</u>		
30	()	$(CH_2)_2 NHCOC_6H_4SO_2F-p$	Η	L1210/DF8		0.32	60	87	1	G
				Liver	0.16	0.48	60	76		
31	()	$(CH_2)_2 NHCONHC_6H_4SO_2F-m$	Н	L1210/DF8		0.22	60	98	-4	-40
				Liver	0.11	0.33	60	48		
32	0	$(CH_2)_2 N HCON HC_6 H_4 SO_2 F - p$	Н	L1210/DF8		0.30	60	84	6	-40
		· · · ·		Liver	0.15	0.45	60	73		
33	0	$(CH_2)_2NHSO_2C_6H_4SO_2F-m$	Н	L1210/DF8		0.098	60	60	6	100
				Liver	0.049	0.098	60	23		
34	Ō	$(CH_2)_2 NHSO_2 C_6 H_4 SO_2 F - p$	H	L1210/DF8		0.22	60	82	5	50
				Liver	0.11	0.22	60	60		
10	0	$CH_2NHCOC_6H_4SO_2F-m$	Н	L1210/DF8	0.37	0.70	60	88	4	10
						0.12	60	75		
				Liver	0.29	3.5	60	12		
						0.7	60	0		

🧯 and See corresponding footnotes in Table I. 🕐 Enzyme data from ref 15. 🖉 Enzyme data from ref 10. 🖤 Enzyme data from ref 5.

Table I). By a similar route employing *p*-hydroxyphenylacetonitrile and **36** via **46** and **47**, inhibitors of type **48** (**29–34** in Table II) were prepared.

When 36 was alkylated with a 4-nitrophenol bearing either a 2-Cl or 3-Me group, 38 was obtained;^{6,15} reduction of 38 to 40 was followed by conversion to inhibitors of type 41 (24–28 in Table II). Similarly, alkylation of 36 with *p*-acetamidothiophenol afforded 43 which was hydrolyzed to 44 with base, then converted to 45 = 19 with *m*-fluorosulfonylphenyl isocyanate.

Wittig condensation of 49^{10} with *p*-nitrocinnamaldehyde¹⁷ in DMF in the presence of DBN (1,5-diazabicyclo[4.3.0]nonene)¹⁸ afforded 50^9 (Scheme II). Hydrogenation⁹ to 52 was followed by conversion to inhibitors of type 53 (20, 21 in Table II). Similarly, Wittig condensation of 49 with *m*-cyanobenzaldehyde afforded 51 which was reduced to 54 and converted to inhibitors of type 55 (13-17 in Table I).

Experimental Section

All analytical samples had proper nv and ir spectra; each moved as a single spot on the with Brinkmann silica gel GF and gave combination values for C, H, and N or F within $0.4\frac{c}{c}$ of theoretical. Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. The physical properties of some compounds are listed in Tables III-V.

6-(p-Acetamidophenylthiomethyl)-2,4-diamino-5-(3,4-dichlorophenyl)pyrimidine (43) Hydrochloride.—A mixture of 1.74 g (5 mmoles) of 36,¹⁴ 0.90 g (5.4 mmoles) of *p*-acetamidothiophenol, 0.69 g (5 mmoles) of K₂CO₃, and 20 ml of DMF was stirred at ambient temperature for 14 hr. The mixture was diluted with several volumes of H₂O; the solid was collected on a filter, washed (H₂O), dried, and dissolved in THF. The solution was treated with HCl gas, then the product was collected by filtration. Two recrystallizations from EtOH gave 1.2 g (50%) of white crystal which gradually decomposed over 192°. *Anal.* (C₁₉H₃₇Cl₂N₅OS·HCl·0.5H₂O) C, H, N.

6-(p-Aminophenylthiomethyl)-2,4-diamino-5-(3,4-dichlorophenyl)pyrimidine (44) Dihydrochloride.—A mixture of 0.53 g

⁽¹⁷⁾ B. R. Baker and J. H. Jordaan, J. Med. Chem., 8, 35 (1965).

⁽¹⁸⁾ H. Oediger, H. Kabbe, F. Möller, and K. Eiter, Chem. Ber., 99, 2012 (1966).

TABLE III: PHYSICAL PROPERTIES OF

					/		
No.	\mathbf{R}_1	R_2	$Method^a$	% yield	Mp °C	Formula	Analyses
37	CH_2O	m-CN	Α	62^{b}	191 - 193	$C_{18}H_{13}Cl_2N_5O$	С, Н, N
39	CH_2O	m-CH ₂ NH ₂ ·2HCl	С	57	Indef ^c	$C_{18}H_{17}Cl_2N_5O\cdot 2HCl$	
46	CH_2O	p-CH ₂ CN	Α	55	176 - 178	$C_{19}H_{15}Cl_2N_5O$	С, Н, N
47	CH_2O	p-(CH ₂) ₂ NH ₂ ·2EtS	O₃H C	95	\mathbf{Indef}^{c}	$\mathrm{C_{19}H_{19}Cl_2N_5O} \cdot 2\mathrm{C_2H_5SO_3H}$	
$\overline{50}$	$(CH = CH)_2$	p-NO ₂	в	710	>172d	$\mathrm{C}_{20}\mathrm{H}_{15}\mathrm{Cl}_2\mathrm{N}_5\mathrm{O}_2$	С, Н, N
51	CH==CH	m-CN	В	52°	279 - 284	$C_{19}H_{13}Cl_2N_5$	С, Н, N
52	$(CH_2)_4$	p-NH ₂ ·2EtSO ₃ H	С	93	Indef ^c	$\mathrm{C_{20}H_{21}Cl_2N_5\cdot 2C_2H_5SO_3H}$	
54	$(CH_2)_2$	m-CH ₂ NH ₂ ·2HCl	С	65	Indef ^c	$C_{19}H_{17}Cl_2N_5\cdot 2HCl$	

^a Method A: see method A in ref 15; B: for Wittig conditions see ref 9; C: for hydrogenation conditions see ref 9 and 2. ^b Recrystallized from EtOH-THF. ^c One spot on the in EtOH, but solvation varied. ^d Gradually decomposes starting at this temperature. ^e Recrystallized from MeOEtOH.

TABLE IV: PHYSICAL PROPERTIES OF

		$ m CH_2 NHR_2$							
No.	\mathbf{R}_1	R2	$Method^a$	% yield	Mp, °C, dec^b	$\mathbf{Formula}^{c}$			
õ	0	$COC_6H_4SO_2F-m$	D	28ª	127	$C_{25}H_{20}Cl_2FN_5O_4S\cdot 0.5H_2SO_4$			
6	0	$COC_6H_4SO_2F-p$	D	27ª	150	$C_{25}H_{20}Cl_2FN_5O_4S\cdot 0.5H_2SO_4$			
7	0	$\text{CONHC}_6\text{H}_4\text{SO}_2\text{F}-m$	\mathbf{E}	36ª	210	$C_{25}H_{21}Cl_2FN_6O_4S\cdot 0.5H_2SO_4$			
8	0	$\text{CONHC}_6\text{H}_4\text{SO}_2\text{F}$ -p	\mathbf{E}	17ª	213	$C_{25}H_{21}Cl_2FN_6O_4S\cdot 0.5H_2SO_4$			
9	0	$\mathrm{CONHC_6H_3-4-Me-3-SO_2F}$	\mathbf{E}	51ª	236	$\mathrm{C_{26}H_{23}Cl_2FN_6O_4} \cdot 0.5\mathrm{H_2SO_4}$			
10	0	CONHC ₆ H ₃ -2-Cl-5-SO ₂ F	\mathbf{E}	26	156	$C_{25}H_{20}Cl_3FN_6O_4\cdot 0.5H_2SO_4$			
11	0	$SO_2C_6H_4SO_2F$ -m	\mathbf{F}	39ª	125	$\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{Cl}_{2}\mathrm{FN}_{5}\mathrm{O}_{5}\mathrm{S}_{2}\cdot0$. $5\mathrm{H}_{2}\mathrm{SO}_{4}$			
12	0	$SO_2C_6H_4SO_2F-p$	\mathbf{F}	45^d	127	$C_{24}H_{20}Cl_2FN_5O_5S_2\cdot 0.5H_2SO_4$			
13	CH_2	$COC_6H_4SO_2F-p$	D	36ª	130	$C_{26}H_{22}Cl_2FN_5O_3S\cdot 0.5H_2SO_4\cdot MeOEtOH$			
14	CH_2	$\text{CONHC}_6\text{H}_4\text{SO}_2\text{F}$ -p	\mathbf{E}	42 ^d	170	$\mathrm{C_{26}H_{23}Cl_2FN_6O_3S\cdot0}$, $5\mathrm{H_2SO_4}$			
15	CH_2	$\text{CONHC}_6\text{H}_4\text{SO}_2\text{F-}m$	\mathbf{E}	25*	182	$C_{26}H_{23}Cl_2FN_6O_3S\cdot 0.5H_2SO_4$			
16	CH_2	$SO_2C_6H_4SO_2F$ -p	\mathbf{F}	32*	165	$C_{25}H_{22}Cl_2FN_5O_4S_2 \cdot 0.5H_2SO_4$			
17	CH_2	$SO_2C_6H_4SO_2F-m$	\mathbf{F}	20°	163	$C_{25}H_{22}Cl_2FN_5O_4S_2 \cdot 0.5H_2SO_4$			

^a Method D: the same as method C in ref 6; E: the same as method E in ref 15; F: the same as method C in ref 15. ^b Decomposition gradually occurred over a wide range starting at the temperature indicated. ^c Anal. C, H, F. ^d Recrystallized from MeO-EtOH-H₂O. ^e Recrystallized from EtOH.

TABLE V: PHYSICAL PROPERTIES OF

						Mp, °C	
No.	\mathbf{R}_{1}	\mathbf{R}_2	R₃	Method^a	% yield	dec^b	Formula ^c
19	\mathbf{s}	$\mathbf{NHCONHC_6H_4SO_2F}$ -m	\mathbf{H}	\mathbf{E}	36ª	198	$C_{24}H_{19}Cl_2FN_6O_3S_2\cdot 0.5H_2SO_4$
20	$(CH_2)_3$	$\mathbf{NHCOC_6H_4SO_2F}$ -m	\mathbf{H}	D	58°	140	$C_{27}H_{24}Cl_2FN_5O_3S \cdot 0.5H_2SO_4$
21	$(CH_2)_3$	$\mathrm{NHCOC_6H_4SO_2F}$ -p	н	D	4 9°	181	$\mathrm{C_{27}H_{24}Cl_2FN_5O_3S\cdot0.5H_2SO_4\cdot0.5H_2O}$
24	0	$\rm NHSO_2C_6H_4SO_2F$ -m	2-Cl	\mathbf{F}	33*	159	$C_{23}H_{17}Cl_3FN_5O_5S_2 \cdot 0.5H_2SO_4$
25	0	$\rm NHSO_2C_6H_4SO_2F$ -m	3-Me	\mathbf{F}	30°	153	$C_{24}H_{20}Cl_{2}FN_{5}O_{5}S_{2}\cdot 0.5H_{2}SO_{4}$
27	0	$\rm NHSO_2C_6H_4SO_2F$ -p	2-Cl	\mathbf{F}	16°	186	$C_{23}H_{17}Cl_{3}FN_{5}O_{5}S_{2}\cdot0.5H_{2}SO_{4}$
28	0	$\rm NHSO_2C_6H_4SO_2F$ -p	3-Me	\mathbf{F}	22°	171	$C_{24}H_{20}Cl_2FN_5O_5S_2\cdot 0.5H_2SO_4$
29	0	$(CH_2)_2NHCOC_6H_4SO_2F-m$	\mathbf{H}	D	25°	150	$C_{26}H_{22}Cl_2FN_5O_4S\cdot 0.5H_2SO_4$
30	0	$(CH_2)_2NHCOC_6H_4SO_2F-p$	\mathbf{H}	D	27°	167	$C_{26}H_{22}Cl_2FN_5O_4S\cdot 0.5H_2SO_4$
31	0	$(CH_2)_2NHCONHC_6H_4SO_2F-m$	\mathbf{H}	\mathbf{E}	61°	165	$C_{26}H_{23}Cl_2FN_6O_4S\cdot 0.5H_2SO_4\cdot H_2O$
32	0	$(CH_2)_2 NHCONHC_6H_4SO_2F-p$	\mathbf{H}	\mathbf{E}	52e	174	$C_{26}H_{23}Cl_2FN_6O_4S \cdot 0.5H_2SO_4 \cdot H_2O$
33	0	$(CH_2)_2NHSO_2C_6H_4SO_2F-m$	\mathbf{H}	\mathbf{F}	33*	115	$C_{25}H_{22}Cl_2FN_5O_5S_2 \cdot 0.5H_2SO_4 \cdot 0.5MeOEtOH$
34	0	$(CH_2)_2NHSO_2C_6H_4SO_2F-p$	\mathbf{H}	\mathbf{F}	31.	130	$C_{25}H_{22}Cl_2FN_5O_5S_2\cdot0.5H_2SO_4\cdot0.5MeOEtOH$

 a^{-c} See corresponding footnotes in Table IV. d Recrystallized once from EtOH-THF and once from MeOEtOH-H₂O. e Recrystallized from MeOEtOH-H₂O.

44, R = H45, $R = R'SO_2F$

(1.1 numbes) of **43**, 10 ml of EtOH, 2 ml of H₂O, and 2.5 ml of 50% aqueons NaOH was refluxed with stirring for 4 hr. Most of the solvent was removed *in vacuo* and the residue was stirred with 15 ml of H₂O. The solid was collected on a filter, dissolved in THF, and treated with HCl gas. The product was collected on a filter and washed with THF, yielding 0.48 g (95%) which showed one spot on the in 1:9 EtOH-CHCl₃ and gave a positive Bratton-Marshall test for aromatic amine;¹⁹ satisfactory analytical results were not obtained due to variable solvation.

(19) B. R. Baker, D. V. Santi, J. K. Coward, H. S. Shapiro, and J. H.

Jordaan, J. Heterocycl. Chem., 3, 425 (1966).