The compounds tested in these trials were incorporated into a standard ration and fed to the birds for 2 days prior to infection and continued for the duration of the test.

The anticoccidial efficacy in these experiments was based on three factors: (1) mortality, (2) weight gain or loss, and (3) droppings scores. The primary criterion of efficacy was the mortality produced in the medicated-infected chicks as compared to the nonmedicated-infected chicks. Droppings scores and ratios of mean weight gains, medicated-infected vs. nonmedicated-noninfected, were used as indicators of morbidity.⁶

Acknowledgment.—The authors wish to acknowledge Mrs. Carol Barker and Mr. Marvin Carr for obtaining the analytical data and assisting with the experiments.

(6) R. R. Baron, M. W. Moeller, and N. F. Morehouse, *Poultry Sci.*, **45**, 411 (1966).

New Compounds

Synthesis of 3,5-Di-

hydroxy-4-methoxy-α-methylphenethanolamine and Analogs

Fred G. H. Lee, DONALD E. DICKSON, JOSEPH D. BENIGNI, R. L. MINNIS, WALTER F. GANNON

Regis Chemical Company, Chicago, Illinois 60610

AND ALBERT A. MANIAN

Psychopharmacology Research Branch, National Institute of Mental Health, Chevy Chase, Maryland 20203

Received August 10, 1968 Revised Manuscript Received February 24, 1969

Numerous endogenous amines were synthesized by this laboratory during the past several years.¹ 3,5-Dihydroxy-4-methoxy- α -methylphenethylamine and its phenethanolamine analog were found recently to be among the most active releasing agents for cardiac norepinephine-3H.² Such results have prompted us to report our syntheses. was heated to 60° for 15 min. To the mixture was added 1.40 g (4.0 mmoles) of 3,5-dibenzyloxy-4-methoxybenzaldehyde, 15 ml of AcOH, and 40 ml of EtNO₂. The mixture was stirred and heated to reflux, using a Dean-Stark water separator. After the addition of 1.75 g of NaOAc and 6 ml of AcOH, the distilled EtNO₂ was replaced three times in the 2-hr reflux period. The separator was removed and excess EtNO₂ was removed under vacuum. The mixture was cooled and washed with H₂O. A semisolid resulted which was crystallized from MeOH to give 4.30 g (45.8%), mp 97-99°. Anal. (C₂₄H₂₃NO₅) C, H, N.

Similarly, other substituted β -nitrostyrenes have been prepared and the results are summarized in Table I.

1-(3,5-Dibenzyloxy-4-methoxyphenyl)-2-methyl-2-nitroethanol.—To a solution of 10.5 g (30 mmoles) of 3,5-dibenzyloxy-4-methoxybenzaldehyde in 354 ml of EtOH at 5° was added 6.7 g (89 mmoles) of EtNO₂. The temperature was maintained at 5° and with stirring a solution of 1.75 g (31 mmoles) of NaOH in 6.5 ml of H₂O was added dropwise over 10 min. The mixture was stirred at 5° for 1 hr and then poured into 820 ml of 2% AcOH at 0° very slowly. The product was extracted [(ClCH₂)₂], dried (Na₂SO₄), concentrated to dryness, and crystallized from C₆H₆-C₆H₁₄ to yield in two crops 3.25 g (25.7%) of product, mp 110–113°. Anal. (C₂₄H₂₅NO₆) C, H, N.

Other β -nitrophenethanols are listed in Table II.

3,5-Dihydroxy-4-methoxy- α -methylphenethanolamine Hydrochloride.—To a Parr shaker were charged 3.25 g (7.7 mmoles) of 1-(3,5-dibenzyloxy-4-methoxyphenyl)-2-methyl-2-nitroethanol dissolved in 140 ml of EtOH, 0.75 g of PtO₂, and 2.1 kg/cm² of H₂

			β-Nitrostyrene						
		SUBSTITUTED	p-INTROSTINENE	a.					
$\begin{array}{c} CH = C \\ R_{3}O \\ OR_{2} \\ OR_{2} \end{array} $									
R ₁ R ₂	\mathbf{R}_3	\mathbf{R}_4	Mp, C°	Yield, %	Formula	Analyses			
CH ₃ C ₆ H ₅ CH	$_2$ CH ₃	Н	133	79	$C_{17}H_{17}NO_5$	C, H, N ^a			
CH ₃ CH ₃	$C_6H_5CH_2$	Η	103 - 105	49.4	$C_{17}H_{17}NO_5$	C, H, N^b			
CH ₃ CH ₃	CH_3	Η	115 - 119	67	$C_{11}H_{13}NO_5$	C, H, N^c			
$C_6H_3CH_2$ CH_3	$C_6H_5CH_2$	CH_3	97-99	45.8	$\mathrm{C}_{24}\mathrm{H}_{23}\mathrm{NO}_5$	C, H, N			

TARLY I

^a K. Ratzl, T. Horejachi, and G. Gillek, Monatsh., 85, 1154 (1954). ^b E. Späth and H. Röder, *ibid.*, 43, 93 (1922). ^c E. Späth, *ibid.*, 40, 129 (1919).

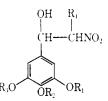
Experimental Section³

3,5-Dibenzyloxy-4-methoxy-β-methyl-β-nitrostyrene.—A mixture of 2.40 g of NH₄OAc, 0.73 mI of Ac₂O, and 2.40 ml of AcOH

(1) This investigation was supported by the Psychopharmacology Research Branch, National Institute of Mental Health, Contract SA-43-ph-3021.

(2) C. R. Creveling, J. W. Daly, and B. Witkop, J. Med. Chem., 11, 595 (1968).

(3) Melting points are corrected. Where analyses are indicated by symbols of the elements, analytical results obtained were within $\pm 0.4\%$ of the theoretical values. Spectral data were in agreement with assigned structures.

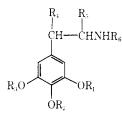

The mixture was shaken for 25 min, the catalyst was filtered and replaced with 1.10 g of 10% Pd-C, and the mixture again was shaken under 2.1 kg/cm² for 27 min. The catalyst was filtered and washed with EtOH and the combined filtrates were made acidic with alcoholic HCI and taken to dryness. The residue was crystallized from EtOH-Et₂O to yield in three crops 0.160 g (8.34%) of product, mp 252-254° dec. Anal. (C₁₀H₁₅NO₄·HCl) C, H, N.

Similarly, other substituted phenethanolamines have been prepared and the results are summarized in Table III.

3,5-Dihydroxy-4-methoxy- β -methylphenethylanine Hydrochloride.—To a solution of 4.0 g (100 mmoles) of LAII dissolved

TABLE II

SUBSTITUTED β-NITROPHENETHANOLS



R.	R :	$\mathbf{R}_{\mathbf{P}}$	\mathbf{R}_4	Mp. °C	Yield, 😪	Formula	Analyses
$egin{array}{c} { m C}_6 { m H}_3 { m CH}_2 \\ { m CH}_3 \\ { m CH}_3 \\ { m C}_6 { m H}_4 { m CH}_2 \end{array}$	${f CH_3}\ {f CH_3}\ {f CH_5CH_2}\ {f CH_3}$	$egin{array}{c} C_6H_3CH_2\\ C_6H_3CH_2\\ CH_3\\ C_6H_4CH_2 \end{array}$	II II H CH _a	131-133 119-121 112-114 111-113	$ \begin{array}{c} 66.0 \\ 94.4 \\ 40.0 \\ 25.7 \\ \end{array} $	C ₂₃ H ₂₃ NO ₆ C ₁₇ H ₁₂ NO ₅ C ₁₇ H ₁₂ NO ₆ C ₂₄ H ₂₅ NO ₅	C, H, N C, H, N C, H, N″ C, H, N″

* R. A. Heacock, O. Hutzinger, and C. Nerenberg, Can. J. Chem., 39, 1143 (1961).

TABLE III

SUBSTITUTED PHENETHYLAMINES AND PHENETHANOLAMINES

\mathbf{R}_{1}	R.	Ra	R4	Rō	\mathbf{R}_{*}	$M_{\mathbf{p}_*} \circ C$	Yiehl, 🖄	Formula"
CH_{3}	Н	CH_{3}	11	14	Н	256 - 258	87	C ₁₀ H ₁₅ NO ₃ · HCl
CH_{0}	CH_3	Н	Н	Н	CH_3	159 - 161	35.6	CuH ₁ :NO _a ·HCl
CIL	11	CH_{4}	H	H	CH_3	173 - 174	45.4	$C_{11}H_{17}NO_3 \cdot HCl$
CH_a	CH_{0}	CH_{3}	I-1	Н	CH_a	190-192	31.0	C ₁₂ H ₁₃ NO ₃ · HCl
CH_3	CH_{3}	CH_{1}	11	Н	COOEt	66 - 68	71.2	$C_{14}H_{21}NO_5$
H	CH_3	Н	Н	CH_{1}	Н	228-230	77	$C_{12}H_{15}NO_3 \cdot HCl$
11	CH_3	F1	OH	Н	Η	202 - 203	56	$C_9H_{13}NO_4$
$C\Pi_{3}$	CH_{a}	П	OH	Н	I-I	154 - 156	43	$C_{10}H_{15}NO_4$
CH_1	11	CH_{0}	ОH	Fl	I-I	191–193 dec	98.1	$C_{14}H_{15}NO_4$
П	CH_{a}	11	ОH	CH_3	11	254–255 dec	8.72	$\mathrm{C}_{\mathrm{b}i}\mathrm{H}_{\mathrm{15}}\mathbf{N}\mathrm{O}_4\cdot\mathrm{H}\mathrm{CI}$

All compounds were analyzed for C, 1I, N.

iu 150 ml of dry THF was added dropwise over 30 min a solution of 4.2 g (18.4 mmoles) of 3,5-dibenzyloxy-4-methoxy- β -methyl- β nitrostyrene in 40 ml of THF. The suspension was heated to reflux and stirred for 6 hr, then decomposed with 30 ml of H₂O in 120 ml of THF. After heating to reflux for 0.5 hr the salts were filtered and washed several times with hot THF and the combined filtrates were taken to dryness. The residue was dissolved in a little EtOH and made acidic with alcoholic HCl, and the resulting product was crystallized from EtOH-Et₂O to yield 2.35 g (54.5%) of product, mp 129-131° dec. The compound was not further characterized and was used directly in the next step.

To a Parr shaker were charged 2.10 g (5 mmoles) of 3,5-dibenzyloxy-4-methoxy- β -methylphenethylamine hydrochloride in 150 ml of EtOH, 0.30 g of 10% Pd-C, and 2.1 kg/cm² of H₂. The contents were shaken for 48 min, during which time the theoretical amount of H₂ was taken up. The catalyst was filtered, and the filtrate was taken to dryness and crystallized from EtOH-Et₂O to yield 0.90 g (77.0%) of product, mp 228-230° dec. Anal. (C₁₀H₁₅-NO₂·HCl) C, H, N.

Similarly, other substituted phenethylamines have been prepared and the results are summarized in Table III.

N-Methylation of Phenethylamines. A. Formylation Method.—To 14 ml of formic–acetic anhydride, cooled in an ice bath, was added slowly 0.04 mole of the phenethylamine. The resulting solution was allowed to stand at room temperature for 5 hr. Ether (110 ml) was added and the solution was allowed to stand for 16 hr. The Et₂O solution was washed successively with H_2O , dilnte NH₄OH, brine, and H₂O. The dried Et₂O solution was taken to dryness, and the residue was reduced with diborane⁴ to yield the corresponding N-methylphenethylamines.

B. Carbamate Method.—To an ice-cold solution of 2.10 g (0.01 mole) of mescaline⁵ in 50 ml of H₂O, 0.60 g (0.006 mole) of ethyl chloroformate was added dropwise with vigorous stirring and external cooling to maintain the temperature at 5–10°. A solution of 0.50 g (0.012 mole) of NaOH in 5 ml of H₂O then was added dropwise simultaneously with a second 0.60-g (0.012 mole) portion of ethyl chloroformate, and the mixture was stirred for an additional 1 hr at 5–10°. The solid was filtered, washed well with H₂O, and dried to yield 2.0 g (71.2%) of ethyl N-[β -(3,4,5-(rimethoxyphenyl)]ethylcarbamate, mp 37–40°. After two recrystallizations from C₆H₆-C₆H₁₄, light brown crystals were obtained, mp 66–68°. Anal. (C₁₄H₂₁NO₅) C, H, N.

N-Methyl-3,4,5-trimethoxyphenethylamine was obtained by LAH reduction of the corresponding ethyl carbamate.

⁽⁴⁾ H. C. Brown and P. Heim, J. Am. Chem. Soc., 86, 3666 (1964).

⁽⁵⁾ See footnote c in Table 1.