The residual solid, mp 110–120°, $[\alpha]^{21}D + 10.7^{\circ}$ (c 1.0, H₂O), was crystallized from MeOH until the rotation became constant. Thus **29** (6.6 g, 45%) was obtained. The free base (+)-1 (**3**1), (+)-1 ·HCl (**33**), and (+)-1 hydrogen (-)-tartrate (**35**) were obtained by conventional methods.

(-)-1 Hydrogen (-)-Tartrate (30).—The retained filtrate and the crystallization mother liquors from the preparation of 29 were combined and evaporated. NaOH (2 N) and saturated aqueous

NaCl (100 ml) were added and the mixture was extracted with Et₂O (130 ml, three times). The extract yielded optically impure (-)-1 base, $[\alpha]^{2t}D = 30^{\circ}$ (c 2.2, EtOH). This (-)-1 base (13.1 g) in MeOH (60 ml) was added to a solution of (-)-tartaric acid (10.8 g) in MeOH (60 ml) at room temperature. The solid which separated, mp 151-154°, $[\alpha]^{2t}D = 56.5^{\circ}$ (c 1.06, H₂O), was crystallized from MeOH until the rotation became constant. Thus **30** (6.6 g, 45%) was obtained.

Hypocholesterolemic 5-Substituted Tetrazoles¹

RONALD L. BUCHANAN, VILMARS SPRANCMANIS, AND RICHARD A. PARTYKA

Research Division, Bristol Laboratories, Division of Bristol-Myers Company, Syracuse, New York 13201

Received March 17, 1969

A number of 5-aryloxyalkyl-, 5-arylthioalkyl-, and 5-anilinoalkyltetrazoles, along with a few other related 5-substituted tetrazoles, were synthesized by standard methods. A novel tetrazolylethylation reaction was used to synthesize 5- $[\beta$ -(3-chlorophenoxy)ethyl]tetrazole (53) and 5- $[\beta$ -(3-chlorophenylthio)ethyl]tetrazole (68). In general, the 5-arylthioalkyltetrazoles provided the best combination of high hypocholesterolemic activity and low toxicity.

It is well known that 5-substituted tetrazoles and their carboxylic acid analogs have comparable dissociation constants.^{2.3} In some cases this physiochemical analogy has been reflected in similar biological activities.⁴⁻⁹

In connection with other studies, it was discovered that 5-aryloxymethyltetrazoles (I) were inhibitors of cholesterol biosynthesis from acetate- 1^{-14} C *in vitro*.¹⁰ Follow-up *in vivo* studies revealed that these compounds, although somewhat toxic, lowered normal serum choles-

terol levels in rats. The plant growth hormone activity of some compounds of type I has been reported by McManus and Herbst.⁵ In view of the similarity of these compounds to the known serum lipid lowering agent ethyl α -(4-chlorophenoxy)isobutyrate (clofibrate),¹¹ whose active principle is the corresponding carboxylic acid, a number of compounds of general structure II were synthesized.

Ar XY
$$N$$
 N N $X = 0, S, SO2, NH
 $X = 0, S, SO2, NH$
 $Y = C_0 \rightarrow C_4$
alkyl (straight or
branched chain). NH
 $R = H_1 CH_2$$

- Some of these compounds have been described by R. L. Buchanan and R. A. Partyka, U. S. Patent 3,337,576 (1967).
- (2) F. R. Benson, Chem. Rev., 41, 1 (1947).

- (5) J. M. McManus and R. M. Herbst, J. Org. Chem., 24, 1464, (1959).
 (6) J. K. Elwood, R. M. Herbst, and G. L. Kilgour, J. Biol. Chem., 240, 2073 (1965).
- (7) B. Brouwer-van Straaten, D. Solinger, C. van de Westeringh, and H. Veldstra, Rec. Trav. Chim., 77, 1129 (1958).
- (8) G. F. Holland and J. N. Pereira, J. Med. Chem., 10, 149 (1967).
- (9) P. F. Juby, T. W. Hudyma, and M. Brown, *ibid.*, **11**, 111 (1968),
 (10) Unpublished results.
- (11) Atromid-S[®], CP1B; J. M. Thorp and W. S. Waring, *Nature*, **194**, 948 (1962), and many subsequent papers.

The bicyclic dihydrobenzofuran and benzothiophene derivatives III and IV (compounds 86 and 87 in Table III) were also prepared.

The object of these synthetic modifications was to obtain compounds which combined potent hypocholesterolemic activity with low toxicity. This paper describes the preparation and some physical properties of these 5-substituted tetrazoles along with the preliminary hypocholesterolemic screening data.

Chemistry.—In most cases the syntheses involved the preparation of the requisite nitriles (Table II), which were then converted to the desired tetrazoles (Table III) by standard methods.

Where carboxylic acids were used as starting materials, conversions to the corresponding amides (Table I) were effected by accepted methods. These amides were then converted to nitriles (Table II) either by vacuum distillation from $P_2O_{\delta}^{12}$ or by reaction with POCl₈ and Et₈N.⁹

The aryloxy- and arylthioacetonitriles were prepared by refluxing the appropriate phenols or thiophenols with chloroacetonitrile in a slurry of K_2CO_3 in acetone⁵ or in NaOMe-MeOH.¹³ Homologs (straight or branched chain) were prepared by base-induced condensations of the phenols or thiophenols with bromoalkylnitriles or acrylonitrile¹⁴ (Scheme I).

SCHEME I
R
R
R
ArXH + BrCH(CH₂)_nCN
$$\xrightarrow{\text{NaH}}$$
 ArXCH(CH₂)_nCN
R = H, CH₃, C₂H₅; X = O, S; n = 0, 2
ArXH + CH₂==CHCN $\xrightarrow{\text{Triton B}^{14}}$ ArX(CH₂)₂CN

(12) R. E. Kent and S. M. McElvain, "Organic Syntheses," Coll. Vol. III, John Wiley and Sons, Inc., New York, N. Y., 1955, p 493.

(13) R. Dijkstra and H. J. Backer, Rec. Trav. Chim., 73, 569 (1954).

⁽³⁾ R. M. Herlst, "Essays in Biochemistry," John Wiley and Sons, Inc., New York, N. Y., 1956, p 141.

⁽⁴⁾ C. van de Westeringh and H. Veldstra, Rec. Trav. Chim., 77, 1107 (1958).

⁽¹⁴⁾ S. A. Heininger (to Monsanto), U. S. Patent 2,819,291 (1958).

^a A, *i*-PrOH: B, Skellysolve B (bp 60–80°); C, CHCl₈. ^b H. Gilman and G. R. Wilder, J. Amer. Chem. Soc., **77**, 6644 (1955). ⁽¹⁾ C: enled, 43.80; found, 44.30. ^d See ref 25. ^e Used in the ernde state.

The anilinoacetonitriles were prepared by treating the appropriate anilines with formaldehyde bisulfite followed by KCN.¹⁵ 4-Chlorophenyl thiocyanate (**21**) and β -(2-chlorophenyl)propionitrile (**43**) were prepared as previously described.^{16,17}

The nitriles were converted to tetrazoles by treatment with NH_4N_3 in DMF^{18} or with $Al(N_3)_3$ in THF^{19} . The latter method proved to be the one of choice in the preparation of V (58, Table III). When NH_4N_3 -DMF was used, V was susceptible to cleavage by azide, giving the azidotetrazole VI as the major isolated product.

A novel tetrazolylethylatiou reaction sequence was used in the preparation of 5-[β -(3-chlorophenoxy)ethyl]tetrazole (VIII) (53, Table III) and 5-[β -(3chlorophenylthio)ethyl]tetrazole (IX) (68, Table III) as outlined in Scheme II. 5-(β -Chloroethyl)tetrazole or 3-chlorothiophenol in DMF afforded VIII and 1X.

Tetrazolylethylation proved to be the method of choice in the preparation of VIII. When 3-chlorophenol was cyanoethylated, the resulting 3-chlorophenoxypropionitrile was susceptible to spontaneous reverse Michael cleavage to starting materials. Reaction of this nitrile with NH_4N_3 -DMF also caused cleavage to 3-chlorophenol.

The method of Jensen and Pedersen²⁰ was used to prepare 5-(4-chlorobenzenesulfonamido)tetrazole (77) from 4-chlorobenzenesulfonyl chloride and 5-aminotetrazole monohydrate.

The N-methyltetrazoles X and XI (88 and 89, Table III) were prepared by treating the free tetrazole with CH_2N_2 in Et₂O. Structural assignments were made on the basis of the chemical shifts of the N-methyl protons in the mmr spectra.²¹

Scheme II

(VII) was prepared in good yield by the reaction of β -chloropropionitrile with Al(N₃)₃ in THF. Reaction of the sodium salt VII with the anion of 3-chlorophenol

(15) E. Knoevenagel, Ber., 37, 4073 (1904).

- (16) L. Gattermann and W. Haussknecht. ibid., 23, 738 11890).
- (17) A. D. Grebenyuk and I. P. Tsukervanik, Zb. Obsheh. Khim., 25, 286 (1955); J. Gen. Chem. USSR, 25, 269 (1955).

(18) W. G. Finnegan, R. A. Henry, and R. L. Lof-mist, J. Amer. Chem. Soc., 80, 3908 (1958).

(15) V. T. D'Orazio, Ph.D. Thesis, Michigan State University, 1963, p 20.

Structure-Activity Relationships.—In the hypocholesterolemic screen the tetrazoles were administered orally to rats once daily for 4 days (0.5% suspension in carboxymethylcellulose). Initial screening was carried out at a dose of 400 mg/kg. Serum cholesterol values were determined employing the Technicou auto-

(20) K. A. Jensen and C. Pedersen, Arthe Chem. Sciond., 15, 991 (1961), (21) J. U. Markgraf, W. T. Baelanann, and D. P. Hollis, J. Onf. Chem., 30, 3472 (1965).

TABLE II NITRILES $R_2 R_1$

No	P.	12	D.	Y	v	Method	Yield,	Recrystn	Mp or bp	Formula	Å no lyses
0	TT.	ы	11	0	CH	Δ	74 3	Sourcent	$72-78 (1)^{i}$	C.H.NO	2111219 505
10	н	Н	CI	ŏ	CH_2	A	90.6	A-B	44 - 47i	CHCINO	
11	н		U U	ő	CH_2	A	68.2	пD	80-03	C.H.CINO	
11		01	11	0	0112		00.2		$(0, 2-0, 3)^{j}$	0,11,01110	
12	CL	Ħ	Н	0	CH_{\bullet}	А	ā1 ā		$102-106 \ (0 \ 3)^{i}$	C.H.CINO	
13	CI	Ĉ	н	ŏ	CH_{\bullet}	Ă	99	в	85-88/	C.H.CLNO	
14	н.	\overline{CF}_{*}	н	ŏ	CH_{2}	A	84.8	2	81-85 (0, 1)	C ₀ H ₀ F ₀ NO	C. H. N
15	н	CI	н	ŏ	(CH ₂) ₂	F	35.6		$103-108^{k}$	C ₀ H ₀ CINO	0, 11, 11
				0	(= == 2);		0,10		(0.1)	0,11,01110	
16	Η	CI	H	0	$(CH_2)_3$	\mathbf{E}	62.2		113-120	C ₁₀ H ₁₀ CINO	C. H: N ^o
									(0.07)		, ,
17	Н	Н	Cl	0	$CH(CH_3)$	в	91.1		75-80	C ₉ H ₈ CiNO	C, H, Cl, N
									(0.15 - 0.17)		, , ,
18	l I	Cl	Н	0	$CH(CH_3)$	Е	67.1		83-88 (0.1)	C ₉ H ₈ CINO	C, H, N
19	Н	Cl	Н	0	$CH(C_2H_5)$	\mathbf{E}	26.5		76-82	C ₁₀ H ₁₀ CINO	H, Cl, N; C ^c
									(0.15 - 0.2)		
20	Н	Н	Cl	0	$\mathrm{C}(\mathrm{CH}_3)_2$	в	81.0		78 - 80 (0.4)	$C_{10}H_{10}CINO$	C, H, Cl, N
21	Η	Η	Cl	\mathbf{s}		Н	64.9		l	C,H4CINS	
22	Н	Н	Н	\mathbf{s}	CH_2	D	83.9		$118 - 123^{m}$	C_8H_7NS	
									(0.4)		
23	Н	Ы	Cl	\mathbf{s}	CH_2	Α	82.3	\mathbf{C}	$84.5 - 87^{n}$	$C_{8}H_{6}CINS$	
24	H	CI	Н	\mathbf{s}	CH_2	Α	70.3	D-A	50-52	C_8H_6CINS	C, H, Cl, N, S
25	\mathbf{Cl}	Η	\mathbf{H}	\mathbf{s}	CH_2	Α	79.8		$116 - 125^{n}$	C_8H_6CINS	
									(0.25 - 0.35)		
26	14	H	F	\mathbf{s}	CH_2	Α	54.7		84-92 (0.1)	C_8H_6FNS	C, H; N^d
27	Н	Н	NO_2	\mathbf{s}	CH_2	А	58.7	С	83.5-85.5, 158-	$\mathrm{C_8H_6N_2O_2S}$	С, Н, N, S
				<i></i>					170(0,1-0,2)		
28	H	H	$CH_{3}O$	\mathbf{s}	CH_2	A	97.4		l,n	C ₉ H ₉ NOS	
29	н	CF_3	Н	S	CH_2	А	75.5		83-94	$C_9H_6F_3NS$	С, Н, N
20			T ,						(0.03-0.3)		a
30	н	Ci	11	8	$(CH_2)_3$	E	70.7		129-132	$C_{10}H_{00}CINS$	C, H; N ^e
	IJ	T.J	CI	0	CH(CH)	D	07		(0.07)	O H OINS	
51	11	n	CI.	a	$On(On_3)$	D	01	A	$\pm 0 \pm 47$	C ₉ H ₈ CIN5	U, H, N
20	ы	CL	ττ	<u>ر</u>	CH(CH)	v	6.2 1		90-97(0.00)	C H CINS	CUNS
22		E E	H	2	$CH(CH_3)$	K II	65.5		82 5-86 (0.1)	C.H.CINS	C H C N S
33	Н	11	CILO	s	CH(CH ₃)	E	77 5		92.0-30(0.1) 98-103(0.15)	C H _v NOS	C H N S
35	н	Н	Cl	s	C(CH ₂)	B	81.4	А	51 5-53 5	CuHuCINS	$H C E C \notin N^4$
0.7			Ç.	N	0(0113)2	2	01.1		87-92 (0.15)	01011001110	11, 01, 0, II
36	н	H	Br	s	$C(CH_3)_{2}$	В	83	А	50-52	CoHoBrNS	C. H. N
37	Н	Н	Н	NH	CH_{2}	G	64.7		$130-140^{\nu}$	$C_8H_8N_9$	-,,
					-				(0.35 - 0.5)		
38	Н	Н	Cl	NH	CH_2	G	62.9	E-A	67-68.5	$C_8H_3ClN_2$	C, H, Cl, N
39	н	Cl	Н	\mathbf{NH}	CH_2	G	51.5		148 - 152	$C_8H_7ClN_2$	C, H, Cl, N
									(0.25 - 0.75)		, , ,
40	Η	NO_2	Н	NH	CH_2	\mathbf{C}	34.2	Ð	97-100	$C_8H_7N_3O_2$	С, Н, N
						G	10.8				
41	ΙI	Н	$CH_{3}O$	NH	CH_2	G	75.5	\mathbf{C}	75.5-78	$C_{9}H_{0}N_{2}O$	С, Н, N
42	Н	CF_3	Н	NH	CH_2	А	46.5		115-116 (0.1)	$C_{3}H_{7}F_{3}N_{2}$	С, Н, N
43	Cl	Н	Н		$(CH_2)_2$	Ι	18.9		150-157» (25)	C ₃ H ₈ CIN	
		OCH ₂ CN									
44						А	89.6		$137 - 160^{y} (0.5)$	$C_{12}H_9NO$	
		\checkmark									
	~										
45	ĨÌ					\mathbf{C}	73.9		$86-87^{l}(0,2)$	C ₉ H ₇ NO	
	\checkmark	-0 ⁻ -0N							()	• • -	
	Cł	~									
46	Ĭ.		c^{∞}			\mathbf{C}	r		l	C ₈ H ₄ CINS	
		~`s	··••							-	

^a A, Skellysolve B (bp 60-80°); B, 100% EtOH; C, *i*-PrOH; D, CHCl₃; E, EtOAc. ^b N: calcd, 7.16; found, 6.54. ^c C: calcd, 61.39; found, 60.87. ^d N: calcd, 8.38; found, 7.95. ^e N: calcd, 6.62; found, 6.06. ^f S: calcd, 16.59; found, 15.79. ^g C: calcd, 56.73; found, 56.28. ^h N: calcd, 6.62; found, 6.17. ⁱ See ref 5. ^j A. Campbell (to Parke, Davis & Co.), U. S. Patent 3,139,455 (1964). ^k H. Ufer (to I. G. Farben, A.-G.), German Patent 670,357 (1939). ^l Used in the crude state. ^m See ref 1:]. ⁿ G. H. Hitchings, E. A. Falco, and B. Roth (to Burroughs-Wellcome and Co., U.S.A.), U. S. Patent 2,953,567 (1960). ^o See ref 15. ^m See ref 17. ^g M. Julia, *Bull. Soc. Chim. Fr.*, 1363 (1956). ^r Not determined.

Тавье ПІ

							Yicki.	Recrystn			
N	R:	R_{2}	Ra	Х	У.	Method	96 1	s dven $(a$	Mp_{*} $^{\circ}C$	Formula	Analyses
47	П	Н	Н	()	CH_2	В	99	А	$123 - 126^{g}$	C ₈ H ₈ N₄O	
48	Н	11	CI	0	CH_2	В	83.6	A-B	$164 - 167^{d}$	C ₈ H ₇ CIN ₄ O	
49	Н	CI	Н	0	CH_2	В	99.8	A-B	117.5-119.5	C ₈ H ₇ ClN ₄ O	C, H, N
50	CI	Н	H	0	CH_2	в	96.4	С	127~1324	C ₈ H ₇ ClN ₄ O	, ,
51	CL	CI	П	0	CIL	В	91	D-Е	135-136	C.H.CLN.O	C. H. CL N
	П	CF.	H	Ô	ĊIL.	В	93.2	A-B or F-G	113 5-116	C.H-F.N.O	CHN
53	11	CI	ы	ŏ	(CILa)a	В	34 4	Fatt	128-130	C.H.CIN.0	C H N
.,,,		C .1		0	(0112)2	Ĉ	46 7		120 100	0.91190114407	0, 11, 14
5.1		(1	ы	Ο	(CHL)	Ř	53.8	Real 1	8486	C LLCN O	CUN
	11	11		0	CH(CH)	B	79 A	E C	04.08	C U CIN O	C II C N
	11			Ö Ö	$CH(CH_3)$	р 13	18.0	L C	108 5 100	$C \parallel C \parallel N \mid O$	C, Π, O, N
	11	OI -	11	0	$OII(OII_3)$		91.1 97.0	E~0	100.4-108	$C_9 I_9 CLN_4 U$	C, n, N
	11	51	11	0	O(OU)	10	01.0	1)=11	067-10	$C_0 H_1 O I N_4 O$	() II N
-08	11	11	CI	0	$\mathrm{U}(\mathrm{U}\mathrm{H}_3)_2$	A	00.±	F	130-139 dec	$C_0 H_1 CIN_4 U$	C, II, N
-99	11	11	CI 	2		В	2.1.4	F	ha2.5-154.5 dec	C ₇ H ₅ CIN ₄ S	
60	11	H	11	5	CH_2	В	80,9	ŀ	114-116	CsH ₈ N ₄ S	C, II, N, S
61	Н	П	CI	×.	$C\Pi_2$	В	82	A - B	158159	C ₈ H ₇ CIN ₄ S	C, II, N
62	П	CI	H	8	CH_2	В	86.7	1	126 - 128	C ₃ H ₅ CIN ₄ S	C, II, CI, N, S
63	CI	H	H	5	CH_2	в	72	D–A or F	104-107	$C_8H_5CIN_4S$	C, H, Cl, N, S
64	Н	11	ŀ.	S	CH_2	В	76.6	F	137.5~139	CsH , FN ∌ S	C, H, N
65	11	Н	NO.	8	CH_2	В	17.4	I	151-458	$C_8H_1N_5O_2S$	C, II, N, 8
66	11	11	CH_3O	S	CH_2	В	78.7	I	137-141	$C_{9}H_{10}N_{4}OS$	C, H. N
67	П	CF_3	П	3	CH_2	В	60.3	J-K	97.5-98.5	C ₉ H ₁ F ₄ N ₄ S	C, H, N
68	П	CI	П	s	$(CH_2)_2$	С	80.0	AI	99.5 - 102	C ₃ H ₃ CIN ₄ S	C. H. N
69	11	CI	H	S	(CH ₂) ₃	В	92.9	F-ti	78-81	CallnCINS	C. H. N
70	П	11	CI	s	CH(CH ₄)	в	85-2	I	169 5-171 dec	C.H.CIN.S	C. H. N. S
71	-11	CL	П	5	CH(CH _s)	B	80.5	F-G or I	115-117	C.H.CIN.S	C H CLN S
7.)	CI	11	11	4	CH(CH _a)	B	88.5	EG	114 5-115 5	C.H.CIN.S	CHNS
/ ,	- u	11	CHO	2	CH(CH)	В	06.1	1	155158	CHNOS	C H N S
	11	11. T1		57	C(CII)	15	12.9	F F (10, 1)	100-103	C DI CUN S	C = 0 $O = N$
/ + 	11	11	D.		$C(CH_{3})_{2}$	D D	~±0.0	L. L.	100 5 104 5	C II Davis	C II D ₂ N
(·) - ()	11	11	Dr	50	$O(O(1_3)_2)$		92.0 ()))	I.	194.0~194.0 019 * 01* * J.	CHONICS	C_{j} Π_{j} Π_{j} Π_{j} Π_{j} Π_{j}
7.0	11	11	CI	- SO ₂	- Crig	1)	00.2	1	-215.5-215.5 dec	C8ILOIN405	$(\Pi, N, S; G)$
TT	11	11	- CI	SO ₂	NH	上 12	13.2	DK	194-19a dee	$C_7H_6CIN_5O_2S$	C, H, N, S
78	11	11	11	NH	OH_2	B		1	150.5 153 dec	$C_3H_9N_9$	C, H, N
79	11	[]	CI	NΗ	CH_2	в	57.9	A	179.5-181 dec	C _s H _s CIN _a	C, H, CI, N
80	11	CI	H	\mathbf{NH}	CH_2	В	51.1	А	155~157 dec	$C_8H_8CIN_3$	C, H, Cl, N
81	H	NO_2	H	NΗ	CH_2	В	56.2	L	157 - 159	$\mathrm{C_8H_8N_6O_2}$	C, II, N
82	Н	11	CH_3O	ΝH	CH_2	В	87.9	A or I	145-138 dec	$C_{*}H_{0}N_{5}O$	C, II, N
83	H	CF_3	H	NH	CH_2	В	80.5	AI	171-174 dec	$C_2H_aF_aN_b$	C, H, N
84	CI	11	H		$(CH_2)_2$	В	51.5	С	98-100	$C_9H_9CIN_4$	C, II, CI, N
			Н								
		O(C)	H^\`\	N		•.	.				
85	~		N	« N		В	54.4	В	226–229 dec	$C_{c_2}H_{(0}N_4O)$	С, П, Х
	ĺ.	Ĩ									
		\sim									
		<u> </u>	н								
86			<u> </u>			В	90.5	F	147-148	$C_9H_8N_4O$	$H_{i} N; C^{a}$
	Ý	r u	N								
	14										
87		$ \downarrow $		$\sim_N \cdot 0$	$-5\Pi_{2}O$	В	19.5	I-K	205~206 dec	$C_9H_5CIN_4S$	$C, H, N, S; H_2O^p$
		\sim	S. II N							$0.5 \mathrm{H}_{2}\mathrm{O}$	
	- (1										
	\sim	Ν.	CH	Nav.			-				
22	\		, in the second			F.	79.2		130-133(0,1)	C ₉ H ₉ CIN₄S	С, Н, N, S
			(\ <u> </u>		н						
	. 4			~							
89	- Į	<u>}</u> :	SCH	`_ <u>`</u>		F	20.8	I	6567	C ₉ H ₉ CIN ₄ S	C, H, N, S
	\. .		N	- N					97 T.		
			nc 🗇								

* A, H₂O; B, EtOH; C, tohnene: D, EtOAc; E, petrolenn ether (bp 30–60°); F, CHCI₈; G, CCI,; H, *n*-pentane: I, *i*-PrOH; J, C₄H₈; K, Skellysolve B (bp 60–80°). ^b C: calcd, 37.14; found, 37.63. ^c C: calcd, 57.44; found, 57.85. ^e See ref 18. ^e E, Lieber and T, Enkoji, J. Org. Chem., **26**, 4472 (1961). ^f H₂O: calcd, 3.67; found, 4.13 (Karl Fischer). ^e Screened in the crude state.

- 1	~~ ~	
	1111	
	000	

TABLE IV Hypocholesterolemic Activity of 5-Substituted Tetrazoles

	Dose,	Serum cholesterol.		Dose,	Serum cholesterol,
No.	mg/kg	% change	No.	mg/kg	% change
47	400	+10	68	400	- 44
48	400	$(Toxic)^a$	69	400	-25
	100	-14	70	400	-32
49	400	(Toxic)	71	400	-31
	100	-26			
50	400	(Toxic)	72	400	-20
	100	-6	73	400	-6
51	400	(Toxic)	74	400	8
	100	-21	75	400	0
52	400	-38	76	400	-11
53	400	- 52	77	400	-24
	100	-7			
54	400	- 36	78	400	-19
55	400	- 33	79	400	- 20
56	400	-13	80	400	-12
57	400	-26	81	400	+2
58	400	-13	82	400	-12
59	400	-8	.83	400	-17
60	400	+3	84	400	-38
61	400	-40	85	300	+3
62	400	-36	86	400	0
	200	-24	87	400	-20
63	400	- 22	88	400	+8
64	400	-17	89	400	+15
6ō	400	-18	CPIB	400	-28
66	400	-24		200	-18
67	400	-31			

^a Drug-related death of at least one of the test animals.

analyzer method (N24AP) and are recorded in Table IV. In general, compounds that lowered serum cholesterol by at least 20% were considered active.

In general, the most active compounds are the 5aryloxymethyl- and 5-arylthiomethyltetrazoles, the latter being somewhat less toxic. An electronegative substituent on the benzene ring is necessary for optimal activity (compare 61 with 60 and 66), but no direct relationship between the degree of electronegativity of the substituent and hypocholesterolemic activity was observed. Lengthening of the carbon chain to C_3 between the hetero atom and the tetrazole ring results in no loss of activity. In the oxygen series, chain extension also lowers toxicity (compare 49 with 53 and Most of the compounds which incorporate a **54**). single methyl or ethyl group on the carbon adjacent to the tetrazole ring retain activity (i.e., 55, 57, 70, 71, and 72). whereas dimethyl analogs 58, 74, and 75 are nearly inactive. Alkylation of the tetrazole ring as in 88 and 89 destroys activity, indicating that an anionic center is required. Oxidation of one of the thio analogs (61) to the corresponding sulfone (76) resulted in substantially reduced activity.

5-(3-Chlorophenylthiomethyl)tetrazole (**62**) gave consistent results in dose-response studies and was selected for further evaluation.²² It had a minimal effective dose (20% lowering of serum cholesterol) of 200 mg/kg, with an oral LD_{50} of 2200 mg/kg in rats. From Table IV it can be seen that compound **62** had activity comparable to the standard drug clofibrate (CPIB) in this assay.

Experimental Section

The melting points were obtained in capillary tubes with a Thomas-Hoover Uni-Melt apparatus and are uncorrected. Where analyses are indicated only by symbols of the elements or functions (Tables I-III), analytical results obtained for those elements or functions were within $\pm 0.4\%$ of the theoretical values. Nurr spectra (CDCl₃) were obtained using a Varian Associates Model A-60 spectrometer. Chemical shifts (δ) were measured downfield from TMS.

Amides (Table I). Method A.—Compounds 1-5 and 8 were prepared by procedures similar to the one described by Kent and McElvain for the preparation of isobutyramide from isobutyric acid.²³ -Cohorobenzo[b]thiophene-2-carboxylic acid was prepared by the method of Campaigne and Cline for benzo[b]thiophene-2-carboxylic acid.²⁴

Method B.—Compound 7 was prepared as described by Stoermer and König.²⁵

Method C.—Knoevenagel's method for the preparation of phenylaminoacetonitrile,¹⁶ when used in the synthesis of the 3-nitro analog, resulted in the amide **6** (17%) along with the desired nitrile (40) (10.8%).

Nitriles (Table II). Method A.—Compounds 9–14, 23–29, 42, and 44 were prepared by procedures similar to the one described by McManus and Herbst for the preparation of phenoxyacetonitrile (9).⁵

Method B.—Compounds 17, 20, 35, and 36 were prepared by the method of Teague and Short for the preparation of nicotinonitrile.²⁶

Method C.—Compounds 40, 45, and 46 were prepared as described by Juby, *et al.*, for the preparation of 2-(2,6-dichloro-3-methylanilino)benzonitrile.⁹

Method D.—Compound 22 was prepared according to the procedure of Dijkstra and Backer. 13

Method E.—Compounds 16, 18, 19, 30, and 32-34 were prepared by the method described by Genzer, et al., for the

^{(22) (}a) More detailed accounts of the pharmacology and biochemistry of 5-(3-chlorophenylthiomethyl)tetrazole will be reported elsewhere. (b) Initial clinical findings have been reported by D. T. Nash, L. Gross, W. Haw, and K. Agre, J. Clin. Pharmacol., 8, 377 (1968).

⁽²³⁾ R. E. Kent and S. M. McElvain, "Organic Syntheses," Coll. Vol. 111, John Wiley and Sons, Inc., New York, N. Y., 1955, p 490.

⁽²⁴⁾ E. Campaigne and R. E. Cline, J. Org. Chem., 21, 32, 39 (1956).

⁽²⁵⁾ R. Stoermer and W. König, Ber., 39, 492 (1906).

⁽²⁶⁾ P. C. Teague and W. A. Short, "Organic Syntheses," Coll. Vol. IV, John Wiley and Sons, Inc., New York, N. Y., 1963, p 706.

preparation of γ -(*p*-nitrophenoxy) propyl bromide from the corresponding phenol and 1,3-dibromopropane.²⁷

Method F.—Compound 15 was prepared by the method of Heininger in the preparation of 3-(*p*-chlorophenoxy)propionitrile⁽⁴⁾ except that the condensing agent used was Triton B instead of NaOMe.

Method G.—Compounds **37-41** were prepared as described by Knoevenagel for phenylaminoacetonitrile (37).⁶ (Note: see also under method C for amides.)

Method H.--Compound 21 was prepared by the method of Gattermann and Hausknecht in the preparation of phereyl thiocyanate, 16

Method I.—The method of Greberyak and Tsukervardk^{σ} was used to prepare companied **43**.

Tetrazoles (Table III). Method A. —Compounds 58 and 74 were prepared by a procedure reported by D'Orazio for pt-5t α -phthalimido- β -phenylethyl)tetrazole.⁵⁹

Method B.--Compounds 47-57, 59-67, 69-73, 75, and 78-87 were prepared by the procedure of Finnegan, *et al.*, for 5-propyltetrazole.⁶⁸

Method C.— Compounds 53 and 68 were prepared by a novel method as described for 5-1 β -(3-chlorophenylthio)ethyl]tetrazole (53). To a mixture of 3-chloropropionitrile (17.9 g, 0.2 mole) and NaN₄ (39 g, 0.6 mole) in 50 ml of dry THF was added a solution of anhydrons AlCl₃ (30 g, 0.22 mole) in 400 ml of THF. The resultant mixture was stirred and heated at reflux for 22 hr. The mixture was cooled in an ice bath, and ahout 200 ml of H₃O was added dropwise and with stirring. The THF was evaporated under reduced pressure, and the residual aqueous solution was acidified with concentrated HCl, saturated with NaCl, and extracted with three portions of Et₃O. The combined extracts were dried (MgSO₄) and evaporated, yielding 20.9 g (78.9%) of a yellow solid, pp 97–104°. Recrystallization from CHCl₈ gave white needles of 5-(β -chloroethyl)tetrazole, pp 103.5-106.5°.

To a solution of 3-chlorophenol (2.58 g, 0.02 mole r in 70 ml of dry DMF cooled in an ice bath were added a 55.8%. NaH dispersion (3.08 g, equivalent to 0.04 mole of NaH) in mineral oil and 5-(β -chloroethyl)tetrazole (2.66 g, 0.02 mole). After the vigorons H₂ evolution had ceased the cooling was discontinued, and the mixture was stirred at room temperature until the H₂ evolution had completely ceased. After addition of about 0.2 g of NaH tratalyst), the mixture was stirred and heated at *ca*. 100° for 18 hr. About 30 ml of H₂O was added and the mixture was concentrated under reduced pressure on a steam bath to a small volume. The residual solution was acidified with concentrated HCI and extracted with Et₂O. The Et₂O extracts were combined

(27) J. D. Genzer, C. P. Huttner, and B. P. van Wessen, J. Amer. Chem-Sue., 73, 3150 (1951). and extracted with a saturated aqueous NaHCO₃ solution. Upon acidification of the NaHCO₃ extracts, 2.1 g of a white solid (46.7%) was obtained. Crystallization (CHCl₅-CCl₄) afforded 53, mp 128-130°.

Method D. Compound **76** was prepared from compound **61** by the procedure of Gilman and Beaber for the oxidation of *u*-butyl μ -tohyl salfide to the corresponding sulfone.²⁸

Method E. -Compound **77** was prepared from 5-aminotetrazole monohydrate and 4-chlorobenzenesulfonyl chloride by a procedure described by Jenser, and Pedersen for the preparation of 5-acetylsulfandhunidotetrazole.²⁰

Method F. -5-(3-Chlorophenylthiomethyl)-2-methyltetrazole (88) and 5-(3-chlorophenylthiomethyl)-4-methyltetrazole (89) were obtained by treating 5-(3-chlorophenylthiomethyl)tetrazole (62) (9.07 g) with CH₂N₂ in Et₂O and separating the resulting mixture on a calandiac column. The 2-methyl isomer 88 was clated with C₄H₈ (7.65 g, 7).2% (7) and further purified by distillation through a Vigreax column: bp 130-133° (0.1 mn); mm (CDCl₅) δ 4.30 (3 H, CH₅N₂). The 4-methyl isomer 89 was cluted with CHCl₄ (2.00 g, 20.8%), and crystallization from isPrOH gave white crystals, mp 65-67°, mm (CDCl₅) δ 4.00 (3 H, CH₅N<).

2-Azido-2-(5-tetrazolyl)propane (VI).—To a mixture of 4chlorophenoxyisobutyronitrile (5.0 g, 25.6 mmoles) and NaN₃ (5.0 g, 77 mmoles) was added a solution of anhydraus AlCla (4.66 g, 35 mmoles) in 70 ml of dry THP. The mixture was stirred and headed at reflax for 48 hr. The THF was distilled from the reaction mixture while sufficient H₂O was added dropwise to maintain a constant volume. An oil separated from the aqueous solution. Ether and a $10C_{11}$ aqueous NaOH solution were added and the layers were separated. The alkaline extract was acidited with 6 N HCI and then extracted with Et₂O and CHCla. The combined organic extracts were dried (MgSO₄) and evaporated, affording a yellow oil. Crystallization from CCl₄ gave 0.87 g of a white solid (22^{-7}). Recrystallization from CHCla-CCl₄ gave white needles of VI: mp 87–90° dec; ir ν_{max} (KBr) at 3440, 3000, 2880, 2740, 2720, 2630, 2140, 4270, 1160, 1050 cm β ; mar peak (CDCl₄) at δ 1.9 (6 H, singlet, C(CH₄)₂). *And.* Caled for C₄H₂N₇; C, 31.36; H, 4.61; N, 64.03. Found: C, 31.55; H, 4.59; N, 64.20.

Acknowledgments.—The authors wish to express their gratitude to Dr. F. S. Caruso and his staff for the pharmacological data. We also thank Mr. R. B. Babel and Mr. M. Brown for technical assistance, and the analytical and spectroscopic departments for their services.

(28) H. Gilman and N. J. Berőler, 5667., 47, 1449 (1925).

Some Substituted Phenylalkanoic Acids and N-Substituted Malonanilic, Succinanilic, and Anilinoalkanoic Acids as Potential Antiinflammatory Agents

D. Evans, A. S. L. Mackantosh, and S. S. Szinai

Lilly Research Centre Ltd., Windlesham, Survey, England

Received November 18, 1968

Thirty one of the title compounds were prepared and, together with some of the intermediate esters and natriles, were screened for antiinflammatory activity. None of the compounds showed appreciable activity in the carrageenin-induced edema test, but thirteen of the acids were effective in stabilizing a bovine serum albumin fraction against heat coagulation.

Whitehouse and Skidmore¹ have suggested that acidic antiinflammatory drugs may exert their therapeutic effect by interaction with the essential lysyl ϵ -amino groups of the enzyme systems implicated in the inflammatory response of animal tissues. We consider that

 M. W. Whitehouse and I. F. Skidmore, J. Phorm. Pharment., 17, 688 (1965). this reaction need not be restricted to the ionic type of interaction envisaged by these investigators and have examined the reaction between phenylbutazone 1 and certain aliphatic amines which would act as crude models for the lysyl ϵ -amino group.

We have found that phenylbutazone reacts smoothly with *n*-butylamine and *n*-pentylamine at 100° to give