Method R. α -(*m*-Trifluoromethylanilino)phenylacetic Acid. A solution of *m*-trifluoromethylaniline (12.0 g) and α -bromophenylacetic acid (6.5 g) in EtOH (100 ml) was heated at 100° for 5 hr, and the solvent was evaporated at 40°. The residue was equilibrated between H₂O (100 ml) and Et₂O (100 ml), and the organic layer was extracted with 10% NaOH (three 75-ml portions). The combined canstic extracts were extracted repeatedly with Et₂O and neutralized by the addition of HCl. A colorless oil separated which crystallized on standing as white crystals (6.0 g).

Method S. α - $(\alpha$ -Trifluoromethylanilino)-*p*-isopropylphenylacetic Acid.—Ethyl *p*-isopropylmandelate (9.0 g) and SOCI₂ (6.0 g) were mixed and heated at 100° for 1 hr after the initial vigorous reaction had subsided. Evaporation of the excess SOCI₂ at 50° yielded the fairly pure α -chloro compound (8.5 g).

This material (8.0 g) and *m*-triffuoromethylaniline (12.0 g) were stirred at 100° for 8 hr. EtOH (100 ml) was added and the heating was continued for 2 hr. The EtOH was evaporated and the residue dissolved in Et₂O (100 ml). The organic solution was washed successively with 2 N HCl and H₂O, dried (Na₂SO₄), and evaporated. This afforded ethyl α -(*m*-triffuoromethylanilino)-*p*-isopropylphenylacetate as a brown oil (9.7 g). This was dissolved in EtOH (10 ml) and added to a solution of KOH (2.8 g) in H₂O (10 ml). The mixture was stirred nuder gentle reflux for 3 hr, concentrated to half-volume and diluted with H₂O (50 ml). The elear aqueous solution was neutralized by the addition of HCl and extracted with Et₂O. The dried (Na₂SO₄) Et₂O solution on evaporation yielded an oil (7.9 g). Trituration of the latter with

petroleum ether (bp 40~60°) yielded a white solid (4.64 g) which was the pure expected amino acid.

Method T. 2-(α -Anilinotolyl)pentanoic Acid. Benzylidineaniline (36.2 g) and ethyl 2-bromopentanoate (42.0 g) gave 1.4diphenyl-3-*a*-propyl-2-azetidinone, mp 90–92°, by the method of Gilman and Specter.¹⁵ The yield was 32 g (60%) after recrystallization from MeOII. Anal. (C₁₈II₁₂NO) C, II, N.

A solution of KOH (6.0 g) in H₂O (10 ml) was added to a solution of the azetidinone (10.0 g) in EtOH (100 ml). The mixture was stirred under reflux for 4 hr and evaporated. The residue was dissolved in H₂O and extracted twice with toluene. The aqueous solution was neutralized with HCI and the precipitant was filtered off. Recrystallization of this solid from aqueous McOH, and then EtOH, yielded the expected acid (9.7 g, 90%), mp 118-120°.

Method U. σ -(2,3-Dimethylphenoxy)phenylacetic Acid. E(hyl α -bromophenylace(ate (12.15 g) and 2.3-dimethylphenol (20.0 g) gave ethyl α -(2,3-dimethylphenoxy)phenylace(ate (5.3 g, 37 G)) bp 171-473^{*} (1 mm), by the method of Guss.¹⁴ Anad. (C₁₈H₂₀O₃) C, H, N. Hydrolysis of this ester yielded the corresponding acid.

Acknowledgment.—We wish to thank our colleagues in the Pharmacology Department of our Company for the biological results.

(13) H. Gilman and M. Spieter, J. Abi, Chem. Soc., 65, 2255 (19)
(14) C. O. Guss, *ibid.*, 71, 3460 (1949).

Heterocyclic Substituted Ureas. I. Immunosuppression and Virus Inhibition by Benzimidazoleureas

CHARLES J. PAGET, KIEM KISNER, ROBERT L. STONE, AND DONALD C. DELONG

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana

Received April 17, 1969

In an effort to define the structure -activity relationships (SAR) for immunosuppression and antiviral activity, a series of 1-(benzimidazol-2-yl)-3-substituted meas and their close analogs have been synthesized. Many of these compounds display potent immunosuppression in the sheep crythrocyte test in mice, the most effective being approximately 2000 times as active as azathioprine. In addition, these compounds have potent *in vivo* antiviral activity in several viral diseases. We have defined the antiviral SAR using mice infected with Coxsackie A21 virus (Coe).

Our interest in immunosuppressive drugs has been stimulated by an increasing number of reports of the use of azathioprine and other immunosuppressive agents in the treatment of lupus erythematosus,¹ rheumatoid arthritis,² and glomerulonephritis.³ These represent just a few of the many disease states which are considered to be of an autoimmune⁴ nature and therefore amenable to immunosuppressant therapy.

In our laboratories we have searched for nontoxic compounds which alter an animal's immune responses and avoid the disadvantages of the drugs now in use. We wish to report a series of benzimidazoleureas which are potent immunosuppressives and which in addition are potent protective agents against several experimental virus infections in mice. This series was extended to determine more specifically the structural requirements for maximum specific activity in each biological system.

Inimunosuppressive activity has not, to our knowledge, been reported for any benzimidazoles. Antiviral activity has been reported for urea derivatives⁵ and for some benzimidazole derivatives.⁵ However, most of the previous antiviral work was based on tissue culture systems, and the compounds were not protective or showed minimal activity in animal infections.

Chemistry.—The required 2-aminobenzimidazoles were either purchased or prepared from the appropriately substituted *o*-diamine and cyanogen bromide by the method of Leonard, *et al.*⁶ The N-substituted 2-aminobenzimidazoles were prepared by autoclaving 2-chlorobenzimidazole and an appropriate primary amine.

These 2-aminobenzimidazoles were in turn treated with an appropriately substituted isocyanate or carbamoyl chloride in an inert solvent to give the de-

 ^{(1) (}a) Brit, Med. J., 1, 650 (1967); (b) N. E. Gary, J. F. Maher, and
G. E. Schreiner, Cliu. Res., 14, 490 (1966).
(2) (a) V. K. Philips, W. Bergen, and N. O. Ruthermich, Arthritis Rheu-

^{(2) (}a) V. K. Pbilips, W. Bergen, and N. O. Ruthermich, Arthritis Rhenout., 10, 305 (1067); (d) R. Guenther, Wiev, Mei, Wochschr., 117, 985 (1067); (e) M. F. Kabn and M. Bedoiseau, Prov. Roy. Soc. Med., 60, 130 (1067); (e) A. F. Michael, R. L. Vernier, K. N. Drutminond, M. I. Levitt, R. C. Herlman, A. J. Fish, and R. A. Guod, New Engl. J. Med., 276, 817 (1067); (e) D. A. Adams, A. Gordon, and M. H. Moxwell, J. Am. Med. Assoc., 199, 459 (1067).

 ^{(3) (}a) Y. C. Tsao, Brit. Med. J., 11, 1657 (1066); (b) R. H. R. White,
Proc. R_{θH}, Soc. Med., 60, 1164 (1967); (c) Con. Med. Assoc. J., 96, 52 (1967).
(4) J. N. Humphrey and R. G. White, "Immunology for Students of Medi-

rine," 2011 ed. F. A. Davis Co., Philadelphia, Pa., 1964.

⁽⁵⁾ P. W. Sadler, Pharmacol. Rev., 15, 423 (1963).

 ⁽⁶⁾ N. J. Leonard, D. Y. Curtin, and K. M. Beck, J. Amer. Chem. Soc., 69, 2459 (1047).

TABLE I INTERMEDIATE 2-AMINOBENZIMIDAZOLES

				Y		
No.	х	Y	Z	Mp. °C	Formula	Recrystn solvent
1	5-Cl	Н	H	$158 - 161^{a}$	$C_7H_5ClN_3$	EtOAc-Skelly B
2	$5-CF_3$	Н	Н	$152 - 155^{b}$	$C_8H_6F_3N_3$	Et ₂ O–Skelly B
3	$5-CH_3$	Н	Н	$197 - 199^{\circ}$	$C_8H_9N_3$	Me ₂ CO–Skelly B
4	5-COOC ₂ H ₅	Н	Н	194 - 197	$C_{10}H_{11}N_3O_2$	Me ₂ CO–Skelly B
5	5,6-CH ₂ O ₂	Н	Н	235 - 239	$C_8H_1N_3O_2$	EtOAc→Skelly B
6	$4-NO_2$	11	11	271 - 274	$C_7H_5N_4O$	Me ₂ CO ₅ Skelly B
7	CCC ⁵ ₆	Н	И	297-299d	$C_{11}H_9N_3$	Me ₂ C()–Skelly B
8		Н	Н	218-221*	$\mathrm{C}_{11}\mathrm{H}_9\mathrm{N}_3$	EtOAc-Skelly B
9	Н	CH_3	Н	196-1981	$C_8H_9N_3$	EtOAc-Skelly B
10	H	H	CH_3	176 - 178	$C_8H_9N_3$	Me ₂ CO-hexane
11	Н	$\mathrm{C}_{6}\mathrm{H}_{5}$	H	$149 - 153^{g}$	$C_{12}H_{11}N_3$	EtOAc–Skelly B

^a N. J. Leonard, D. Y. Austin, and K. M. Beck [J. Amer. Chem. Soc., **69**, 2459 (1947)] report mp 167–168°. ^b B. C. Bishop, A. S. Jones, and J. C. Tatlow [J. Chem. Soc., 3076 (1964)] report mp 156–158°. ^c L. Joseph [J. Med. Chem., **6**, 601 (1963)] reports 203–204°: N. P. Bednyagina and I. Ya Postovskii [Zh. Obshch. Khim., **30**, 1431 (1960)] report mp 200–201°. ^d D. J. Brown [J. Chem. Soc., 1974 (1958)] reports mp 301°. ^e G. B. Crippa and S. Maffei [Gazz. Chim. Ital., **71**, 418 (1941); Chem. Abstr., **37**, 120 (1943)] report mp 212.5°. ^f L. Joseph [J. Med. Chem., **6**, 601 (1963)] reports mp 202–203°; N. P. Bednyagina and I. Ya Postovskii [Zh. Obshch. Khim., **30**, 1431 (1960); Chem. Abstr., **55**, 1596 (1961)] report mp 200–201°. ^e L. Joseph [J. Med Chem., **6**, 601 (1963)] reports mp 154–155°; A. M. Simonov and A. F. Pozharskii [Zh. Obshch. Khim., **33**, 2350 (1963); Chem. Abstr., **59**, 1397 (1963)] report mp 151–152°.

TABLE II^a

KNOWN IMMUNOSUPPRESSANTS AND POSSIBLE METABOLITES OF 2-AMINOBENZIMIDAZOLES

^a All compounds obtained from commercial sources.

sired benzimidazoleureas. The activities and melting points are given in Tables I–IV.

Pharmacology. Evaluation of Antiviral Activity.— Compounds in this series have shown *in vivo* activity against a wide spectrum of viruses,⁷ e.g., polio, vaccinia, and influenza. The activity against Coxsackie A21 (Coe) infection in mice appeared to give the most quantitative measure of activity for structure-activity studies. Coe virus, isolated by Lennette, *et al.*,⁸ from patients with mild respiratory illness, produces muscle degeneration and flaccid paralysis in addition to respiratory involvement in mice.9 Activity was initially detected using multiple doses, but studies to determine the effect of dose schedules indicated that single doses were almost as effective. ED_{50} values reported in this paper are based on a single dose given intraperitoneally to mice 3 hr before intraperitoneal infection with about 1LD₁₀₀ of virus. Mouse-adapted Coe virus carried in this laboratory by passage in mice was used in a dilution, usually 1:20, of the supernatant of a 10%gluteal muscle suspension. Dilution of virus suspension to give $1LD_{100}$ was determined by titration in mice. Compounds were administered as suspensions in 0.25 ml of sterile 3% "Emulphor" in water at levels of 16, 32, 64, and 128 mg/kg. Groups of 10 SPF white Swiss mice weighing 11–13 g were used for each drug level, and three to five groups of ten mice were used as controls. Control mice usually died on the 5th to 8th day postinfection. Animals alive on the 10th day were considered survivors if free from paralysis. The ED_{50} was calculated based on number of survivors by the method of Reed and Muench.¹⁰

Procedure for Determining Immunosuppression.—A modification of the procedure of Nathan, et al.,¹¹ was employed to determine immunosuppressive activity. Groups of five 20-g Swiss mice were injected intraperitoneally with 0.2 ml of 1:80 standardized suspensions of sheep red blood cells (ca. 5×10^7 RBC). At 72, 48, and 24 hr before the red cell injections, test compounds were injected by the same route. Eight

⁽⁷⁾ D. C. DeLong, L. A. Baker, J. D. Nelson, and C. J. Paget, unpublished results.

⁽⁸⁾ E. H. Lennette, V. L. Fox, N. J. Schmidt, and J. O. Culver, Am. J. Hyg., 68, 272 (1959).

⁽⁹⁾ G. E. Underwood, C. A. Wisner, S. D. Weed, and J. E. Gray, *ibid.*, **76**, 124 (1962).

⁽¹⁰⁾ L. J. Reed and H. Muench, ibid., 27, 493 (1938).

⁽¹¹⁾ H. C. Nathan, S. Bieber, G. B. Elion, and G. H. Hitchings, Proc. Soc. Exptl. Biol. Med., 107, 796 (1961).

TABLE III

4-CBENZIMIDAZOL-2-YL)-G-SUBSTITUTED UREAS

						1		Cne viras	Drug level (mg/kg × 3) for fourfold or greater
No.	Х	Y	Z	R	R'	Mp. *C	Formula	EDse. ing/kg	immunosuppression
l	11	11	Н	11	C_6H_4	329-330	$\mathrm{C}_{14}\mathrm{H}_{12}\mathrm{N}_4\mathrm{O}^a$	128	12.5
2	11	П	11	$C_6 \Pi_5$	C_6H_4	178 - 180	$\mathrm{C}_{20}\mathrm{H}_{16}\mathrm{N}_4\mathrm{O}$	85	100.0
3	11	11	Н	11	$1-C_{10}\Pi_7$	333	$C_{18}H_{14}N_4O$	23	3.1
-1	11	11	11	H	4-ClC ₆ H ₄	349 - 351	$C_{14}H_{11}ClN_4O$	47	12.5
5	11	11	11	Н	$3-\mathrm{ClC_6H_4}$	344-345	$C_{14}H_{11}CIN_4O$	69	3.1
6	11	11	11	11	$2-ClC_6H_4$	331-333	$C_{14}H_{11}CIN_4O$	32	12^{-5}
ĩ	11	11	11	11	$4-\mathrm{BrC}_6\mathrm{H}_4$	342343	$C_{14}H_{11}BrN_4O$	70	100, 0
8	11	П	Н	Ħ	2_5 -Cl ₂ C ₆ H _a	348 - 349	$\mathrm{C}_{14}\mathrm{H}_{10}\mathrm{Cl}_2\mathrm{N}_4\mathrm{O}$	32	0.8
5	11	Н	11	11	$3,4$ - $Cl_2C_6H_3$	337 - 338	$C_{14}H_{10}Cl_2N_4O$	46	0.8
10	11	11	11	11	$4-\mathrm{FC}_6\mathrm{H}_4$	338 - 339	$C_{14}H_{11}FN_4O$	26	6.2
11	11	11	11	H	$2-\mathrm{FC}_6\mathrm{H}_4$	347 - 348	$C_{14}H_{11}FN_4O$	38	1.6
12	11	11	11	H	$-1-\mathrm{NO}_2\mathrm{C_6H_4}$	301 - 302	$\mathrm{C}_{14}\mathrm{H}_{11}\mathrm{N}_5\mathrm{O}_3$	78	>100.0
13	11	11	11	11	$3-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	317 - 318	$C_{14}H_{11}N_5O_3$	84	>100.0
14	11	П	11	11	$2\text{-NO}_2\text{C}_5\Pi_4$	324 - 325	$\mathrm{C}_{14}\mathrm{H}_{11}\mathrm{N}_{5}\mathrm{O}_{3}$	32	>100.0
15	11	Ш	11	П	$3-\mathrm{NH}_2\mathrm{C}_6\mathrm{H}_4$	530331	$C_{14}H_{13}N_{2}O$	84	>100.0
16	11	11	11	11	$3-\mathrm{CF}_3\mathrm{C}_6\mathrm{H}_4$	336~337	$\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{F}_3\mathrm{N}_4\mathrm{O}$	152	>100.0
17	11	П	11	11	$4-CH_3C_6H_4$	342 - 343	$C_{13}H_{14}N_4O$:12	3.2
18	11	П	Н	11	$2\text{-}\mathrm{CH}_4\mathrm{C}_6\mathrm{H}_4$	339-340	$C_{13}H_{14}N_4O$	100	25.0
19	11	Н	11	11	CH_{a}	322-325	$C_{*}H_{10}N_{4}O$	239	100.0
20	11	Н	11	11	$CH(CH_{a})_{2}$	351 - 352	$C_{14}H_{14}N_4O$	60	12.5
21	Н	П	11	CH_{a}	CH_3	174(175)	$C_{19}H_{12}N_4O$	117	>400.0
22	11	Н	11	11	CH₂CH==CH₂	335-336	$C_{11}H_{12}N_4O$	157	100.0
23	11	H	11	11	$C_4 H_9$	345-344	$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_4\mathrm{O}$	132	>100.0
24	11	Н	H	Н	$C(C\Pi_3)_3$	349	$C_{12}H_{16}N_4O$	47	50.0
25	11	Н	11	11	$(CH_2)_H CH_3$	$300 \mathrm{dec}$	$\mathrm{C}_{\mathfrak{B}\mathfrak{D}}\mathrm{H}_{\mathfrak{S}\mathfrak{P}}\mathbf{N}_{4}\mathrm{O}$	71	100.0
26	11	Н	11	11	$(CH_2)_{17}CH_3$	292/294	$C_{26}H_{44}N_4O$	45	>100.0
27	H	11	11	11	Cyclohexyl	335336	$C_{14}H_{15}N_4O$	16	>100.0
28	11	11	11	11	Cycloheptyl	311 - 313	$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{N}_4\mathrm{O}$	130	>100.0
29	11	11	11	11	Cyclooetyl	$322 \cdot 324$	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{N}_{4}\mathrm{O}$	182	100.0
30	11	П	11	11	Adamantyl	327 - 328	$C_{18}H_{22}N_4O$	26	>100.0
31	5-(4	Н	11	11	C_6H_5	339-340	$C_{14}\Pi_{11}CIN_4O$	72	25.0
32	5-(1	Н	11	11	1-C ₁₀ H ₇	342 - 343	$C_{15}H_{13}CIN_4O$	67	12.5
33	5-CI	11	11	11	$3-\mathrm{ClC_{B}H_{4}}$	329-330	$C_{14}H_{10}Cl_2N_4O$	64	>100.0
34	5-Cl	11	11	11	$2-\mathrm{ClC_6H_4}$	340	$C_{14}H_{10}Cl_{2}N_{4}O$	> 128	100.0
35	5-Cl	11	11	11	$4-\mathrm{FC}_{6}\mathrm{H}_{4}$	348 - 350	$C_{14}H_{10}CIFN_4O$	$<\!16$	12.5
36	5-C1	П	11	- 11	$2\text{-}\mathrm{FC}_6\mathrm{H}_4$	339 - 340	$C_{14}H_{10}CIEN_4O$	36	6.2
37	5-C1	11	11	11	$3-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	294 - 296	$C_{14}H_{10}CIN_5O_8$	30	>100.0
38	5-C1	11	11	11	$2-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	289-291	$C_{14}H_{16}CIN_5O_3$	>128	100.0
39	5-C1	11	11	11	4-CH ₃ C ₆ H ₄	319-320	$C_{15}\Pi_{13}CIN_4O$	3-1	12.5
40	5-C1	11	11	11	B-CH₃C₀H₄	315-316	$C_{13}\Pi_{13}CIN_4O$	28	>100.0
-11	o-Cl	11	- 11	11	C_6H_{11}	319 320	$C_{14}\Pi_{17}CLN_4O$	>128	>100.4
42	5-COOC ₂ II.	11	11	11	CaH ₅	321-328	$C_{17} H_{16} N_4 O_3$.30	20.0
13	5-COOC ₂ IL	11	11	11	$1-C_{10}H_{\tau}$	315-310	$C_{21}D_8N_4O_3$	27	50.0
	S-COOC ₂ II.	11	11	11	$4-CIC_8H_4$	309-311	$C_{17} D_{3} C D_{4} O$	20	50.0 50.0
4.0	5-COOC ₂ H ₅	11	11	11	$3-\mathrm{ClC}_6\mathrm{Fl}_4$	308-310	$C_{17} P_{15} O L N_4 O_3$	22	0.5
-16	5-COOC ₂ 11a	11	11	11	$2-C1C_611_4$	308-309	$C_{17} U_{15} C_{1N_4} O_3$	-02 10	0.8
47	5-COOC <u>#11</u> 8	11	11	11	$4 - F C_6 H_4$	010-011	$C_{17}T_{15}P_{15}P_{15}O_{3}$	+0	O () ()
48		11	11	11	$2 - \Gamma \cup_{6} \Pi_{4}$	010-010	$C_1^{\dagger} D_1^{5} \Gamma_1 N_4 O_3$	10	0.4 2.1
-19		11	11	11	$+ NO_2 C_6 \Gamma I_4$	279~280	$C_{17} D_{15} N_5 O_7$	10	0.1 95 h
50	$-5-COOC_{2}11_{3}$	11	11	11	$3-NO_2O_6\Pi_4$	995-997 Jou	$C H \mathbf{N} O$	11	_0.0 1.8
-01 0	5-COOC-11, 5-COOC-11	11	11	11	$2 - NO_2O_6 \Pi_4$ 2 NUC 11	020~027 (let 077 079	C H N O	20	20.0
-14 	5-COOC <u>#11</u> 5-COOCE11	11	11	11	OF N H2C6114	205-207	$C_{11} C_{13} $	69 61	100.0
- 1-) 5-1	5 COOC 11	11	11	11		000-001	C H N O	20	100.0
04 55	5 COOC 11	11	11	11	9-CH2CH	041/2040 20142015	$C_{18} L_{18} N_4 O_3$ $C_{12} H_2 N_1 O_2$	+) 4 1 ()	95 D
-0-0 5-0	5 (YAAC) 11	11	11	11		310900 310911	C.H.N.O	50 15	100 1
-17	いていればい。	11	11	11	C.H.	309-310	$C_{11} + 22 + 34O_3$ $C_{12} + H_{11} + F_{2}N_{2}O_{2}$	198	19.5
58	5 CF	11	11	11	C BALLA La Chailte	307. 308	C.,H.,F.N.O		50 0
20	5.CR	11	- 11	11	3-CIC-H	390-399	CIAL CIEN O	30	>100.0
63	5-CF	11	П	11	CaHu	308-309	CuAH FoNO	59	100.0
61	5.6-(CH-)-	11	H	11	CaH.	336-337	CinHisNiO	30	12 5
	- ともとに アンマート デタンガ	••		••	- *** * *		1 APR 1 A C T T T T T		

Immunosuppressive Heterocyclic Ureas

1013

TABLE III (Continued)

									Dring level $(ing/kg \times 3)$
								Coordinate	for fourfold
No.	х	Y	Z	R	Rʻ	Mp, °C	Formula	ED ₅₀ , mg/kg	or greater immunosuppression
62	5,6-(CH ₃)»	н	Н	Н	$1 - C_{10}H_7$	298-300	$C_{20}H_{18}N_4O$	17	50.0
63	$5_{6}-(CH_{3})_{2}$	Н	Η	Н	$4-ClC_6H_4$	351 - 352	$C_{16}H_{15}CIN_4O$	26	12.5
64	$5_{6}-(CH_{3})_{2}$	Н	H	Н	3-CIC ₆ H ₄	342 - 343	C ₁₆ H ₁₅ ClN ₄ O	87	>100.0
65	5,6-(CH ₃) ₂	Н	Η	Н	3,4-Cl ₂ C ₆ H ₃	343-345	$C_{16}H_{14}Cl_2N_4O$	20	100.0
661	5,6-(CH ₃) ₂	11	Н	Н	2_1 5- $Cl_2C_6H_3$	336-337	$C_{16}H_{14}Cl_2N_4O$	>128	25.0
67	$5_{1}6-(CH_{3})_{2}$	Н	Н	Η	4-FC ₆ H ₄	$227-228 \deg$	$C_{16}H_{15}FN_4O$	43	0.4
68	$5,6-(CH_3)_2$	Н	Н	Н	$2-FC_6H_4$	321 - 322	$C_{16}H_{15}FN_4O$	44	1.6
69	$5_16 - (CH_3)_2$	Н	Н	Н	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	297 - 299	$\mathrm{C}_{16}\mathrm{H}_{15}\mathrm{N}_{5}\mathrm{O}_{3}$	53	25.0
70	$5_16 - (CH_3)_2$	Н	Η	Н	$3-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	349 - 350	$\mathrm{C}_{16}\mathrm{H}_{15}\mathrm{N}_{5}\mathrm{O}_{3}$	22	>100.0
71	$5_16-(CH_3)_2$	Н	H.	H	$2-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	327 - 329	$C_{16}H_{15}N_5O_3$	74	100.0
72	$5.6-(CH_3)_2$	Η	Н	Н	$4-CH_3C_6H_4$	344 - 345	$C_{17}H_{18}N_4O$	119	>100.0
73	$5_16-(CH_3)_2$	Н	Н	Н	$3-CH_3C_6H_4$	329-330	$C_{17}H_{18}N_4O$	45	>100.0
74	$5,6-(CH_3)_2$	H	Н	H	$2\text{-}\mathrm{CH_3C_6H_4}$	342-345	$C_{17}H_{18}N_4O$	80	12.5
75	$5.6 - (CH_3)_2$	Н	\mathbf{H}	Н	C_6H_{11}	325 - 326	$\mathrm{C_{16}H_{22}N_4O}$	90	50.0
76	$5,6-Cl_2$	Н	Н	Н	$C^{6}H^{2}$	364 - 365	$\mathrm{C}_{14}\mathrm{H}_{10}\mathrm{Cl}_{2}\mathrm{N}_{4}\mathrm{O}$	88	12.5
77	$5,6-Cl_2$	Н	Н	Н	$1-C_{10}H_{7}$	339 - 340	$\mathrm{C}_{18}\mathrm{H}_{12}\mathrm{Cl}_{2}\mathrm{N}_{4}\mathrm{O}$	> 128	25.0
78	$5,6-Cl_2$	Н	Н	Н	C_6H_{11}	363 - 364	$\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{Cl}_2\mathrm{N}_4\mathrm{O}$	> 128	50.0
79	5-CH ₃	Н	Н	Н	C_6H_5	327 - 328	$C_{15}H_{14}N_4O$	> 128	50.0
80	$5-CH_2$	Н	Н	Н	$1-C_{10}H_{7}$	315 - 316	$C_{1u}H_{16}N_4O$	<16	0.4
81	5-CH ₃	Н	Н	Н	C_6H_{11}	320 - 321	$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{N}_4\mathrm{O}$	174	>100.0
82	$4-\mathrm{NO}_2$	Н	Η	Н	C_6H_{a}	361 - 362	$\mathrm{C}_{14}\mathrm{H}_{11}\mathrm{N}_{5}\mathrm{O}_{3}$	101	251.0
83	$4-NO_2$	Н	Н	Н	$2\text{-FC}_6\text{H}_4$	355-356	$\mathrm{C}_{14}\mathrm{H}_{10}\mathrm{FN}_{3}\mathrm{O}_{3}$	> 128	3.1
84	$4-NO_2$	Н	Н	Н	CH_3	340-341	$C_9H_9N_5O_3$	128	25.0
85	$4-NO_2$	Н	Н	Н	$CH(CH_3)_2$	372-373	$C_{11}H_{13}N_5O_3$	30	0.8
86	4-NO ₂	Н	H	Н	C_6H_{11}	335	$C_{14}H_{17}N_5O_3$	<16	6.2
87	$5,6-\mathrm{CH}_2\mathrm{O}_2$	11	11	11	C_6H_5	Chars at 350	$C_{15}H_{12}N_4O_3$	51	100.0
88	ā,6-CH ₂ O ₂	H	H	H	1-C ₁₀ H;	300	$C_{19}H_{14}N_4O_3$	30	50.0
89	a_16 -CH ₂ O ₂	H	H	H	C_6H_{11}	Chars at 300	$C_{15}H_{18}N_4O_3$	00	>100.0
90	H	H	CH_3	Н	C ₆ H ₅	189-190	$C_{15}H_{14}N_4O$	>128	ā0.0
91	H	H	CH ₃	C_6H_5	C_6H_5	1(4-1(0)	$G_{21}H_{18}N_4O$	86	50.0 5 100 0
92	F1	H	CH ₃	H	$3-ClC_6H_4$	108-109	$C_{15}H_{13}CIN_4O$		>100.0
93	H IT	н	CH_3		$4-\text{ClU}_6\text{H}_*$	190-196	$G_{15}H_{13}CIN_4O$	(8	a0.0
94	17	11	CH_3	11 11	$\Gamma - C_{10} \Pi_7$	200-200	$C_{19}H_{16}N_4O$	01 - > 64 4 mile 100	24.0
90	л ц	п	U_{13}	п u	$C_6 \Pi_{11}$	170-177	$C_{15}\Pi_{20}N_4O$	>04, toxic 128	-10.0 70.0
90 07	л п	C H	п u	п u	$1 C \Psi$	170-171	$C_{20}\Pi_{16}N_4O$	41	30.0 > 50.0
91	л Н	$C_{6}\Pi_{5}$	и Ц	н Ц	$C H_{\odot}$	166-167	C H N O	04 \198	2:10:0
90	H	$C_{6}\Pi_{3}$	н Н	CH	CH_{0}	108-100	$C_{20}\Pi_{20}\Pi_{4}O$	>128	25.0
100	H	CH.	н	СП3 Н	C.H.	181-189	$C_{16}\Pi_{16}\Pi_{4}O$	104	241.0
101	н	CH_{a}	н	н	L-C.H-	238-230	$C_{15}\Pi_{14}\Pi_{4}O$	N128	100.0
102	H	CH	н	н	3-ClC.H	190-191	C ₁ H ₁₆ CIN.O	18	6.2
102	H	CH ₂	н	н	4-ClCeH	199-200	CuHuclN ₄ O	64	100.0
104	Н	CH ³	н	CH	CH_{2}	156-157	CuHuNO	>128	50.0
104	~ ~ ³	0		0	0		0111114140	2 1 =0	10.0
105		Η	Н	Н	C_6H_5	362-364	$\mathrm{C}_{18}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{O}$	31	>100.0
106		H	Н	Н	$1-C_{10}H_{7}$	330 dec	$\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N_4O}$	12	50.0
107	$\operatorname{OC}_{6}^{5}$	Н	Н	Η	$4\text{-}\mathrm{FC}_{6}\mathrm{H}_{4}$	364-365	$\mathrm{C}_{18}\mathrm{H}_{13}\mathrm{FN}_{4}\mathrm{O}$	110	ā0.0
108		Н	Н	Н	C_6H_{11}	252-254	$C_{18}H_{20}N_4O$	-13	>100.0
109		Н	Н	Н	C_6H_5	348-349	$\mathrm{C}_{18}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O}$	108	ā0.0
110	$\operatorname{Ot}_{5}^{\tilde{4}}$	Н	Н	Н	1-C ₁₀ H;	331-332	$\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N}_{4}\mathrm{O}$	76	12.5
111		Н	Н	Н	$3-\mathrm{ClC}_6\mathrm{H}_4$	354-355	$\mathrm{C}_{18}\mathrm{H}_{13}\mathrm{ClN_4O}$	22	0.05
112		Н	Н	Н	4-FC ₆ H₄	349-350	$\mathrm{C}_{18}\mathrm{H}_{13}\mathrm{FN}_4\mathrm{O}$	95	25.0

^a G. Pellizzari [Gazz. Chim. Ital., 51, I, 89 (1921)] reported the synthesis of this compound by another method; the melting point given was 250°.

Drag level

	TABLE IV	
Some Close Analogs of	THE 1-(BENZIMIDAZOL-2-YC)-3-SUBSTITUTED UREAS	

No.	Structure	Mp. *C	Formula	Cor virus EDso. mg/kg	(mg, kg × 3) for futriohl or greater inumntosuppression
1	$\bigcup_{\substack{N \\ H}} X \longrightarrow CH^{NHCONH} - \bigcup_{\substack{N \\ H}} Y$	205-206	$\mathrm{C}_{15}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O}$	25	>100
2		246-247	$C_{1,i}H_{16}N_{e}O$. "()	>100
3	$\bigcup_{n} \sum_{n}^{N} - \operatorname{Ch} \operatorname{Sh}(\operatorname{oxn} - \sqrt{-})$	248-249	$\mathrm{C}_{15}\mathrm{H}_{29}\mathrm{N}_4\mathrm{O}$	32	>100
1	$\bigcup_{H} \sum_{H}^{N} Nif(t) - \bigcup_{H} \sum_{H} Nif(t) - \bigcup_{H} \sum_{H} \sum_{H} Nif(t) - \bigcup_{H} \sum_{H} \sum_{$	234-235"	$C_{14}\Pi_{31}N_3O$	81	ЮO
5		246247*	$\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{CIN}_{3}\mathrm{O}$	128	100
ti		278-280*	$(\Gamma_4 (\Pi_{43} N_3 t)$	50	100
7	$\bigcirc T_{H}^{N} \xrightarrow{N} nncnn \xrightarrow{N}$	161-162%	$C_{14}\Pi_{18}N_{0}$	64. toxic 128	100
8	[N → NHCONN-	218-220	$C_{10}\Pi_{10}N_3$	>128	>100
<u>(</u>)		<u>225-226</u>	C18114 N 48	< 16	6.2
10		242243	$\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{N}_{4}\mathrm{S}$	<16	12.5

^a All recrystallized from MeOH–Me₂CO. ^b N. Sa(o, S. Matsumoto, A. Tsunoda, and N. Ishida, J. Antibiotics (Tokyo), **19**, 172 (1966); Chem. Abstr., **65**, 9363g (1966).

days after the red cell antigen injections, the mice were blcd, and the sera from each five-mouse group were pooled. Antibody determinations were made on the serum pools by a hemagglutination pattern procedure, and comparisons were made between treated and control animals. Our results are reported as the minimum levels (mg/kg \times 3) of drug necessary to suppress the hemagglutination titer by a factor of fourfold or greater from control titers. Generally, somewhat higher doses than these resulted in suppression of antibody to undetectable levels.

Immunosuppression Structure-Activity Relationships.

Immunosuppressive activity in general was more sensitive to structural changes than the antiviral activity. In an effort to be sure that a hydrolysis product or simple metabolite was not the active species, we tested compounds 3-5 and 7 of Table II. These

compounds emphasize the fact that the major structural requirement of this series is an $N_{\gamma}N'$ -substituted benzimidazoleurea. Azathioprine and cortisone (1 and 2) are shown in Table II for comparison as examples of a postantigen and preantigen optimally active drug. The following observations about structure-activity relationships can be made regarding the compounds reported herein.

When the benzimidazole ring is unsubstituted and $R = H_1$ then R' must be aryl or substituted aryl to obtain activity (1, Table III). This activity decreases of R and R' both are aryl (2).

Generally, when R and X are H, and R' is an aliphatic group, the compounds are inactive at 100 mg (23, 26, 27, 30). The two exceptions to this, the isopropyl and *t*-bntyl compounds (20, 24), are active at 12.5 and 50 mg, respectively. They both differ from the other aliphatic groups in being compact branched structures.

One X substituent, the 4-NO₂, yielded aliphatic ureas of outstanding activity when $\mathbf{R}' = \mathbf{CH}_3$ (25 mg) or $\mathbf{R}' = \mathbf{CH}(\mathbf{CH}_3)_2$ (0.8 mg) (84, 85). All examples when X was not 4-NO₂ gave less active aliphatic derivatives.

The N of the urea must be attached directly to the imidazole ring (n = 0), for when n = 1 the activity is decreased (1-3. Table IV).

Conversion of the urea to a thiourea decreases the activity by one-half (9, 10, Table IV).

When Y = H (1 and 3-5, Table III) is changed to

 $Y = CH_3$ (100-103), aryl substituents at R cause a decrease in activity in three out of four compounds tested. The one alkyl example (Y = H; R and R' = CH₃) goes from inactive at 400 mg to active at 50 mg when Z = H (21) is changed to Z = CH₃ (104).

In the case where Y = phenyl, aryl substituents at R' (96, 97) decrease activity while alkyl substituents at R' increase activity (98, 99).

Removal of the benzene ring from the benzimidazole structure gives inactive compounds (8, Table IV).

Substitution of an amide for the urea function decreases the activity by roughly eightfold (4-6, Table IV). Conversion of the urea to a guanidine decreases activity and increases toxicity (7, Table IV).

Antiviral Structure-Activity Relationships.—The antiviral activity was less sensitive to structural change. This activity seemed to depend on the gross shape of the molecule and each compound's over-all physical properties, *e.g.*, solubility, rather than on fine adjustments of structure.

A few exceptions were noted, one being a definite preference for the cyclohexyl and adamantyl groups in the aliphatic series (27, 30, Table III). Some other trends in structure-activity relationship could be noted. The activity was usually best when R was α -naphthyl, *p*-fluorophenyl, and *m*-nitrophenyl. Small substituents at Y, such as CH₃, increased activity, while large substituents at Y, such as Ph, decreased activity. When Z was changed from H to CH₃, only slight changes of activity were experienced. Changing *n* from 0 to 1 had no great effect. A definite increase in potency in 2,3-naphthimidazole over the 1,2 isomer was noted (105, 106 vs. 109, 110, Table III).

We have included hydroxybenzylbenzimidazole (6, Table II) in our test to show that the benzimidazoleureas are a unique class of drugs and bear no relationship to the class of antiviral benzimidazoles reported by Eggers and Tamm.¹²

Discussion

When describing two types of activities for the same series of compounds, the question arises whether the two activities are due to the same process. In vivo antiviral activity due to suppression of the pathology caused by antigen-antibody reactions in the host might explain parallels between the two types of activities. However, further studies have indicated that antibody against Coe virus, as measured by plaque reduction, was not altered by treatment with different dose levels of these compounds,¹³ in contrast to the results when sheep RBC are used as the antigen. Antibody levels with this type of infection are due to the initial inoculum since live or formalin-inactivated virus produced the same high antibody levels.13 These studies would indicate that the antiviral activity is independent of the immunosuppresive activity. Similar results were

noted by Muldoon and Jackson¹⁴ who observed that 6mercaptopurine did not lower antibody synthesis when avian influenza virus was used as the antigen but showed a striking immunosuppressive effect with bovine serum albumin. Whether or not this difference relates to the structural or chemical differences between the antigens involved remains to be elucidated. If so, it would be an exploitable difference in terms of chemotherapy in both antiviral and immunosuppressant therapy.

Experimental Section

Melting points were taken on a Mel-Temp apparatus and are uncorrected. Ir bands, unir, and titrations were consistent for the proposed structures. All compounds were analyzed for C, H, N and gave results within $\pm 0.4\%$ of the theoretical value.

Generally, the starting amine was checked for solubility in THF, Me_2CO , $C_6H_{6_1}$ and tohuene. The reaction was usually run in the solvent in which it was most soluble.

Examples are as follows.

1-(2-BenzimidazolyI)-3-naphthylurea.—To 5.32 g (0.04 mole) of 2-aminobenzimidazole in 150 ml of THF at 25° was added dropwise 6.76 g (0.04 mole) of naphthyl isocyanate in 100 ml of THF over a 30-min period with stirring. The mixture was then stirred, refluxed for 6 hr, and allowed to cool; the solid was filtered and washed twice with 100 ml of THF. The solid was checked for purity by the using silica gel plates in EtOAc. If one spot, the naterial was tested without further purification. If impure, recrystallization from Me₂CO or a THF-hexane mixture was used to obtain pure, one-spot material; yield dry 11.5 g (95%), mp 327-328°.

1-Methyl-2-aminobenzimidazole.—A mixture of 91 g (0.6 mole) of N-methyl-o-nitroaniline was hydrogenated at 3.5 kg/cm² in 900 ml of EtOH with 3.5 g of Pd-C. The catalyst was filtered, the EtOH was removed, and the oil was suspended in 1 l. of H₂O at 25° with vigorons stirring. The mixture was cooled to maintain a temperature of 20-30° while 63 g of CNBr was added portionwise. The mixture was stirred overnight and then extracted three times with 500 ml of Et₂O. The aqueous portion was basified to pH 11, and the precipitated solid was filtered. This solid crystallized from EtOAc–Skelly B after decolorization with carbon; mp 196–198°, yield 49.5 g (56%).

2-Aminomethylbenzimidazole.—A mixture of 0.2 mole of 2-chlorobenzimidazole and 1.2 nucles of 30% aqueons CH₃NH₂ was antoclaved at 120° for 3 hr. The cooled reaction was freed of excess amine *in vacuo*, then acidified to pH 3 and extracted four times with 100 ml of Et₂O. The aqueons extract was basified to pH 8 and continuously extracted with Et₂O for 4 days. A white crystalline solid precipitated from the ether on cooling and was filtered and recrystallized from Me₂CO-hexane; mp 176-178°, yield 19.5 g (66%).

1-(2-Benzimidazoly1)-3.3-dimethylurea.—To a stirred solution of 13.3 g (0.1 mole) of 2-aminobenzimidazole in 150 ml of THF, containing 11 g (0.11 mole) of Et₃N, at 5° was added 10.7 g (0.1 mole) of dimethylcarbamoyl chloride in 100 ml of THF. The mixture was stirred 3 hr at 5° and then at 25° overnight. The THF was removed under vacuum, and 150 ml of H₂O was added. The oil solidified, was filtered, washed with H₂O, and recrystallized from Me₂CO-hexane; mp 176-177°, yield 6.4 g (31%).

Acknowledgments.—The authors are indebted to Messrs. Linville Baker, Frank Streightoff, and Robert Wolfe for biological testing and to Mr. Charles Ashbrook for synthetic chemical assistance. We would like to especially thank Mr. Dennis Thompson for the syntheses of large quantities of all the 2-aminobenzimidazoles and other intermediates.

⁽¹²⁾ H. T. Eggers and I. Tamm, J. Exp. Med., 113, 657 (1961).

⁽¹³⁾ D. C. DeLong, L. A. Baker, J. D. Nelson, and C. J. Paget, Bacteriol. Proc. (Abstract V203), 179 (1968).

⁽¹⁴⁾ R. L. Muldoon and G. G. Jackson, Proc. Soc. Exp. Biol. Med., 126, 26 (1967).