apparently accompanied by loss of H_2S . Mass spectrographic examination of the crystals showed the expected M^+ . This product was used in the next step where separation of a pure product proved less complicated.

7-Deoxy-7(*R*)-thiolincomycin (10). --Methyl 7-deoxy-7(*R*)thiolincosaminide (9) (5.2 g) was treated with 4.14 g of *trans*-4-*n*propyl-1-proline^{3a} to give 6.26 g of crude product. Chromatography (CIICl₅-MeOII, 4:1) gave 5.96 g of 10, $|\alpha|_{D} + 125^{\circ}$ (H₂O), as an amorphous solid. The hydrochloride salt also was not crystalline. *Anal.* (C₁₈H₃₄N₂O₅S₂) C, H, N.

Methyl 7-Deoxy-6-deamino-6,7-aziridinothiolincosaminide (13).—Amino sugar 4 (1 g) was treated with K₂CO₃ in boiling DMF. Crystallization of the residue from MeOH after distillation of the DMF afforded 370 mg of 13, mp 192–198°, and 160 mg, mp 182–189°. Two recrystallizations (MeOH-AcCH₃) gave crystals, mp 203–220° dec, $[\alpha]_D + 320°$ (DMSO). Only one spot was noted on the and the melting point was unchanged for further recrystallizations. Anal. (C₈H₁₇NO₄S) C, H, N.

Methyl 7-Deoxy-7(S)-thiolincosaminide (14).—A suspension of 1.5 g of aziridine 13 in 30 ml of *i*-PrOH saturated with H₂S at 0° was heated in a glass bomb on a steam bath for 5 hr. Filtration of the cooled reaction mixture yielded 1.6 g of 14, mp 190– 197°, which when recrystallized (EtOH) melted at 195–198°. Anal. (C₉H₁₉NO₄S₂) C, H, N, S.

The pentaacetate (14a), mp 266–268°, was prepared by acylation of 14 with $Ac_2O-C_3H_3N$ in the usual manner. Anal. (C₁₉-H₂₉NO₉S₂) C, H, N, S.

7-Deoxy-7(S)-thiolincomycin Hydrochloride (15).—In the manner previously described, ^{3b} 6.8 g of 14 was condensed with 5.2 g of *trans*-4-*n*-propyl-L-proline to yield 10.2 g of crude product. Chromatography (CHCl₃-MeOH, 4:1), followed by conversion to the hydrochloride, afforded 4.35 g of amorphous solid, $[\alpha]_D - 161^{\circ}$ (H₂O). Anal. (Cl₃H₃₅ClN₂O₅S₂) C, H, N. Rechromatography of the free base gave an analytical sample. Anal. (Cl₃H₃₄N₂O₅S₂) C, H, N, S.

Methyl 6-Deamino-7-deoxythiolincosaminide (12). Method A.—Aziridine 13 (235 mg) was treated with HONO⁷ followed by catalytic hydrogenation over 10% Pd–C in MeOH to give 60 mg of 12 (AcCH₃), mp 189–190°. Anal. (C₉H₁₈O₄S) C, H, S.

Method B.—Disulfide 11 (4.4 g) was heated at reflux for 18 hr with hydrazine hydrate. Chromatography (CHCl₃-MeOH, 4:1) followed by crystallization (H_2O) yielded 100 mg of 12, mp 178–182°. Ir, mass spectra, and nmr data indicated identity with 12 prepared by method A.

Thioamidolincomycin Tetraacetate Hydrochloride $(17 \cdot HCl)$.— Lincomycin tetraacetate (19.5 g), prepared by acylation of lincomycin with Ac₂O-C₆H₈N, was treated with 7 g of P₃S₁₀ in aqueous dioxane as previously described. Conversion of the crude prodnct to the hydrochloride yielded 24.6 g of 17 · HCl which gave 9.0 g of 17 · HCl, mp 207–214°, from AcCH₃-H₂O. Recrystallization gave 17 · HCl, mp 221–225° (hygroscopic). Anal. (C₂₈H₄₃-ClN₂O₉S₂) C, H, N, S, Cl.

Thioamidolincomycin (18).—Five grams of $17 \cdot \text{HCl}$ was treated with 0.5 N 50% aqueous methanolic NaOH at 26° for 1 hr. The crude product (3.5 g) was obtained by extraction with MeCl₄. Crystallization (aqueous MeOH) afforded 300 mg of 18, mp 221– 226°, and \mathfrak{s} second crop of 530 mg of 18, mp 195–205°. The analytical sample was further purified by chromatography (Et-OAc-AcMe-H₂O, 8:5:1). Anal. (C₁₈H₃₄N₂O₅S₂) C, H, N, S.

Thioamidoclindamycin Triacetate (19).—In the manner decribed above, clindamycin was converted to the triacetate and treated with P_4S_{10} . After twice chromatographing (C_6H_{12} -Ac-Me, 2:1) 120 mg of 19, mp 178–181°, was obtained from 4 g of triacetate. Anal. ($C_{24}H_{39}ClN_2O_7S_2$) C, H, N, S.

7-Deoxy-7(S)-chlorothiamidolincomycin (20).—Triacetate 19 (12.9 mg) was treated with dilute alkali in aqueous AcMe for 25 min. Only one spot was noted on the moving about where expected. The solution was acidified and hyphilized. Purification was not attempted.

Solvolysis of 19.—A solution of 10 mg of 19 in 50% aqueous DMF was heated at reflux for 17 hr. A more polar product which reacted very rapidly with Lemieux reagent (characteristic of thiols) was noted on tlc. The pH was adjusted to 10.5 and after 1 hr evaporated *in vacuo*. The major spot on tlc (C_6H_{12} -AcMe, 2:1) (CHCl₃-MeOH, 10:1) moved with and was not separated from 10 on 8-in. tlc plates. For visualization Lemieux reagent, I₂, and bioautograph vs. S. lutea were employed.

Acknowledgment.—The authors are indebted to Dr. D. J. Mason for *in vitro* antibacterial testing, to C. Lewis for *in vivo* assays, and to R. J. Reid for technical assistance.

The Relationship between Structure, Stereochemistry, and Diuretic Activity in the 2-Amino-α-phenylcyclohexanemethanol Series, a New Class of Diuretic Agents. II¹

L. L. SKALETZKY, B. E. GRAHAM, AND J. SZMUSZKOVICZ

Research Laboratories of The Upjohn Company, Kalamazoo, Michigan 49001

Received May 29, 1969

A series of 1,3-amino alcohols and 1,3-amino ethers were made for dimetic testing. The four diastereoisomers of both the alcohols and methyl ethers (I, R = H and CH_3 , respectively) were synthesized and the relationship of stereochemistry to dimetic activity is discussed. 1-[2-(p,α -Dimethoxybenzyl)cyclohexyl]piperidine (2) was resolved and the *d* enantiomorph (3) was chosen for further pharmacologic evaluation.

In this paper, a new class of diuretic agents² illustrated by structure I is reported. Compounds of structure type I have three asymmetric centers and, in the case of both the alcohols and methyl ethers (I, R = H and CH_{3} , respectively), the four possible diastereoisomers or racemates have been synthesized. Stereochemistry is a prime factor in the correlation of structure with biological activity and in the study of receptor surfaces.³ We therefore undertook a detailed study of the relationship between stereochemistry and diuretic activity in this class of compounds.

^{(3) (}a) E. J. Ariëns, Mol. Pharmacol., 1, 232 (1964); (b) P. S. Portoghese, A. A. Mikhail, and H. J. Kupferberg, J. Med. Chem., 11, 219 (1968), and references noted therein.

⁽¹⁾ Paper I: J. Szmuszkovicz and L. L. Skaletzky, J. Org. Chem., 32, 3300 (1967).

⁽²⁾ For a review of diuretic agents: (a) H.-J. Hess in "Annual Reports in Medicinal Chemistry, 1967." C. K. Cain, Ed., Academic Press Inc., New York, N. Y., 1968. p 62, and previous Annual Reports; (b) G. de Stevens, "Diuretics," Academic Press, Inc., New York, N. Y., 1963.

Rats.

*j*14+

 $\underline{12}$

^a See ref 4. ^b Per os in rats; for comparison a standard reference compound ethoxzolamide has the following screening values at 5 and 20 mg/kg, 102 and 132%, respectively. • The free base gave screening values of 73 and 142% at 5 and 20 mg/kg, respectively. The LD₃₀ (mice) was 562 mg/kg ip. ^d Spearman-Karber method for 95% confidence limits. Upjohn Sprague-Dawley rats and Upjohn Rockland mice were used. * The base was an oil. / These per cent volumes were obtained during electrolyte studies (see Table VII for *d*-IIIB).

The diastereoisomeric alcohols and methyl ethers of structure I ($\mathbf{R} = \mathbf{H}$ and \mathbf{CH}_3 , respectively) in the *cis*erythro and trans-erythro⁴ series were active diuretic agents in rats while the *cis*- and *trans-threo*⁴ isomers were less active at comparable doses (see Tables I and II). The *cis-erythro* methyl ether (2) was resolved and the d enantiomorph (3) was chosen for further pharmacologic evaluation.

The conformations of the four diastereoisomeric alcohols (II) have been unequivocally established.^{1,5} Each of these isomeric alcohols exist in solution as a unique conformation due to two important factors: (a) hydrogen bonding between the hydroxyl and piperidine nitrogen, and (b) relative "effective" size of the benzylic side chain and piperidine group on the cyclohexane (chair) ring.¹ In the *cis* alcohols, the conformational studies have established that *cis-threo* alcohol (IIA) has the piperidine group axial and the benzylic side chain equatorial on the cyclohexane ring while the *cis-erythro* isomer (IIB) has the piperidine group equatorial and the side chain axial. The difference in diuretic activity of the two cis alcohols has been rationalized on the basis of these conformational differences (see Discussion).

Chemistry .-- The synthesis and elucidation of stereochemistry of the four racemic amino alcohols II and methyl ethers III have been described.¹ The synthesis of the two *cis* methyl ethers IIIA⁶ and IIIB is outlined in Chart I and the two *trans* methyl ethers IIIC and IIID were made in a similar manner. The two cis racemates (or trans racemates) have the same relative

stereochemistry at the cyclohexane ring junctions but differ in the configuration at the side-chain benzylic carbon.

Methyl ether IIIB was resolved: the four racemic methyl ethers IIIA, IIIB, IIIC, and IIID and optical isomers of IIIB are listed in Table I.

A series of analogs of III is listed in Table II. The ethers were made by methods a and b of Chart I.

The majority of *cis* amino alcohols required in the preparation of the ethers (Tables I and II) were made by the general procedures c-f of Chart II and are listed in Tables II (8-11) and III. Several of the cis amino alcohols were made by two or more methods,

⁽⁴⁾ The terms erythro and three refer to the configuration at the benzylic side-chain carbon. For the definitions of eruthro and three, see ref 1. cis and trans refer to the stereochemistry of groups on the cyclohexane ring.

⁽⁵⁾ Recent nmr conformation studies on cis-three alcohol (IIA) deuterated in the cyclohexane ring has given the following results. The free base of IIA exists in solution as a single conformation with the piperidine group axial and benzylic side chain equatorial on the cyclohexane (chair) ring. In contrast, the hydrochloride of IIA in water has the piperidine equatorial and the benzylic side chain axial. This striking difference in conformation between the free base and the hydrochloride is primarily due to the importance of hydrogen bonding in the former. These conformation studies will be published elsewhere.

⁽⁶⁾ Roman numerals are used to represent the general structure and letters A. B. C. and D to represent the specific racemate. Arabic numerals refer to compounds listed in the tables.

thereby interrelating the stereochemistry of compounds prepared by these procedures. In the cases where the stereochemistry was not established, compounds made by the same methods were assumed to have similar stereochemistry.

The *cis*-A series of amino alcohols was made by general methods c-e of Chart II and representative examples follow.

Method c.—Condensation of dione IV with piperidine gave the vinylogous amide V which was reduced catalytically with 2 moles of hydrogen to amino alcohol IIA. Catalytic reduction of V with 1 mole of hydrogen gave the intermediate *cis* ketone VI.

Method d.—Several *cis*-A alcohols were made as illustrated in the case of **69**. The benzyloxy ether (**65**) was made by method c. Methylation of phenol **67** gave methyl ether IIA thereby establishing the stereochemistry of **67** and related derivatives.

Method e.—The preparation of 2-piperidino- α -(3,4,5-trimethoxyphenyl)cyclohexanemethanol (42, Table III) is illustrated. Compound 42 was also prepared by method c and the two materials were identical. The amino alcohol (42) has diuretic activity and a series of related analogs was made (Table III).

Method f.—The best method of preparation of the *cis*-B amino alcohols was the isomerization of the *cis*-A amino alcohols (obtained by methods c–e) with trifluoroacetic acid.

Method g.—The synthesis of cis-2-piperidino- α -(o-hydroxyphenyl)cyclohexanemethanol (62) is given in Chart III. The stereochemistry of 62 was established by methylation to 63 (prepared by method c). Salicyl-aldehyde was treated with 1-cyclohexen-1-ylpiperidine in Skellysolve B and the resulting adduct VII was hydrogenolyzed with PtO₂ in AcOH to 62. Amino alcohol (62) was treated with anhydrous HCl in CH₃OH (method b) to give methyl ether 34 whose stereochemistry was established as shown.

Esters of the amino alcohols were prepared by treating the alcohol with an acid anhydride and are listed in Table II (12-17).

A number of $bis(\alpha, \alpha$ -phenyl)-2-piperidinocyclohexanemethanols were synthesized as illustrated in Chart IV and are listed in Table IV and these compounds have good diuretic activity at the doses shown.

Relationship of Stereochemistry to Diuretic Activity. —The amino alcohols (II) and ethers (III) have three asymmetric centers in which the ring junction can be either *cis* or *trans* and the side-chain configuration either *erythro* or *threo*. However, on the basis of the established stereochemistry and structure-activity relationships for these compounds, the cyclohexylpiperidine moiety is suggested to be the principal structural feature required for diuretic activity.

In general, for the amino alcohols and ethers, the erythro racemates in both the cis and trans series possess the diuretic activity (*i.e.*, cis-B and trans-C are more active than cis-A and trans-D racemates). Examination of Table I indicates that two of the 1-[2- $(p,\alpha$ -dimethoxybenzyl)cyclohexyl]piperidines, racemates IIIB and IIIC, are potent diuretic agents in rats while the other two racemates, IIIA and IIID, are less active at comparable doses. The diastereoisomeric amino alcohols II (8-11, Table II) also show a similar spectrum of diuretic activity.

The activities of various other compounds (83-98) are given in Table V.

A number of factors may be responsible for this spectrum of diuretic activity of the four racemates of II and III including possible differences in metabolism and absorption of these compounds. However, a consistent picture based on consideration of the established stereochemistry of these racemates may be proposed to explain the diuretic results.

Elucidation of the stereochemistry of methyl ether (III) and amino alcohol (II) racemates has been reported^{1,5} and a summary of this stereochemical information for the amino alcohols (II) is given in Table VI.

In the amino alcohols and the ethers, the active *erythro-cis* and *-trans* racemates have the piperidine group equatorial on the cyclohexane ring (see Table VI). In contrast, the piperidine ring in the *cis-threo* alcohol (IIA) is axial. The conformation of the piperidine substituent in the inactive *threo* ether (IIIA) has not been established. Since the ethers cannot form a hydrogen bond, the conformation of IIIA with the piperidine group equatorial may be in predominance.⁵

In summary, two important stereochemical factors appear to influence diuretic activity in this class of compounds: (a) configuration at the side-chain carbon *—erythro* isomers are most active diuretic agents at the doses shown; and (b) conformation of the piperidine substituent on cyclohexane ring—racemates with an equatorial piperidine are most active.

To test the importance of an equatorial piperidine for diuretic activity, 1-cyclohexylpiperidine hydrochloride (Table V, 96), cis-2-piperidinocyclohexanemethanol hydrochloride (97), and trans-2-piperidinocyclohexanemethanol hydrochloride (98) were tested for diuretic activity. These three compounds would be expected to have the large piperidine group essentially equatorial, although cis-2-piperidinocyclohexanemethanol hydrochloride (97) may exist as an equilibrium mixture of conformations with axial and equatorial piperidines. trans-2-Piperidinocyclohexanemethanol hydrochloride (98) and 1-cyclohexylpiperidine hydrochloride (96) were found to have significant diuretic activity while *cis*-2-piperidinocyclohexanemethanol hydrochloride (97) was less active at comparable doses. The suggestion that the equatorial piperidine portion of the molecule of III may be responsible for part of the diuretic activity is consistent with the structureactivity relationships for analogs of III (see Tables I and II). For example, *dl*-IIIB and optical isomers d-IIIB and l-IIIB (Table I, 2-4) have approximately the same diuretic activity, but the *d* isomer is much less anticholinergic than the l or dl isomers. Also, variation in the size of the benzylic ether in the active erythro (B racemate) series appears to have only a small effect on diuretic activity (cf. 2, 28, and 29).

In conclusion, one basic structural requirement for diuretic activity of amino alcohols and amino ethers related to II and III may be the 1-cyclohexylpiperidine moiety (*i.e.*, it has both affinity and intrinsic activity^{3a}). This point will require further substantiation.

Structure-Activity Relationships.—In analogs of the amino ethers (*i.e.*, analogs of IIIB), the relative configuration of the side-chain benzylic carbon is very important as discussed before, the *erythro* (B and C) isomers being the most active. For maximal diuretic

Table II 1-Amino-2-benzylcyclohexanes

	Storeo.	N I							Yield,		Recrysto"			Diuretic % increase excretion ove Dose, mg	act." in urine ir controls /kg po
No.	chemistry	A	R	$\mathbf{R}_{\mathbf{i}}$	R_2	R_3	в.	Method	' %	Mp, °C	solvent	Formula	Analyses	5	20
76		$N(CH_2)_{5}$	П	H	lf	OCH_a	Н							12	48
86	Α	$N(CH_2)_5$	OH	Н	H	OCH_2	П	с	7 L					2	24
96	В	N(CH ₂) ₅ ·HCl	OH	н	Н	OCH_{2}	H	f	71.5					16	46
10^{b}	\mathbf{C}	$N(CH_2)$:	OH	Н	H	$OCH_{\mathfrak{d}}$	Н							— I	28
110	D	$N(CH_2)_{5}$	OH	Н	H	OCH_3	H							-20	14
12	Α	$N(CH_2)_5 \cdot HCl$	OCOCH ₃	Н	11	OCH_2	H		86	207/208	I-E	$C_{21}H_{22}CINO_2$	C, H, CI, N	-4	10
13	В	N(CH ₂) ₅ -HCl	OCOCH ₃	Π	Н	OCH_2	Н		90	201	Et-E	$C_{21}H_{32}CINO_{2}$	C, II, CI, N	13	73
14	Α	N(CH ₂) ₅ ·HCl	OCOCH ₂ CH ₃	Н	Н	OCH ₂	H		85.5	195 - 195, 5	1	$C_{22}H_{34}ClNO_3$	C, H, Cl, N	-3	-4
15	В	N(CH ₂) ₅ ·HCl	OCOCH ₂ CH ₃	H	H	OCH ₃	H		91	192 - 193	Et E	$C_{22}H_{34}CINO_3$	C, H, Cl, N	10	70
16	В	N(CH ₂), HCl	OCOCH2CH2COOH	Н	П	OCH_2	H		30	185-186	Et-E	$C_{23}H_{34}C(NO_3)$	C, H, Cl, N	-2	25
17	В	$N(CH_2)_{ii}$	OCOC6H5	Н	H	OCH_3	H		74.5	131 - 132	S	$C_{26}H_{33}NO_3$	С, Н, N		8
18	В	$N[(CH_2)_2]_2O$	OCH ₃	H	П	OCH_2	H	b	92.5	99-100	Et	C19H29NO3	C, H, N	14	79
19	В	N(CH ₂) ₄ ·HClO ₄	OCH ₂	н	11	OCH ₂	Н	b	56	$155 \ 156$	I	C ₁₉ H ₃₀ ClNO ₆	C, II, Cl, N	30	111
20	В	$N(CH_2)_6$	OCH ₂	Н	Н	OCH ₂	lŦ	а		d		$C_{21}H_{aa}NO_2$	C, H, N	21	33
21	Α	N(CH ₂) ₆ ·HCl·CH ₃ OH	OCH ₂	H	П	OCH_2	11	n	16	187-191	M-E	C22H38CINO3	C, H, CI, N	5	24
22	В	$N[(CH_2)_2]_2NCH_3$	OCH _a	Н	П	OCH_3	Ы	Ь	71.5	$103 \cdot 104.5$	$\operatorname{Et} W$	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_2\mathrm{O}_7$	C, H, N	-5	42
23	В	-N_CH.	OCH _a	Н	Н	OCH_{2}	II	Ь	94	112-113	Et	$\mathrm{G}_{21}\mathrm{H}_{33}\mathrm{NO}_2$	С. Н. N	69	100
24	В	-N	OCH ₂	II	Ħ	()CH ₂	Н	b	93	109 111	Et	$\mathrm{C}_{79}\mathrm{H}_{35}\mathrm{NO}_{7}$	C, II, N	99	142
25	В	$N < CH_{A} CH_{A}$	OCII ₃	Н	Н	OCH ₃	Н		49.5	58-59	I-W	$\mathrm{C}_{17}\mathrm{H}_{27}\mathrm{NO}_{2}$	С, Н, N	33	56
26	в	NHCH3 · C2H2O4	OCH ₃	H	П	OCH_3	H	b	52	223 - 224	M–E	$C_{18}H_{27}NO_6$	C, II, N	-2	- 6
27	B	NH ₂ ·C ₄ H ₄ O ₄ ^f	OCH ₃	Н	Н	OCH ₃	Ħ	b	32	142 - 145	Me-E	C ₁₉ H ₂₇ NO ₆	C, H, N	-2	54
28	B	N(CH ₂) ₄ ·HCl	OCH ₂ CH ₃	11	Н	OCH ₂	Н	b	38	209-210	I-E	C21H34CINO2	C, H, CI, N	32	134
-0 29	B	$N(CH_2)_5 \cdot HCl(H_2O)_{0.L}$	OCH ₂ CH ₂ CH ₃	н	H	OCH_3	Н	ь	62 ^{d.g}	190-194	I., E	CanHa6CINO2	H, CI, N; C [*]	56	99
		/	_ =									(H2O)0.5			
30	В	$N(CH_2)_5$	OCH ₂ CH ₂ OH	H	Н	OCH ₂	H	Ь	72	111-112.5	8	$C_{21}H_{32}NO_3$	С, Н, N	រ	8 8

I., I., SKALETZKY, B. F. GRAHAM, AND J. SZMUSZKOVICZ

Vol. 12

November 1969

activity the benzylic carbon should have an ether substituent, *i.e.*, replacement of the benzylic methyl ether by H, OH, or -OCOR resulted in decreased activity (cf. 2, 7, 9, 13, Tables I and II). The amine may be pyrrolidine, piperidine, or 3-azabicyclo [3.2.2]nonane; a secondary amine (26, Table II) and the primary amine (27) were less active. The aromatic ring may be substituted by o- or p-methoxy or an o-hydroxy group (cf. 2, 34, 35, Tables I and II); methyl substitution on the aromatic ring appears to increase activity (cf. 2, 36, 37). Introduction of two methyl groups para to the piperidine substituent in the cyclohexane ring increases activity (83, Table V). The N-oxide of IIIB was less active (40, Table II).

A large number of 1.3-amino alcohols were made and the majority (Table III; Table II, 8-11) were less active than the corresponding methyl ethers at the doses shown. Maximal diuretic activity in the amino alcohols was found in compounds (41, 42, 53, 54, Table III).

In the bis aromatic series, amino alcohols (78, 80, 81, Table IV) were the most active.

Experimental Section

Biological Methods. Diuretic Assay (Rats).-Modifications of the method of Lipschitz, et al., were employed for dimetic assays. Upjohn Sprague-Dawley male rats (200 ± 10 g on test day) were hydrated orally with physiological saline (25 cc/kg) and starved for 18 hr. Water was allowed *ad lib*. Water was removed 1.5 hr before test time. At test time individually weighed rats were again hydrated (25 cc/kg) with saline and the test compound was incorporated in this load. Groups of seven rats (in individual metabolism cages) were routinely used at each dose level of each test compound. Seven untreated control rats (saline only) were used for each assay. Diuretic responses for the 5-hr test period were calculated in terms of per cent increase in urine excretion in excess of the controls. Statistical analysis of excretion data on 1280 control rats shows the mean excretion (per cent of load) to be 83.51 ± 19.23 SD. Sodium, potassium, chloride, and pH determinations were done on interesting compounds and dose-response relationships were determined. All diuretic studies were carried out in a temperature (24.5°) and humidity (48%) controlled laboratory.

Diuretic Assay (Dogs).-Compounds active in rats were often further evaluated orally in six trained purebred female beagle dogs. Assay procedure for dogs was identical with that for rats except their bladders were drained (by catheter) 1 hr after the saline load, just prior to drug administration. This urine collection was discarded and not used in calculations of dinretic response.

Each dog served as her own control. Urine volumes, electrolytes (Na, K, Cl), and pH values on drug days were compared to those on control days. Top 95% confidence limits have been estab-lished for each dog for urine volume and electrolytes. These top limits in each parameter were used as a control basis for significant diuretic activity and electrolyte excretion when testing drugs in these dogs.

Pharmacology.—Representative compounds of the amino ethers, amino alcohols, and bis aromatic amino alcohols were further evaluated as dimetic agents. On the basis of dimetic activity and electrolyte excretion patterns in the rat and dog, toxicity in mice and rats, and anticholinergic activity (isolated gut) d-IIIB (Table I, 3) was chosen for clinical evaluation. This compound was found to have an atropine index of $\frac{1}{800}$ to $1/1000}$ on the rabbit ileum while the l and dl isomers for comparison had anticholinergic activity 1/200th of atropine. The rat study shown in Table VII shows d-IIIB to be an orally effective dimeticsaluretic agent with minimal effects on potassium excretion. The dog study (Table VIII) shows d-IIIB to be an orally effective diuretic-saluretic agent in all dogs with a significant kaliuretic effect in three of the six dogs.

General Pharmacology.---A general pharmacologic profile was

(7) W. L. Lipschitz, Z. Hadidian, and A. Kerpesar, J. Pharmacol. Exp. Therap., 79, 97 (1943).

Table III 2-Amino-α-phenylcyclohexanemethanols

Na	Stereo-	N I	18.	Re	8.	B	Method	Yield,	Mu. °C•	Recrystn ^a	Formula	Analysas	Diureti % increase excretion ove ~ Dose, mg	c act. ^c e in urine er controls (/kg po	
181).	(i)emistry	А	IQ	117		1.1	,	. 70		SOLUCIT	, onnaig	Analyses	5	20	
416	Λ	$N(CH_2)_6 \cdot HCl$	Н	OCH_3	OCH_3	OCH_3	c	34					19	98	
42	Α	$N(CH_2)_5 \cdot HCl$	\mathbf{H}	OCH_3	OCH_3	OCH_2	e^d	40	265 - 266	М	$C_{2}H_{34}CINO_{4}$	— C, H, Cl, N	6	87	
43	Α	$N(CH_2)_4 \cdot HCl$	н	OCH_3	OCH_3	OCH_3	с	56°	216 - 217	Ι	$C_{20}H_{32}ClNO_4$	— C, H, Cl, N	16	68	
4 4	Α	$N[(CH_2)_2]_2O \cdot HCl$	Н	OCH_3	OCH_3	OCH_3	с	42	205 - 206	M-E	$\mathrm{C}_{20}\mathrm{H}_{32}\mathrm{ClNO}_5$	C, H, Cl, N	-5	2	
45	A	N[(CH ₂) ₂] ₂ NCH ₃ ·2HCl · (CH ₃ OH) _{0.5}	Н	OCH_3	OCH_3	OCH_3	e	:;1	232-233	М	${ m C_{21}H_{36}Cl_2N_2O_4} \cdot { m (CH_3OH)_{0.5}}$	C, H, Cl, N	8	-4	
46	Α	$N(CH_3)_2 \cdot HCl$	H	OCH_3	OCH_3	OCH_{a}	е	28	221 - 222	M-E	C ₁₈ H ₃₀ ClNO ₄	C, H, Cl. N	-17	20	
47	Α	N(CH ₂) ₆ ·HCl	H	OCHa	OCH _a	Н	e	50	225-226	\mathbf{Et}	$C_{21}H_{34}CINO_3$	C, H, Cl, N	13	62	
				C)										
48	Λ	$N(CH_2)_6 \cdot HCl$	Н		CH_2	Н	е	50	233 - 234	Et	$C_{20}H_{30}CINO_3$	С, П, СІ, Х	17	22	
				C)										
49	Α	$N(CH_2)_6 \cdot HCl$	Н	Н	OCH_3	Н	e	50.5	230 - 231	Et	$\mathrm{C}_{20}\mathrm{H}_{32}\mathrm{CINO}_2$	— С, Н, Сl, N	-9	20	
50	В	$N(CH_2)_6$	Н	Н	OCH_3	н	f	34	94 - 95.5	\mathbf{E}	$C_{20}H_{31}NO_2$	С, Н, N	6	50	
51	Α	N(CH ₂) ₆ ·HCl	Н	E	CF_3	II	e	34	$263 \cdot 264$	М	$C_{20}H_{29}ClF_3NO$	— C, H, Cl, N	-6	-~ 10	
52	Α	N(CH ₂) ₆ · HCl	Н	H	Н	Н	e	9	276 - 277	М	$C_{19}H_{30}CINO$	— C, H, Cl, N	9	9	
53	А	$N(CH_2)_6 \cdot HCl$	Н	CH_{*}	OCH_3	CH_3	С	38	250 - 251	Eı	C ₂₂ H ₃₆ ClNO ₇	C, H, Cl, N	27	91	
54	Α	$N(CH_2)$, \cdot HCl	H	CH_8	OCH_3	CH_{2}	е	52	259-260	Ei	$C_{21}H_{34}ClNO_2$	C, II, Cl, N	25	74	
6.5	٨	+ ('H.N/('H.) 1=	П	OCH.	OCH.	OCH.		67 5	101103	МЕ	C. H. INO	CHN	Э	.,	
50	.1 A	$O \leftarrow N(CH_{12})_{6} H_{10}$	11	OCH.	OCH.	OCH.		65	157-158	Ha I	C., H., NO.	C II N	7	ئے 00	
57	A .	N(CH) 10	н	1 1 1	OCH.	н		81 5	111119	15.4	$C_2 H_3 M O_6$	C II N	· · · · ·	<u>کرہ</u> 1	
01 =0	A	$\mathbf{N}(\mathbf{CH})$	11	11	OCH.	11		0	146.147	176 Fr+	$C \mathbf{H} \mathbf{NO}$	C, Π, N		1	
08	A		11	11	OCH3	11	e al	27	1907197	E1 E4	$C_{18}\Pi_{27}NO_2$	C, Π, N	22	2	
99	А	$N[(OH_2)_2]$	п	п	00.113	11	C,	57	1.027100	15.6	C191130 N2O	C, H, N		0	
60	А	-NCH	Н	Н	OCH_3	11	с	61	9394	S	$\mathrm{C}_{20}\mathrm{H}_{31}\mathrm{NO}_2$	С, Н, N	-10	23	
61	Λ	-N	11	Н	OCH_3	Н	e′	16	114.5~115.5	\$	$\mathrm{C}_{22}\mathrm{H}_{33}\mathrm{NO}_{2}$	С, Н, N	15	32	
62	А	$N(CH_2)_5$	QН	П	Н	Н	g	80	122 - 122.5	s	$C_{18}H_{27}NO_2$	С, Н, N	31	38	
63	Λ	$N(CH_2)_5$	OCH8	H	II	II	с	16	99-100	E-P	$C_{19}H_{29}NO_2$	C, H. N	11	28	
64	А	$N(CH_2)_{4} \cdot HCl$	OCH_3	Н	CH_3	Н	e	16.5	$256 \cdot 256 \cdot 5$	Et-E	$\mathrm{C}_{20}\mathrm{H}_{32}\mathrm{ClNO}_{2}$	C, H, Cl, N	2	8	

L. L. Skaletzky, B. E. Graham, and J. Szmuszkovicz

Vol. 12

												é xe	Diuretic ac % increase it retion over	t.° . urine controls
No.	Ster c o- chemistry		Rı	$\mathbf{R}_{\mathbf{z}}$	Rs	R,	Method	Yield, %	Mp, °C	Recrystn ^a selvent	Formula	Analyses	-Dose, mg/l 5	(g p0_) 20
65	Α	N(CH ₃) ₅	Н	Η	OCH ₂ C ₆ H ₅	Η	ల	53	148.5-149.5	Et	$C_{25}H_{33}NO_2$	С, Н, N	S	-3
66	B	N(CH ₃) ₅ .HCl	II	Η	OCH,C,H,	Η	f	39¢	238-240 dec	E(-E	C25H34CINO2	C, H, Cl, N	7	12
67	V	N(CH ₂), HC	H	Η	HO	Η	q	91.5°	204 - 204.5	Et-E	C ₁₈ H ₂₈ CINO ₂	C, H, Cl, N	7	24
68	В	N(CH ₂)	H	Η	IIO	Η	р	86	180-182	Еt	$C_{18}H_{z7}NO_2$	C, H, N	7	29
69	A	N(CH ₂), HCl	Η	Η	OCH2CH3	Η	р	63	221-222	Et-E	C20H22CINO2	C, H, Cl, N	0	25
70	V	N(CH ₂) ₅	Η	II	OCH ₂ CH=CH ₂	Н	q	68	71-72	E-P	$C_{21}H_{31}NO_2$	C, H, N	18	17
71	V	N(CH ₃) ₅ ·HCl	Η	Η	CII ₃	Η	Ð	99	251 - 253	M-E	C ₁₉ H ₃₀ CINO	C, H, Cl, N	1	0 0
72	V	N(CH _a) _b ·HCl	H,	Η	CH3	Η	Ð	4	239-240	M-E	C ₂₀ H ₃₂ CINO	C, H, Cl, N	12	13
736	Y	NHCH.	H	II	0CH ₃	Η							2	15
74^{b}	В	NHCH,	II	Η	0CH ₃	Η							0	-12
756	V	NH ₂ ·HCI	Н	II	OCH ₃	Н							-15	က
492	в	NH ₂	Н	Η	OCH ₃	Н							-21	23
a See used Et	Table II, f OH–AcOH	ootnote a. ^b For preparation sec	e ref 1.	° See Ta	ble I, footnote b .	Compor	und 42 w	as prepa	red by method c	in 48% yi	eld. • Yield of f	ree base. J In hy	ydrogenati	on stef

obtained on d-IIIB as follows. Intravenously in anesthetized dogs small doses were ineffective on the mean arterial blood pressure while larger doses (4-8 mg/kg) produced prolonged depressor responses. No anticholinergic, anticholinesterase, adrenergic, adrenolytic, histaminic, or antihistaminic actions were observed. Epinephrine responses were potentiated.

The suggestion of hypotensive activity was not borne out in aortic intubated⁸ unanesthetized normotensive rats.

In anesthetized cats (pentobarbital or chloralose) and a decerebrate cat (ether anesthesia) *d*-IIIB did not function as a neuromuscular blocking agent.

In the rat hind paw edema (carageenin induced) assay *d*-IIIB exhibited antiinflammatory activity equal to phenylbutazone but only at high doses bordering toxic levels and therefore cannot be considered specifically antiinflammatory.

No phototoxicity was observed in rats following oral doses of 38.7 mg/kg.

In the mouse *d*-IIIB did not antagonize electroshock convulsions or aid in their induction nor did it afford protection against thiosemicarbazide or strychnine lethality. Ambient temperatures tested had no effect on the lethality of *d*-IIIB, suggesting it is not a sympathomimetic agent.

Intraperitoneally in mice the LD_{50} was found to be 40 mg/kg (35.9-44.7).⁹ Orally in rats the LD_{50} was 91.6 mg/kg (76.6-109.5).⁹

Chemical Methods.¹⁰ 2-[(*p*-Benzyloxy)benzoyl]cyclohexanone was prepared from 1-cyclohexen-1-ylpyrrolidine and *p*-benzyloxybenzoyl chloride as previously described in the case of IV.¹ The crude diketone did not require purification *via* the copper complex. It was triturated with Et₂O to obtain material suitable for further use: 73% yield, mp 112–117°. A sample was recrystallized for analyses from C₆H₆: mp 111–111.5°. Anal. (C₂₀H₂₀O₃) C, H.

cis-2-Piperidino- α -(*p*-benzyloxyphenyl)cyclohexanemethanol (65) was prepared in a manner analogous to that described for the preparation of 8 (method c).¹ The product precipitated from solution during the hydrogenation step and was separated from the catalyst by addition of sufficient EtOH, heating to boiling, and filtering. On cooling, the product separated from solution: yield 53%, mp 146.5-147.5. The analytical sample melted at 148.5-149.5 (EtOH).

cis-2-Piperidino- α -(p-hydroxyphenyl)cyclohexanemethanol Hydrochloride (67).—A suspension of 10 g (0.0264 mole) of 65 in 300 ml of CH₃OH was hydrogenated in the presence of 1.0 g of 10% Pd-C for 24 hr at an initial hydrogen pressure of 3.5 kg/cm². The mixture was filtered, the filtrate was evaporated to dryness, and residue was crystallized from EtOH-H₂O (1:1): 7.0 g (91.5%), mp 177-177.5. Recrystallization from EtOH raised the melting point to 179-180°. Anal. (C₁₈H₂₇NO₂) C, H, N. The hydrochloride was prepared and crystallized from EtOH-Et₂O: mp 204-204.5°.

cis-2-Piperidino- α -(*p*-ethoxyphenyl)cyclohexanemethanol Hydrochloride (69).—A mixture of 2.85 g (0.01 mole) of 67 and 0.45 g of 53.3% NaH mineral oil dispersion in 50 ml of dry DMSO was stirred for 1 hr. A solution of 2.0 g (0.01 mole) of ethyl *p*toluenesulfonate in 15 ml of Et₂O was added over 30 min, and the mixture was stirred for 5 hr and poured into ice-water. The product was extracted into Et₂O which was washed with H₂O, dried (Na₂SO₄), and evaporated to an oil. A hydrochloride was prepared with ethereal HCl and crystallized from EtOH-Et₂O: 2.2 g (63%), mp 218-219°. The analytical sample melted at 221-222° (EtOH-Et₂O).

1,2,3,4,4a,9a-Hexahydro-4a-piperidinoxanthen-9-ol (89) was prepared by a modification of the procedure of Paquette.¹¹ A solution of 61 g (0.5 mole) of salicylaldehyde and 83 g (0.5 mole) of distilled 1-cyclohexen-1-ylpiperidine in 500 ml of Skellysolve B was allowed to stand 24 hr at room temperature and then cooled at 0° for 1–4 days. The solid which separated was filtered and washed with Skellysolve B to give 102 g of crude product, mp 84–90°. The yellowish solid was crystallized from Skellysolve

(11) L. A. Paquette and H. Stucki, J. Org. Chem., 31, 1232 (1966).

⁽⁸⁾ Modifications of the method of J. R. Weeks and J. A. Jones, Proc. Soc. Exp. Biol. Med., 104, 646 (1960).

⁽⁹⁾ Spearman-Karber method (D. J. Finney, "Statistical Method in Biological Assay." Hafner Publishing Co., New York, N. Y., 1952, p 524).

⁽¹⁰⁾ Melting points were taken in a Thomas-Hoover capillary melting point apparatus and are uncorrected. The ir. uv, and nmr spectra were compatible with the assigned structures. Where analyses are indicated only by symbols of the elements, analytical results obtained for these elements were within $\pm 0.4\%$ of the theoretical values.

CHART H cis-A Alcohols Method c OCH_a + H CO lV O ∥ ΟH H₂.P1O H₂, PtO₂ OCH_a OCH: ĊH OCH_a V VI (90), *cis* ketone IIA (8) Î 2H, PtO, Method d OH OH OH NaH, DMSO H_{2} , Pd(C)OCH C₀H Ċн ĊН OCH, CH₃ HC ĊН)H C.H.1 65 67 69 IIA (8) Method e ,OCH., ŌН OCH₃ OCH₃ 2H], PtO] OCH₄ CICO OCH-CO OCH: + ĊH· OCH_a OCH.; OCH₃ 42 cis B Alcohols Method f ŌН OH)CH₃ ĊH∙ OCH. CHCF COOH $IIA(\mathbf{8})$ IIB(9) CHART III Method g OH ŌН OCH₃ CHO H₂, PtO₂ сн_он-нсі ĊH∙ ĊН· +HOAc method b OH бн ÓН cis-B (34) cis-A (62) VII (89) NaH, DMF NaH, DMF CH_{*}OTs CH₃OTs OCH.)NH OH 1, 2. H_a, PtO₂ CH_OH-HCE Ċн ĊHmethod h method c бсн_а ÓCH CH Ó

cis-A (**63**)

eis-B (**35**)

CHART IV

Method h

 $\textbf{Method} \hspace{0.1in} i$

TABLE IV

 $Bis(\alpha, \alpha$ -phenyl)-2-piperidinocyclohexanemethanols

	Ring					Yield, ^b		$ ext{Recrystn}^a$			Diuret % incr urine e over c Dose, n	ic act. ^c rease in xcretion ontrols ng/kg po
No.	junction	$\mathbf{R}_{\mathbf{l}}$	\mathbf{R}_2	R_3	Method	%	Mp. °C	solvent	Formula	Analyses	5	20
77	cis	н	Н	OCH_3	h	65^d	135 - 136	E-Pe	$\mathrm{C}_{26}\mathrm{H}_{35}\mathrm{NO}_3$	С, Н, N	25	71
78	trans	н	Н	OCH_3	h	$\overline{51}$	111 - 113	\mathbf{S}	$\mathrm{C}_{26}\mathrm{H}_{35}\mathrm{NO}_3$	С, Н, N	4 6	96
79	cis	Н	OCH ₃	н	i	5.5	145 - 146	\mathbf{S}	$\mathrm{C}_{26}\mathrm{H}_{35}\mathrm{NO}_3$	С, Н, N	4	29
80	cis	OCH_3	н	Н	i	60	197 - 198	Me	$C_{26}H_{35}NO_3$	С, Н, N	70	133
81	cis	OCH_2CH_3	н	Н	i	63	185 - 187	Me	$C_{28}H_{39}NO_3$	C, H, N	48	124
82	cis	Н	Н	$\mathrm{OCH}_2\mathrm{CH}_3$	i	5.5	164 - 165	\mathbf{S}	$\mathrm{C}_{28}\mathrm{H}_{39}\mathrm{NO}_3$	С, Н, N	2	1

^a See Table II, footnote *a*. ^b The yields are calculated on the basis that compound IX is the ethyl ester. Compound IX is a mixture of methyl and ethyl esters; see Experimental Section. ^a See Table I, footnote *b*. ^d Yield of **77** by method i was 21%.

B to give 66 g (46%) of **89** as an off-white solid melting at $84-86^\circ$. Recrystallization from Skellysolve B gave the analytical sample melting at $86-87^\circ$.

cis-2-Piperidino- α -(o-hydroxyphenyl)cyclohexanemethanol (62).—A solution of 25.8 g (0.090 mole) of 89 in 200 ml of AcOH was hydrogenated in the presence of 1.0 g of PtO₂ for 4 hr at an initial hydrogen pressure of 3.5 kg/cm². The mixture was filtered, the filtrate was evaporated *in vacuo*, and the solid residue was triturated with Et₂O to give 30.6 g of the AcOH salt of 62, mp 199-201° (softens - 190°). The AcOH salt was converted to the free base with NaHCO₃. The product was extracted into CH₂Cl₂ which was washed with NaCl solution, dried (Na₂SO₄), and evaporated to a pink solid. This solid was crystallized from Skellysolve B: 20.6 g (80%), mp 119-121°. Recrystallization from Skellysolve B raised the melting point of 62 to 122-122.5°.

cis-2-Piperidino- α -(o-methoxyphenyl)cyclohexanemethanol (63).—A mixture of 5.8 g (0.02 mole) of 62 and 0.90 g of 53.3% NaH mineral oil dispersion in 50 ml of dry DMF was stirred for 15 min at room temperature and then cooled to $0-5^{\circ}$. A solution of 3.8 g (0.02 mole) of methyl *p*-toluenesulfonate in 5 ml of DMF was added over 5 min. The mixture was stirred for 45 min at $0-10^{\circ}$, then for 5 hr at room temperature, and allowed to stand 16 hr. The mixture was evaporated *in vacuo* and the residue dissolved in Et₂O-H₂O. The Et₂O layer was washed with H₂O and NaCI solution, dried (MgSO₄), and evaporated to a gum which was crystallized from pentane in two crops: 4.05 g, mp 98-100°; 0.75 g, mp 98.5-100.5; the combined yield was 80%. Mixture melting point with authentic **63** prepared by method c showed no depression and the ir spectra were identical.

cis-1-[2-(o-Hydroxy- α -methoxybenzyl)cyclohexyl]piperidine (34).—A solution of 29 g (0.10 mole) of 62 in 1 l. of CH₃OH containing 50 g of anhydrons HCl was heated at reflux for 16 hr. The solution was evaporated *in vacuo*. The residue was dissolved in cold water, basified with 10% Na₂CO₃, and extracted

TABLE V

MISCELLANEOUS COMPOUNDS

N.,.	Structure	Stereo-	Mathast	Yiehl.	Mp. °C	Recrystr	a E.amuula	Andreas	Diaret W incr urine co over co Dose, m	ie act. ease in ceretion ontrob g./kg po
83	H C CH OCH CH OCH CH OCH HCI HCI	В	Ь	581	205-206	1-E	C22H36CINO2	C, 11, Cl, N	(25	160
84	H C CH OH CH OCH	А	(r	30	133135	Et	C≄tH13NO2	С. Н, Х	<u></u>	. . (i
85	OH I CH OCH OCH OCH	Λ	c	18	243-244	м	C22H36CINO4	C, H, C, N		ť
86 87	OCH. OCH. OCH. OCH. OCH.	fsomer I Isomer If			9192 119-120	E≁Pe E~Pe	C20H20NO4 C20H20NO4	C, H, N C, H, N	1-1 3	15 20
58	OH I CH O 	А			191~192	M#E	C ₁₇ H ₂₅ ClNO ₂	C, 11, Cl, N	-1.	ij
S 9				46	86-87	×	C ₀ H ₂₅ NO ₂	C. U. N	13	9
90 [,]		C18							—ā	27
91 ^b		trans							13	34
92 ^e	CONTRACT CON	cis							17	50
93 ^p	CH-CH-OCH ₂ HCI								— ს	9
.).4 <i>b</i>									-10	

November 1969

^a See Table II, footnote a. ^b For preparation see ref 1. ^c See Table I, footnote b. ^d Free base available commercially. ^c Unpublished work. ^f Yield of free base.

TABLE	VI
-------	----

Stereochemistry of 2-Piperidino- α -(p-methoxyphenyl)cyclohexanemethanols

			**		
		Configuration	Cyclohexane	Conformat	tion (chair)
Racemate (II)	Diuretic act."	side chain	ring junction	Piperldine	Side chain
IIA (8)	Low	threo	cis	Axial	Equatorial
IIB (9)	High	erythro	cis	Equatorial	Axial
IIC (10)	Low	erythro	trans	Equatorial	Equatorial
IID (11)	Inactive	threo	trans	Equatorial	Equatorial

П

^a The test dose is 20 mg/kg po in rats; see Table II.

TABLE VII

DIURETIC AND URINE ELECTROLYTE AND PH DETERMINATIONS WITH d-IIIB ORALLY IN RATS^a

lest	Total urine	10				
compd and dose, mg/kg p9	excreted/ group of 7 rats. cc	change from controls	Total Na excreted, mequiv	Total K excreted, mequiv	Total Cl excreted, mequiv	Urine pH
Control d-IIIB	25.5		3.29	1.02	3.76	6.2
0.5	32.5	27	3.72	1.21	4.25	6.3
1.0	29.0	14	3.57	1.08	3.92	6.3
2.5	33.3	31	4.02	0.94	4.42	6.3
5.0	39.1	52	4.73	1.10	5.34	6.4
10.0	44.5	76	6.00	1.29	6.17	6.7
20.0	59.9	137	7.68	1.61	7.78	6.7
4 0. 0	61.1	141	7.70	1.46	7.44	7.0
80.0	6/7 died					

^a Conclusions: d-IIIB produced significant dimetic and salmetic activity at doses of 2.5–40 mg/kg but was lethal at 80 mg/kg; total Na and Cl excretions increased at effective doses and doubled the controls at 20 mg/kg; total K excretions increased moderately at the two top doses (20 and 40 mg/kg); urine pH increased to neutral at the high dose.

with CH₂Cl₂. The CH₂Cl₂ extract was washed with H₂O and NaCl solution, dried (MgSO₄), and evaporated to a solid which was crystallized from EtOH to give 26.1 g (86%) of 34, mp 113-115°. The analytical sample was recrystallized from EtOH and then Skellysolve B, mp 113-114.5°.

cis-1-[2-(o,α -Dimethoxybenzyl)cyclohexyl]piperidine Hydrochloride (35).—Compound 34 was methylated as described in the preparation of 63 except that the DMF reaction mixture was poured into water and extracted with Et₂O. The Et₂O layer was washed with H₂O, dried (MgSO₄), and evaporated to an oil. This oil was chromatographed on neutral alumina (Woelm), activity I, eluting with 10% Et₂O-Skellysolve B. The eluted free base was converted to a hydrochloride which was crystallized from EtCOMe-Et₂O: yield 65%, mp 222-223° dec. It was identical with an anthentic sample of 35 (prepared by method b) by mixture melting point and identical infrared spectra.

 $cis-\alpha,\alpha$ -Bis(*p*-methoxyphenyl)-2-piperidinocyclohexanemethanol (77).—A solution of 9.03 g (0.03 mole) of **90** in 100 ml of anhydrons Et₂O was added over 25-min period to a solution of *p*-methoxyphenylmagnesium bromide prepared from 11.2 g (0.06 mole) of *p*-bromoauisole and 1.45 g (0.06 g-atom) of Mg turnings in 125 ml of Et₂O. The mixture was stirred for 3 hr, then decomposed by addition of 50 ml of H₂O. The solution was decanted from an amorphous solid which was

		Urive	vol	South		Poras	shini.	····· Chlo	ride -	
Dog no.	Test compd and dose, mg/kg pv	Top limit for 95% Cl, er. kg*	Total excreted, ec∕kg	Top limit for 95% Cl, mequiv ^e	Total excreted, mequiv	Тор limit Тоу 95%-С1. теquiv"	Total excreted, megaix	Төр limit for 95% Cl, ыссциіх ^ю	Total excreted, mequiv	Urine PH
2G11	Control	17		24		.1		27		6.5
	d-IIIB, 10		36		54		-		68	6.3
:;84:;	Control	20		21		::		21		ī.5
	d-IIIB, 10		46		44		2		-1-1	7.8
4116	Control	20		28		ā		30		7.2
	d-111B, 10		40		51		3		53	7.6
4118	Control	18		27		5		27		6.8
	d-IIIB, 10		36		46		-4		46	7.6
4127	Control	15		27		4		25		7.D
	<i>d-</i> 111B, 10		45		66		5		71	7.1
2113	Control	1:;		22		-4		25		6.1
	d-111B, 10		49		.		ti		85	7.1

TABLE VIII

DURETIC AND URINE ELECTROLYTE AND PH DETERMINATIONS WITH *d*-HIB QRALLY IN DOGS⁴

" 95% Cl from 29 tests (24 for dog 2L/3). All volume and electrolyte figures were adjusted to nearest whole numbers. " Conclusions: d-IIIB orally by capsule at 10 mg/kg produced significant dimetic and saluretic activity in all six dogs; significant kalimetic activity was observed in three of six dogs; in general, nrine pH values changed only slightly.

then washed with Et₂O. The combined Et₂O layer was washed with H₂O and NaCl solution, dried (Na₂SO₄), and evaporated to give 15 g of crude product. Crystallization from Et₂O-petroleum ether (bp 30-60°) afforded two crops: 5 g, mp 135–136°; 3.0 g, mp 134–135°. The combined yield was 65%.

2-Piperidinocyclohexanecarboxylic Acid Methyl and Ethyl Esters (IX). The cthyl 2-cyclohexmonecarboxylate obtained from Aldrich Chemical Co. contained 35-40% of the corresponding methyl ester. A solution of 300 g of the esters of 2-cyclohexanonecarboxylic acid, 450 g of piperidine, and 5.0 g of *p*-toluenesulfonic acid monohydrate in 4 l. of C₆H₆ was heated at reflux for 3.5 days using a Dean-Stark trap (collected 27 ml of H₂O). The mixture was concentrated in vacuo. The residue was dissolved in 400 ml of absolute EtOH. The solution was divided into three portions and each portion was hydrogenated in the presence of 1.5 g of PtO₂ at an initial pressure of 3.5 kg/cm². In 6 hr, about 80-90% of the required amount of hydrogen was absorbed. The runs were combined and filtered. The filtrate was evaporated in vacuo and the oil residue was dissolved in 24, of 10% HCl and ± 1 of Et₂O. The acid layer was separated and basified (20%) NaOH) and the oil product was extracted into Et₂O. The Et₂O layer was washed with H_2O , dried (Na₂SO₄), and concentrated to an oil. This oil was distilled (twice) to give 136.7 g of IX, bp 140~162° (12 mm). The mur spectrum is consistent with a mixture of ethyl and methyl esters of IX in ratio of 2:1. This ma-(crial was suitable for use in the subsequent Grignard reaction.

 $cis-\alpha,\alpha$ -Bis(o-methoxyphenyl)-2-piperidinocyclohexanemethanol (80). A solution of 12 g of IX in 100 ml of Et₂O was added over 30 min to a stirred refluxing mixture of o-methoxyphenylmagnesium bronide prepared from 37.5 g (0.20 mole) of obromoanisole and 4.9 g (0.2 g-atom) of Mg turnings in 250 ml of Et₂O. The mixture was refluxed for 2.5 hr and decomposed in the cold by the addition of cold H₂O followed by dilution with a solution of 200 g of NH₄Cl in 1.5 l, of H₂O. The mixture was extracted with CH₂Cl₂ which was washed with water, dried $1Na_2SO_4$), and evaporated to a solid. It was recrystallized from EtCOMe to give 12.5 g (60%) of **80**, mp 195– 196° . The analytical sample melted at 197– 198° (EtCOMe). This material was identical with a sample of **80** (prepared by method h) by mixture melting point and comparison of infrared spectra.

Resolution of cis-1-[2- $(p,\alpha$ -Dimethoxybenzyl)cyclohexyl]piperidine (2).—A hot solution of 16 g (0.0505 mole) of 2 and 19.5 g (0.0505 mole) of O.O-di-p-toluyl-n-tartaric acid in 25 ml of absolute EtOH and 25 ml of EtOAc was diluted with 200 ml of warm EtOAc and filtered. After standing overnight the l-base 1.-acid which separated was collected, washed with 50 ml of EtOAc, and dried in vacuo: 11.5 g. mp 151-152°. A sample was crystallized from EtOH-EtOAc; mp 159–1602, $|\alpha|^{24}$ D = 103° (CH₃OH). Anal. (CH₄SOH), C₁ H₂NO₁₀) C₁ H, N. Ten grams of the salt was converted to the *l*-base with 5% Na₂CO₃-CH₂Cl₂. The crude l-base was recrystallized twice from EtOH: 3.2 g, mp 106.5-107.5°, $[\alpha]^{24}$ p = 61° (CHCl_a). The hydrochloride (4) was crystallized from /-PrOH-Et₂O: mp 227-228° dec, $[\alpha]^{24}D = 58^{\circ}$ (CH₃OH). Anal. (C₂₀H₃₁NO₂ HCl) C, H, Cl, N. The d-base was prepared using O,O-di-p-toluyl-n-tartaric acid or by crystallization from EtOH of the crude free bases liberated from the mother liquors of the *l*-base 1-acid. The *d*-base melted at $106 - 107^{\circ}$ (EtOH), $[\alpha]^{24}$ D +65° (CHCl₂). The hydrochloride (3) was crystallized from *i*-PrOH-Et₂O: mp 230-231° dec, $[\alpha]^{24}D + 60^{\circ}$ (CH₃OH). Anal. ($C_{20}H_{31}NO_2 \cdot HCl$) C, H, Cl, N.

Acknowledgment.—The authors are indebted to R. A. Zandt and W. E. Brown for the diuretic and urine electrolyte studies and L. G. Laurian for laboratory assistance. We also wish to thank W. A. Freyburger, E. Smits, H. F. Kurtz, E. M. Glenn, R. J. Collins, W. Veldkamp, R. G. Carlson, and J. G. Ceru for the numerous other pharmacologic and toxicologic determinations.