methanolic KOH solution prepared from 0.1 g of KOH and 50 ml of MeOH. The reaction was heated to 60° for 1 hr, during which an additional 36 g (0.50 mole) of butyraldehyde was added since glpc indicated the butyraldehyde was undergoing self-condensation to 2-ethyl-2-hexenal. The mixture stood at room temperature for 2.5 days. Addition of 85% HaPO₄ metil acidic, stripping of the solvent, and vacuum distillation afforded 17 g 135%) of liquid VI, bp 125-128° (0.05 mm). Anal. (C₁₂H₁₄-Cl₂N) N; Cl: caled, 29.6; found, 28.5.

2-(2,4-Dichlorophenyl)-3-propylglycidamide (**73**). A stirred mixture of 6.0 g (0.025 mole) of VI, 5 ml of 30% H₂O₂, 10 ml of Na₂CO₃ solution, and 30 ml of AcMc was heated at 52° for 30 min. Cooling, filtration of the resultant white crystals, and re-

crystallization from E1OH gave 3.5 g of 73, mp 161–162°. The original filtrate afforded an additional 2.5 g of 73, mp 160–161°, from C_8H_{14} – C_8H_5 . The total yield was 6.0 g (88%).

Acknowledgments.—The authors wish to express their appreciation to Dr. W. E. Adcock, Mr. R. J. Convers, and Mr. H. G. Durham for their assistance in the preparation of several of the compounds described herein. to Mr. Paul Saliman and associates for the microanalyses, and to Mr. J. E. Hassen, Mr. L. T. Lais, and Mr. S. M. Stearns for their assistance in the biological evaluation of these compounds.

Analgetics. II. Relationship between Structure and Activity of Some β -Amino Ketones^{1,2}

M. S. Atwal, L. Bauer, S. N. Dixit, J. E. Gearien, M. Megahy, R. Morris, and C. Pokorny

Department of Chemistry, College of Pharmacy, University of Illinois at the Medical Center, Chicago, Illinois 60680

Received May 15, 1969

A number of substituted 1,2,3,4-tetrahydro-4-quinolinols and related compounds were prepared and found devoid of analystic activity. The successful synthesis of a series of β -aminopropiophenones, considered to be open-chain analogs of active 2,3-dihydro-4-quinolones, yielded compounds more potent than their closed-ring analogs.

The reported analgetic activity of several 2,3dihydro-4-quinolones⁴ suggested the synthesis and biological examination of a number of analogous compounds. Those studied include a series of 1,2,3,4tetrahydro-4-quinolinols (I), esters of two of these alcohols (II), a 2,3-dihydro-4-quinolone substituted at C-3 by an ω -N-pyrrolidinopropyl group (III), a series of β -aminopropiophenones (IV), and three 1-alkyloctahydro-4-quinolones (V).

$$R = H \text{ or } OCH$$

(1) This investigation was supported in whole by Public Health Service Grant AM 06432-03 from the National Institute of Arthritis and Metabolic Diseases.

(2) Partions of this report were abstracted from the Ph.D. dissertations of M. S. Atwal and M. Megaby, and the M.S. dissertation of C. Pokorny.

(3) M. S. Atwal, L. Baner, S. N. Dixit, J. E. Gearien, and R. W. Morris, J. Med. Chem., 8, 566 (1965).

$$\begin{split} & \mathrm{IV}, \mathrm{R} = \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \text{ or } \mathrm{OH} \\ & \mathrm{R}_{\mathrm{b}} \text{ and } \mathrm{R}_{\mathrm{b}} = \mathrm{H} \text{ or } \mathrm{CH}_{\mathrm{b}} \\ & \mathrm{R}_{\mathrm{b}} = \mathrm{alkylamino} \text{ or } \mathrm{dialkylamino} \end{split}$$

$\mathbf{V}, \mathbf{R} = \mathbf{C}\mathbf{H}_3, \mathbf{C}_2\mathbf{H}_5, n \cdot \mathbf{C}_3\mathbf{H}_7$

The 1,2,3,4-tetrahydro-4-quinolinols (Table I) were prepared from the corresponding ketone by NaBH₄ reduction (method A) or by the addition of a Grignard reagent (method B). While we were unable to esterify the tertiary alcohols, two of the secondary alcohols were converted successfully by CH₂CO to the corresponding acetates. A 2,3-dihydro-4-quinolone having a pyrrolidinopropyl group in the 3 position was prepared by aluminum isopropoxide oxidation of the previously reported³ 3-[3-(N-pyrrolidinopropyl)]-1,2,3,4-tetrahydro-4-quinolinol.

					I ABLE 1				
				Physic	AL PROPERTIES OF				
					R OH				
					$\sim X_{1}$				
				R.·					
				14	\bigvee				
					Î				
					$\dot{\mathbf{R}}_2$				
					Bp (mm) or	Yield,		Hydr	obromides
No.	R	\mathbf{R}_1	\mathbf{R}_2	Method	mp, ^{<i>a</i>} °C	%	Formula ^h	Mp.ª °C	Formula ^a
1	н	\mathbf{H}	Н	\mathbf{A}	155 - 157 (0.5),	72	$C_9H_{11}NO$	$85 - 86^{f}$	$C_9H_{12}BrNO$
					$78 - 79^{b}$				
2	Н	Н	C_6H_5CO	Α	$118 - 119^{b}$	69	$\mathrm{C}_{16}\mathrm{H}_{15}\mathrm{NO}_{2}$		
3	\mathbf{H}	Н	p-CH ₃ C ₆ H ₄ SO ₂	А	$197 - 198^{\circ}$	69	$\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{NO}_3\mathrm{S}$		
4	H	$7-OCH_3$	CH_3	А	$145 - 150 \ (0.2)$	65		83 - 84'	$\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{NO}_{2}\mathrm{Br}$
õ	Н	S-OCH ₃	CH_3	Α	$67-68^{d}$	63	$\mathrm{C}_{11}\mathrm{H}_{15}\mathrm{NO}_2$	111 - 112'	$\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{NO}_{2}\mathrm{Br}$
6	H	$7-OCH_3$	Н	Α		-58		151 - 152'	$C_{10}H_{14}NO_2Br$
7	11	$8-OCH_3$	Н	А		60		98-997	$C_{10}H_{14}NO_2Br$
8	H	$7-OCH_3$	$CH_2C_6H_5$	А		7 õ		121 - 122'	$\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{NO}_{2}\mathrm{Br}$
9	11	S-OCH ₃	$CH_2CH=CH_2$	А	65-66 ^d	55	$\mathrm{C}_{13}\mathrm{H}_{17}\mathrm{NO}_2$		
10	Н	Н	$CH_2CH=CH_2$	А	100-112(0,01)	58	$C_{u2}H_{15}NO$		
11	Н	$7-OCH_3$	$CH_2CH==CH_2$	Α	120-124(0.01)	58	$\mathrm{C}_{13}\mathrm{H}_{17}\mathrm{NO}_2$		
12	н	Н	CH_3	А	$135 - 140 \ (0.05)$	71	$C_{10}H_{13}NO$		
13	$C_6H_5CH_2$	Н	CH_3	в	$167 - 170 \ (0.2)$	58	$C_{17}H_{19}NO$	$206 - 208^{g}$	$C_{17}H_{20}BrNO$
14	$C_6H_{\mathfrak{d}}$	Н	CH_3	в	$165 - 170 \ (0.15)$	81	$C_{17}H_{17}NO$		
15	C₄H 9	н	CH_3	в	150-155(0,2)	55	$C_{14}H_{21}NO$		
16	C_6H_5	8-OCH₃	CH_3	В	165-167 (0.2),	67	$\mathrm{C}_{17}\mathrm{H}_{19}\mathrm{NO}_2$		
					83-84°				
17	C_6H_5	Н	p-CH ₃ C ₆ H ₄ SO ₂	В	$131 - 132^{e}$	76	$\mathrm{C}_{22}\mathrm{H}_{21}\mathrm{NO}_3\mathrm{S}$		
~ 4.11	,	1			· 1 6		Decision (111 - 1	for a EtOIL	d D toll:

^{*a*} All compounds were analyzed for C, H, N. ^{*b*} Recrystallized from C_6H_6 -ligroin. ^{*c*} Recrystallized from EtoH. ^{*d*} Recrystallized from EtoH. ^{*d*} Recrystallized from Lt₂O-ligroin. ^{*e*} Recrystallized from ligroin. ^{*f*} Recrystallized from MeOH-Et₂O. ^{*a*} Recrystallized from CHCl₃-Et₂O.

 β -Aminopropiophenones were prepared by treating the properly substituted acetophenone with CH₂O and the desired amines (Table II). β -Phenyl- β -aminopropiophenones were synthesized by the addition of the requisite amine to the corresponding chalcone (Table II).

The 1-alkyloctahydro-4-quinolones were prepared by the reaction of 1-acetylcyclohexene, formaldehyde, and the desired amine by a procedure similar to that reported by Grabe and Lutz.⁴ Since these amines or their salts in the absence of CH₂O failed to add to the double bond of 1-acetylcyclohexene, it appears that the expected Mannich reaction occurred first, followed by cyclization to give 1-alkyloctahydro-4-quinolones. 1-Methyloctahydro-4-quinolone has been previously characterized by Smissman, *et al.*,⁵ who, because of the presence of Bowman bands in its infrared spectrum, has suggested a *trans* structure. Similar bands are found in the infrared spectra of 1-ethyl- and 1-propyloctahydro-4-quinolone.

Biological Activity.—The compounds prepared in this study were evaluated for analgetic activity by the Haffner tail pinch method⁶ on female Swiss white mice and were administered by interperitoneal injection.

The 1,2,3,4-tetrahydro-4-quinolinols, the esters, and the 3-(N-pyrrolidinopropyl)-2,3-dihydroquinoline, despite their structural resemblance to the previously reported 2,3-dihydro-4-quinolones, failed to show analgetic activity. This lack of activity coupled with the low potency of the 2,3-dihydro-4-quinolones (ED_{50} values over 200 mg/kg) prompted us to examine the open-chain analogs of the biologically active 2,3-dihydro-4-quinolones. It was hoped that such compounds might achieve a better fit on the receptor site than would the previously examined compounds possessing a rigid ring system. In order to test this hypothesis, it was decided to prepare a series of substituted β aminopropiophenones (Table II). These compounds contain the ketone function, the benzene ring, and the amino group which were also present in the active 1methyl-2,3-dihydro-4-quinolones, but because of free rotation, the amino group can assume any number of spatial relationships with respect to the carbonyl group and the benzene ring. The importance of these groups to analgetic activity was at least partially established by evaluating the analgetic activity of a number of compounds analogous to 1-methyl-8-methoxy-2,3-dihydro-4-quinolone or its biologically active analogs but lacking in each case one of the groups which were assumed to be necessary for analgetic activity. For example, 1-methyl-8-methoxy-1,2,3,4-tetrahydroquinoline,⁷ a compound lacking the carbonyl group, was devoid of activity. The importance of the amino group and the size of the substituent attached to it was realized earlier when it was found that alterations of the alkyl group on the nitrogen drastically affected the activity of the substituted 2,3-dihydro-4-quinolones.³ Furthermore, when the amino group was deleted from otherwise similarly constituted ring systems, such as in 5- and 6-methoxy-1-tetralones, no analgetic properties could be detected by our testing procedure. The lack of analgetic activity in 1-methyl-, 1-ethyl-, and 1propyloctahydro-4-quinolones, as found by us, indicates the importance of the aromatic ring.

The presence of analgetic activity (Table II) in β -

⁽⁴⁾ C. A. Grabe and H. J. Lutz, Helv. Chim. Acta, 48, 791 (1963).

⁽⁵⁾ E. E. Smissman and M. Steinman, J. Med. Chem., 9, 455 (1966).

⁽⁶⁾ C. Bianchi and J. Franceschini, Brit. J. Phurmucol., 9, 280 (1954).

PHYSD AL PROPERTIES AND ANALGETIC PROPERTIES OF

Nn.	R	к,	R.	\mathbf{R}_{*}	Crystb solvent"	Мр, *С	yiebl	Focumla ⁶	Analgesia ED ₅₆ , ^c mg~kg	1.D _{‰.} ≓ ∍og∕kg
18	$4-OCH_3$	11	11	$N(CH_{b})_{2}$	Λ	$178 - 180^{a}$	48		1.511	275
19	$4-OCH_{3}$	11	11	$N(C_2H_3)_2$	А	119-120	6(1		i	1.80
20	4-0GH ₃	11	11	$N(CH_2)_5$	В	210-2115	23		110	137
21	$4-OCH_3$	11	11	$\rm NHCH_3$	С	155 4 572	-46		315	j
22	$4-OCH_3$	11	11	$\rm NHC_2H_3$	В	175-176	45	$C_{12}H_{14}CINO_2$	380	j
23	$4-OCH_3$	11	11	NHCH ₂ C ₆ H ₃	C	170 - 172	59	$C_{17}H_{20}CINO_2$	65	175
24	4-OCH.	11	11	$\rm NH(CH_2)C_8H_5$	\rightarrow	164-166	61	$C_{14}H_{22}CINO_2$	i	90
25	2-0H	11	11	$N(CH_3)_2$	В	t56-157	36	$C_{11}H_{16}CINO_2$	360	640
26	2-011	11	11	NHCH ₈	(⁺	153-155	37	$C_{1a}H_{14}CINO_2$	<u>(1</u>))	-11)(1
27	2-011	11	11	$\rm NHC_2H_3$	А	186 - 188	52	$C_{11}H_{16}CINO_2$	100	370
29	2-011	11	11	NHCH ₂ C ₆ H ₅	E	180 - 182	58	$C_{16}H_{18}CINO_2$	i	1611
29	11	CH_3	CH_{π}	$N(CH_3)_2$	F	137 1414	37		16	5.5
30	11	$C11_{i}$	CH_3	$N(C_2H_3)_2$	А	131133	36	$C_{15}H_{24}CINO$	52	187
31	11	CH_{4}	CH_{a}	NHCH ₃	E	133136	50	$C_{12}H_{13}CINO$	115	130
32	11	CH_3	CH_3	$\rm NHC_2H_3$	А	116 - 118	54	C:₅H₂₀CINO	i	155
				R	R ₁ - COCH ₂ CR ₃ R ₂	HCI				
33	11	11	$C_{\mu}\Pi_{\mu}$	${ m Ni}{ m CH}_{2h}$	А	127.420	61	$C_{20}H_{24}CINO$	j.	,i
34	11	11	p-CHaOCsHa	$N(CH_2)_5$	(i	169 - 172	51	$C_{21}H_{26}CINO_2$	238	345
35	4-OC11.	11	Call	NICHAE	F	159-161	37	C.H.CINO.	i i	170

^a A = absolute E(OII-dry Et₂O, B = absolute EtOH, C = MeOII-Me₂CO, 1) = MeOII, E = MeOII-C₆H₆, F = Me₂CO-dry Et₂O, G = Me₂CO-CHCl₃. ^b All compounds were analyzed for C, 11, N, Cl, and each element analyzed within 0.4% of the theoretical value. ^c ED₃₀ and 1.D₅₀ values were determined by intraperitoneal injection of the compound to female white mice. They were determined by the method of J. T. Litchfield and F. Wilcoxon, J. Pharmacol. Exptl. Thecap., **96**, 99 (1949). ^d C. Mannich and D. Lammering, Bec., **55**, 3510 (1922), reported mp 181^o. ^a A. N. Kost and V. V. Ershov, Vestn. Mask. Unw., Sec. Fiz. Mat. i Estesteen. Nauk, **10**, 115 (1955); Chem. Abstr., **50**, 11320 (1956), found mp 119^o. ^d A melting point of 211-213^o had previously been reported by T. Okudo, J. Pharm. Soc. Japan, **76**, 4 (1956); Chem. Abstr., **50**, 13 (1956). ^e I. Satoda, Yakugaka Zasshi, **80**, 1 (1960); Chem. Abstr., **54**, 12141 (1956); (1958), reported mp 138-140^o. ^d I. N. Nazarov, E. Cherkasova, and C. Chan, Zh. Obshch. Khim., **28**, 452 (1958); Chem. Abstr., **52**.

G

C

(

139 - 141

145~146

168 - 171

6.5

35

39

NHCIL

NHCH₂C₆H₅

NHCH₂C₆H₃

aminoacetophenones appears to give credence to the hypothesis that the rigid ring systems of the 2.3dihydroquinolones did not permit an optimal fit on a receptor site. A number of these open-chain \mathcal{B} -amino ketones (18, 20, 23, and 27) possessed analgetic activity considerably greater than the previously examined 2.3-dihydro-4-quinolones.

 $4-OCH_3$

11

 $4-0CH_3$

 \mathbf{H}

11

H

C₆H₅

p-CHaOC6H4

C.H.

36

37

38

While some of the β -aminopropiophenones exhibited greater analgetic activity than did the previously prepared 1-methyl-2,3-dihydro-4-quinolones, their action appears to be of short duration (less than 0.5 hr in mice). The structure of these compounds suggested that this rather fleeting action might be due to rapid detoxification possibly by (1) oxidation of the side chain or (2) elimination of the substituted amino group. In the hope of hindering such detoxification and providing compounds of longer duration of action, several α, α disubstituted β -aminopropiophenones were prepared and examined for analgesic activity. These had a duration of action of over 2 hr, and α . α -dimethyl- β -(dimethylamino)propiophenone (29) was the most potent compound prepared in this study. It had an ED_{50} of 16 mg/kg which is approximately twice that of morphine sulfate when determined under similar conditions.

 $C_{17}H_{29}CINO_2$

C₂₈H₂₄CINO₂

C29H24CINO2

An attempt to improve the activity of the compounds by substituting a phenyl group for a hydrogen atom on the β -carbon of a number of β -aminopropiophenones resulted in inactive compounds with the exception of $\beta - (p$ -methoxyphenyl)- $\beta - (1$ -piperidino)propiophenone (**34**) which had an ED₅₀ of 238 mg/kg.

Experimental Section⁸

1,2,3,4-Tetrahydro-4-quinolinols. Method A. Reduction of 2,3-Dihydro-4-quinolones.—NaBH₄ reduction of the appropriately substituted 2,3-dihydro-4-quinolones³ yielded the corresponding alcohols. This is illustrated by the procedure employed for the preparation of 1,2,3,5-tetrahydro-4-quinolinol.

To a stirred solution of 2,3-dihydro-4-quinolone (14.7 g, 0.1 mole) in anhydrous MeOII (100 ml) was gradually added NaBH, (6.8 g, 0.2 mole). The reaction mixture was kept at 0° for 18 hr, $H_{2}O$ (120 ml) was added and the mixture was extracted several

140

\$70

770

⁽⁸⁾ Melting points are non-computed and were obtained on a Thomas-Hoover melting point apparents. Analyses are indicated only by symbols of the elements, the analytical results obtained from these determinations are within 0.40% of the theoretical value.

times with Et₂O. The combined Et₂O extracts were washed with H₂O and dried (MgSO₄). After evaporation of the solvent, the residue was distilled to yield 10.6 g (72%) of a white solid. After recrystallization from C₆H₆-ligroin (bp 67-75°) it melted at 78-79°.

Method B. Grignard Reaction.—1,2,3,4-Tetrahydro-4-quinolinols with an alkyl or aryl group in the 4 position were prepared by the reaction of the appropriately substituted 2,3-dihydro-4quinolone³ with a Grignard reagent. The procedure employed for the synthesis of 1-methyl-4-benzyl-1,2,3,4-tetrahydro-4quinolinol will serve as an example.

In a flask in which the air has been replaced with N_2 was placed anhydrons Et₂O (20 ml) and Mg turnings (3.6 g, 0.15 g-atom). This suspension was stirred and a solution of benzyl chloride (19.0 g, 0.15 mole) in Et₂O (10 ml) was added dropwise. When the reaction ceased, the mixture was added slowly mader N_2 to a solution of 1-methyl-2,3-dihydro-4-quinolone (8.0 g, 0.05 mole) in anhydrous Et₂O (40 ml). After the reaction ceased, the solution was heated under reflux for 4 hr and was then cooled to 0° and decomposed by the addition of H₂O. The organic layer was separated, washed with H₂O, and dried (MgSO₄). The Et₂O was removed and the residue distilled to yield 7.3 g (58%) of 1methyl-4-benzyl-1,2,3,4-tetrahydro-4-quinolinol (see Table I).

1-Methyl-4-acetoxy-1,2,3,4-tetrahydroquinoline Hydrobromide.—A solution of 1-methyl-1,2,3,4-tetrahydro-4-quinolinol (1.5 g, 0.01 mole) in anhydrons Et₂O (150 ml) was cooled in an ice bath and a stream of CH₂CO was passed through the solution for 6 hr. The solvent was removed *in vacuo* at 0° and the residue was chromatographed from alumina (Alcoa F-20). After elution with a 1:3 mixture of C₆H₆-2-PrOH, 0.9 g (42%) of an oil was obtained. Anal. (C₁₂H₁₅NO₂).

The hydrobromide was prepared in the usual manner. After recrystallization from $CHCl_3-Et_2O$, it melted at 119–120°. *Anal.* ($C_{12}H_{16}BrNO_2$) C, H, N.

1-Methyl-8-methoxy-4-acetoxy-1,2,3,4-tetrahydroquinoline Hydrobromide.—A solution of 1-methyl-8-methoxy-1,2,3,4-tetrahydro-4-quinolinol (2.0 g, 0.008 nole) in Et₂O (100 ml) was treated with CH₂CO at 0° as described in the last preparation. After removal of most of the Et₂O, the residue was treated with anhydrons HBr to yield 2.0 g (63%) of the desired salt. After two recrystallizations from MeOH–Et₂O, the white solid melted at 106–107°. Anal. (C₁₈H₁₈NO₈Br) C, H, N.

3-[3-(N-Pyrrolidinopropyl)]-2,3-dihydro-4-quinolone.—To a solution of 3-[3-(N-pyrrolidinopropyl)]-1,2,3,4-tetrahydro-4-quinolinol³ (4.5 g, 0.017 mole) in Me₂CO (200 ml) and dry C₆H₆ (300 ml) was added aluminum isopropoxide (9.0 g, 0.044 mole). The resulting mixture was heated under reflux for 40 hr. Solvents were distilled off and the residue was extracted several times with Et₂O. The Et₂O extracts were washed with 5% NaOH, then with H₂O, and dried (Na₂SO₄). After removal of the Et₂O, the residue was recrystallized from Et₂O-ligroin to give colorless crystals (2.0 g, 45%), mp 102-103°. Anal. (C₁₆H₂₂N₂O) C, H, N.

1-Methyloctahydro-4-quinolone.—A mixture of 1-acetylcyclohexene (12.4 g, 0.1 mole), MeNH₂ HCl (6.7 g, 0.1 mole), and paraformaldehyde (5.0 g) in 50 ml of absolute EtOH was boiled under reflux for 16 hr. Solvents were removed and the mixture was treated with 10% HCl (100 ml). The resulting solution was extracted with Et₂O and the Et₂O was discarded. The aqueous layer was made alkaline with NaOH and was extracted with Et₂O. The Et₂O extract was dried (Na₂SO₄) and distilled. A fraction boiling at 85–92° (0.5 mm) was collected. It weighed 9.2 g (55%) and possessed an ir spectrum identical with that reported previously.⁵

1-Ethyloctahydro-4-quinolone.—A similar reaction of 1acetylcyclohexene (12.4 g, 0.1 mole), $EtNH_2$ ·HCl (8.2 g, 0.1 mole), and paraformaldehyde (5.0 g) in 50 ml of absolute ethanol as described above for 1-methyloctahydro-4-quinolone yielded upon distillation an oil (11.2 g, 62%), bp 93–99° (0.5 mm). A picrate of the oil was prepared in the usual manner, mp 182–184°. *Anal.* (C₁₇H₂₂N₄O₈) C, H, N.

1-Propyloctahydro-4-quinolone.—When 1-acetylcyclohexene (412.4 g, 0.1 mole), $PrNH_2$ (6.0 g, 0.1 mole), paraformaldehyde (5.0 g), and 10 ml of HCl were refluxed with 50 ml of absolute EtOH following the procedure employed for the synthesis of 1-methyloctahydro-4-quinolone, 10.5 g (54%) of the product was obtained. It boiled at 102-110° (0.5 mm).

A picrate was prepared by the usual procedure. It melted at $157-159^{\circ}$ after recrystallization from C₆H₆. Anal. (C₁₈H₂₄N₄O₈) C, H, N.

Synthesis of β -Aminopropiophenones.—A mixture of the appropriate acetophenone (0.1 mole) and the amine hydrochloride (0.15 mole) was heated in EtOH (15 ml) at the reflux. Paraformaldehyde (3.6 g) was added and the resulting mixture was heated for 7 hr. Another portion of paraformaldehyde (1.5 g) was added and the heating was continued for an additional 2 hr. At this time 1 ml of HCl was added and the heating was continued for an additional 2 hr. At this time 1 ml of HCl was added and the heating was continued for an additional 2 hr, after which the solvent was evaporated and the residue was dissolved in 20 ml of H₂O. This aqueous solution was washed twice with an equal volume of Et₂O, cooled, made alkaline with 50% NaOH solution, and extracted with Et₂O. The Et₂O solution was washed with water and dried (Na₂SO₄).

On passing HCl through the filtered Et_2O solution, the hydrochloride salt was precipitated and was purified by recrystallization.

 $\alpha_{,\alpha}$ -Dimethyl- β -aminopropiophenones were prepared from isobutyrophenones, Me₂NH·HCl, and paraformaldehyde by a procedure identical with that employed for the preparation of the β -aminopropiophenones.

Preparation of β -**Aryl**- β -**aminopropiophenones.**—The appropriate benzalacetophenone (0.06 mole) and the amine (0.08 mole) were dissolved in 50 ml of anhydrous Et₂O and heated under reflux for 10 hr. Toluene (20 ml) was added and the solvents were evaporated *in vacuo*. Additional portions of toluene were added and removed by distillation *in vacuo* until the distillate gave a negative test for the amine. The residue was then dissolved in dry Et₂O and the hydrochloride precipitated in the usual manner. The salt was purified by recrystallization.