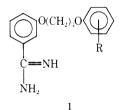
Irreversible Enzyme Inhibitors. CLXV.^{1,2} Proteolytic Enzymes. XV.² Inhibition of Guinea Pig Complement by Derivatives of *m*-Phenoxypropoxybenzamidine


B. R. BAKER AND MICHAEL CORY

Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106

Received July 8, 1969

A series of 28 derivatives of *m*-phenoxypropoxybenzamidine (2) with substituents on the phenoxy modely were synthesized, then evaluated as inhibitors of the guinea pig complement-sheep red blood cell-antibody system. Small substituents such as Cl. NO₂, OCH₃, NH₂, AcNH, or COOCH₃ give at best only fourfold more effective inhibition. Larger substituents such as substituted benzamidu or substituted phenylureido gave 6-30-fold better inhibition. The best inhibitor of the series was m-[m-(p-nitrophenylureido]phenoxypropoxy]benzamidine (29) which at 62 μM showed 95% inhibition of guinea pig complement and 60% inhibition at 16 μM . Thus 29 was 30-fold more effective than 2 and about 400-fold more effective than benzamidine.

Inhibition of the serum complement system³ could have a number of medicinal uses.⁴ Such inhibition of complement is readily assayed by the sheep red blood cell-hemolysin-serum method.^{5,6} Among the better inhibitors found in this laboratory is the "tryptictype" inhibitor. *m*-phenoxypropoxybenzamidine (1, R = H).^{2,5} A study has now been made to determine

if substitution on the phenxoy moiety of 1 could enhance activity; this was indeed the case and the results are the subject of this paper.

Inhibition Results.—The inhibition of complement^{5,6} by a compound is determined by comparison with a control lysis of sheep red blood cells (RBC) by complement and hemolysin (Table I). In some cases (see 11) the compound could cause lysis of RBC in the absence of complement, which is recorded as a percentage of the total lysis (0.7 OD) possible.

The base-line compound with which this study was started was *m*-phenoxypropyloxybenzamidine (2). which is about tenfold more effective on a concentration basis than the parent benzamidine.^{2,5} The effect of small substituents on the phenoxy moiety was studied first to determine if there were any electronic effects on inhibition by the phenoxy moiety.

In the *para* series, substitution of a *p*-nitro (**3**) or *p*amino (**5**) group gave no change in inhibition, indicating that there were no electronic effects on the binding of the phenoxy moiety. Binding was enhanced twofold with a *p*-OCH₁ (**6**) or *p*-acetanido substituent (**7**). A fourfold enhancement of inhibition was seen with p-Cl (4) or p-COOCH₃ (8) substituents; measurements with the p-COOH (9) substituent were hampered by lack of solubility but it appeared that this substituent was slightly less effective than p-COOCH₃ (8).

In the meta series, NO₂ (10), NH₂ (12), CH₃O (13), and AcNH (14) gave about a fourfold increment in binding; the CF_a substituent (11) was about as effective at 0.125 m.*H* as the *m*-nitro (10); at higher concentration 11 gave substantial lysis in the absence of complement. The most effective small group in the meta series was COOCH₄ (15) which gave an eightfold increment in binding over the parent base-line compound (2). Again it is clear that these increments are not due to any electronic effects on the binding of the phenoxy moiety; also there did not appear to be any correlation with the relative hydrophobic character of the substituent.⁷

Only two compounds in the *ortho* series were investigated: *o*-nitro (16) gave a fourfold increment in binding and *o*-anino (17) twofold. Since these compounds were no more effective than *meta* or *para* substituents, no further compounds with small *ortho* substituents were synthesized for investigation.

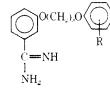
Two compounds with two small substituents on the phenoxy molety were investigated. $3-NO_2-4-CH_1$ (19) was only slightly more effective than $3-NO_2$ (10). Measurements with the $3,4-Cl_2$ derivative (18) were hampered by the lack of solubility; however. 18 was about twofold less effective than 4-Cl (4).

The effect of larger substituents on the phenoxy moiety were then investigated. A $p-C_6H_5$ substituent (20) appeared to enhance activity compared to the base-line compound (2) at low concentration, but measurements were hampered by its low solubility of 0.03 m.M. Therefore more polar amide substituents with greater water solubility were investigated.

The *p*-benzanido derivative (21) was about eight times as soluble as the *p*-phenyl derivative (20); furthermore, 21 gave about a sixfold enhancement in binding compared to 2. When the benzamido group of 21 was substitued by $p-NO_2$ (23). $m-NO_2$ (24). or $p-OCH_3$ (25), inhibition was enhanced six- to eightfold; the *p*-chlorobenzamido derivative (22) at its maximum solubility was about eightfold more effective than the same concentration of 21; however, 22 was too in-

¹¹⁾ This work was generously supported by Grant CA-08695 from the National Cancer Institute, U. S. Public Health Service.

¹²⁾ For the previous paper of this series see B. R. Baker and M. Cory. J. Meil. Chem., 12, 1049 11969).


^{(3) 1}a) H. J. Müller-Eberhard, Advis, Immunol., 8, 1 (1968); 1b) P. H. Schur and K. F. Austen, Ann. Rev. Med., 19, 1 (1968).

⁽⁴⁾ B. R. Baker and E. H. Erickson, J. Med. Chem., 10, 1123 (1987), paper CVI of this series.

⁽⁵⁾ B. R. Baker and E. B. Erickson, *ibid.*, **12**, 408 (1969), paper CLH of this series.

⁽⁶⁾ E. A. Kabat and M. M. Mayer, "Experimental luminochemistry," 2nd ed, Charles C Thomas Publisher, Springfield, Ill., 1967, pp 149-153.

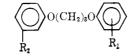
TABLE 1 INUIBITION^{4, b} OF GUINEA PIG COMPLEMENT BY

Νο,	R	Եօուրձե, ա.₩	t: inhibur€	v_{sis}^{d}	No.	R	1 outpd. $\mathrm{m}M$	', iulijbu:	lysis"
2°	11	1	60	υ	15	m-COOCH _a	0.125	74	
-	••	0.5	-î4		1		0.120	45	
		0.25	27		16	o-NO ₂	1	96	υ
3	p -NO $_2$	1	40	20	10	0 11 O <u>2</u>	1).ĝ	91	17
.,	$p \to \infty 2$	0.5	53	0			0.31 0.25	$\frac{31}{77}$	
		0.25	27	.,			0.125 0.125	-40	
-1	p-C1	0.125/	48	7			0.062	23	
	p < .	0.120 0.062	27	,	17	o-NH ₂	1		2
5	p-N11 ₂	1	79	3	11	12 - 1 1 1 1 2	1),5	77	-
	<i>p</i> = • • • =	ΰ.5	52	.,			0.25	46	
ť	ρ -OCII ₄	1	02	ā	ts	$3,4-(2)_2$	0.125°	34	20
0	p- $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$	$\frac{1}{10}, 5$	82 82	0	1	(), I-C 12	0.120 0.062	23	
		0.15 0.15	5 <u>-</u> 59	0	<u>f9</u>	3-NO2-4-CH3	0.0d≟ U,ậ	- 67	100
\overline{i}	p-AeN11	1		1)	1.7	0-1000-3-0118	0.01 0.25	67 68	7
,	p- $n(1)n$	1).J	79	1)			$0.23 \\ 0.125$	73	'
		0.25	50				0.121 0.062	39 39	
		0.2a 0.12â	28		<u>2</u> 0	p-C ₆ H ₅	0.051	<u>22</u>	ō
8	p-COOCH ₄	1	20	ō		p-C 61.1.5	0.051 ().011	1)	.,
0	<i>p</i> -000011	1 11, 5	93 93	.,	2 f	p-NHCOC ₆ II.	$0.014 \\ 0.25/$		4
		0.25	87		_ 1	p -infic $OC_6 \Pi_0$	0.25 0.125	82 85	4
			6G					6ā 11	
		0.125 0.062	38		22	p-NHCOC ₆ H ₄ Cl- p	11,062 0.016≠	44	1)
9	p-('O()]]	0.002 0.504	16	1)		p-2NTR OC 6114C1- p		20	11
.7	p-coon	0.40° 0.025	10	()		p-NHCOC ₆ H ₄ NO ₂ - p	u, 0080 1), 050/	11 37	11
10	m-NO ₂	t.020	54	11	23	p-inficocentence p	0.040 0.025		U
10	$m = 18 O_2$		94 94	ļ1 1)	24	p -NHCOC ₄ H ₄ NO ₂ - μi	11.025 11.0 <u>G</u> 2/	14 50	4
		$rac{0.5}{0.25}$	$\frac{1}{7}$	()	24	p-NHCOCallaNO ₂ - m		26	-1
		$0.23 \\ 0.125$	-411		25	p-NHCOC ₆ H4OCH4-p	$rac{0.031}{0.125^{2}}$	70	1)
		0.120	22		I	p-NHCOU ₆ H4OCH q - p	0.124 0.062	43	1)
11	m-CFa	0.5		11)()			0.042 0.031	21	
11		0.25	40	18	26	<i>p</i> -NHCON11C ₆ 11;	0.061 0.062^{7}		-1
		$0.25 \\ 0.125$	42	10 9	20	p - n_{11} $(0, n_{11})$ (611)	0.031	$\frac{30}{26}$	4
		0.125 0.002	42 38	0	27	m-N11COC6H4NO2-p	0.051 0.25/	20 82	-4
		11.031	- 19 19	0	- /	m_{-} , m	0.24 0.125	93	.4
12	m -NH $_2$	(94	3			0.125 0.062	52 82	
1-	107-08112	ŭ.5	.94 86	• 1			0.002 0.031	65 65	
		0.3 0.25	50 67				0.041	43	
		0.115	-4t1		28^{g}	<i>ø</i> t-NHCOC₅H₄OCH ₃ - <i>p</i>	0.125^{\prime}	-10 	11
13b	m-0Cl1 ₃	0.120 0.257	SU	1)	201	$p_{1-N_{11}COC_{4}T_{4}OC_{11}p}$	0.125 0.062	64 61	.,
1 • 16.	$m - (R) 1 1_3$	0.24 0.125		1)			0.062	30	
		0.125 0.062	ភូម 17		0154	m-NHCONHC ₆ H ₄ NO ₂ -p		95 95	1)
14			17		$\overline{O}(1n)$	$m = n m CO n m C_6 m O_9 - \rho$	$0.062\% \\ 0.031$	78	17
14	m-AcNH	1	88	1)					
		0.5 0.95	82 61				$0.016 \\ 0.078$	(jt) 32	
		0.25 0.125	91 36				11,0039	52 13	
15	ш-СООСШ.	11.125		19	30	θ -NHCOC ₆ II ₄ NO ₂ - μ	(1,0)52	48	11
t5	M-C COUCALS	0.25	88	19 6	-)U	θ -NIICOU 6114N θ 2- μ	11.062 11.031	23	
(15)	1 1 1 2 8:0	0.20 T 0		U .		1 for comparison of the	. 1 /1 /. / .		

^a The technical assistance of Sharun Laffer with these assays is acknowledged. ^b See ref 5 for assay of indibition of RBC lysis by complement. ^c A minus number indicates more lysis than the complement control without compound. ^d Lysis in the absence of complement corrected for $0-5C_1$ lysis in a control without complement and compound; this is expressed as the per rent of total lysis possible, 0.7 OD unit. ^c Data from ref 5. ^d Maximum subbility in buffer. ^d Picrate dissolved in 1:4 H₂O-MeOFtOH for assay; Tris picrate shows un inhibition or lysis at 0.25 mM.²

soluble to reach a concentration showing 50% inhibition. When the *p*-benzamido moiety of **21** was replaced by a *p*-phenylureido moiety (**26**), inhibition was enhanced only slightly.

Substituted benzamido substituents on the *meta* position of the phenoxy moiety of 2 were then investigated. The *p*-methoxybenzamido (28) derivatives were


eightfold more effective than the parent 2, while the *p*-nitrobenzamida derivative (27) was 16-fold more effective. The *p*-nitrophenylurea derivative (29) was the most potent compound in Table I, being 30-fold more effective than the parent 2.

When the *p*-nitrobenzamido group of 27 was moved to the *ortho* position of the phenoxy nuclety (**30**), about

9%

TABLE II

PHYSICAL CONSTANTS OF

No.	R	\mathbb{R}_2	$Method^a$	% yield	Mp, °C	Formula ^b
з	p-NO ₂	$C(NH_2) = NH \cdot HCl$	В	37°	94-95	$C_{16}H_{18}ClN_3O_4\cdot H_2O$
4	p-Cl	$C(NH_3) = NH \cdot HCl$	В	73^{c}	146 - 149	$\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{Cl}_{2}\mathrm{N}_{2}\mathrm{O}_{2}\cdot\mathrm{H}_{2}\mathrm{O}$
.î	p-NH ₂	$C(NH_2) = NH \cdot 2TsOH$	С	43'	191 - 192	$C_{30}H_{35}N_{8}O_{8}S_{2}$
G	p-OCH ₃	$C(NH_2) = NH \cdot TsOH$	В	66°	129 - 131	$C_{24}H_{28}N_2O_6S$
7	p-NHAe	$C(NH_2) = NH \cdot HCl$	D, \mathbf{B}^d	30°	131-133	$C_{18}H_{22}ClN_3O_4\cdot H_2O$
8	p-CO ₂ CH ₃	$C(NH_2) = NH \cdot TsOH$	В	87°	162 - 164	$C_{25}H_{28}N_2O_7S$
10	m-NO2	$C(NH_2) = NH \cdot HCl$	В	82^{e}	142 - 144	$C_{16}H_{18}ClN_3O_4$
11	m-CF ₃	$C(NH_2) = NH \cdot TsOH$	A, B^d	34°	120 - 122	$C_{24}H_{25}F_3N_2O_5S$
12	$m-NH_2$	$C(NH_2) = NH \cdot 2HCl$	\mathbf{C}	851	106 - 107	$\mathrm{C_{16}H_{21}Cl_2N_3O_2}$
13	m-OCH ₃	$C(NH_2) = NH \cdot Pierate$	A, B^d	53'	140 - 142	$C_{23}H_{23}N_5O_{10}$
14	m-NHAc	$C(NH_2) = NH \cdot TsOH$	В	28^{c}	111-113	$\mathrm{C}_{26}\mathrm{H}_{28}\mathrm{N}_{3}\mathrm{O}_{6}\mathrm{S}\cdot\mathrm{H}_{2}\mathrm{O}$
15	m-CO ₂ CH ₃	$C(NH_2) = NH \cdot HCl$	$A_{i} B^{d}$	67°	108 - 111	$\mathrm{C}_{\mathrm{l}_{2}}\mathrm{H}_{\mathrm{21}}\mathrm{ClN}_{2}\mathrm{O}_{4}$
16	o-NO ₂	$C(NH_2) = NH \cdot HCl$	В	66°	82 - 84	$\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{ClN}_{3}\mathrm{O}_{4}\cdot\mathrm{H}_{2}\mathrm{O}$
17	$o-NH_2$	$C(NH_2) = NH \cdot 2TsOH$	В	89°	124 - 126	$C_{30}H_{35}N_3O_8S_2$
18	$3,4-Cl_2$	$C(NH_2) = NH \cdot HCl$	В	75°	101-103	$\mathrm{C}_{16}\mathrm{H}_{17}\mathrm{C}\mathrm{l}_3\mathrm{N}_2\mathrm{O}_2$
19	$3-NO_2-4-CH_4$	$C(NH_2) = NH \cdot TsOH$	в	30°	101 - 102	$C_{24}H_{27}N_3O_7S\cdot H_2O$
20	p-C ₆ H ₅	$C(NH_2) = NH \cdot HCl$	В	54^{f}	226 - 229	$\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{ClN}_{2}\mathrm{O}_{3}$
21	p-NHCOC ₆ H ₅	$C(NH_2) = NH \cdot TsOH$	В	27°	184 - 187	$C_{30}H_{31}N_{3}O_{6}S$
22	p-NHCOC ₆ H ₄ Cl- p	$C(NH_2) = NH \cdot T_SOH$	E.	40^{c}	143 - 145	$\mathrm{C}_{30}\mathrm{H}_{30}\mathrm{ClN}_{3}\mathrm{O}_6\mathrm{S}$
23	p-NHCOC ₆ H ₄ NO ₂ - p	$C(NH_2) = NH \cdot TsOH$	E	32^{c}	218 - 220	$\mathrm{C}_{30}\mathrm{H}_{30}\mathrm{N}_4\mathrm{O}_8\mathrm{S}$
24	p-NHCOC ₆ H ₄ NO ₂ - m	$C(NH_2) = NH \cdot TsOH$	\mathbf{E}	47°	91-93	$C_{30}H_{30}N_4O_8S$
25	$p extsf{-NHCOC_6H_4OCH_3-}p$	$C(NH_2) = NH \cdot TsOH$	\mathbf{E}	41^{g}	152 - 155	$C_{31}H_{33}N_{3}O_{7}S$
26	$p ext{-NHCONHC_6H_5}$	$C(NH_2) = NH \cdot TsOH$	F	72^{c}	134 - 135	$C_{30}H_{32}N_{3}O_{6}S$
27	m-NHCOC ₆ H ₄ NO ₂ - p	$C(NH_2) = NH \cdot TsOH$	Е	53°	135 - 137	$C_{30}H_{30}N_4O_8S\cdot H_2O$
28	m-NHCOC ₆ H ₄ OCH ₃ - p	$C(NH_2) = NH \cdot Picrate$	Е	10^{f}	198 - 202	$C_{30}H_{28}N_6O_{33}$
29	m-NHCONHC ₆ H ₄ NO ₂ - p	$C(NH_2) = NH \cdot Picrate$	F	36°	181 - 183	$C_{29}H_{26}N_8O_{12}\cdot H_2O$
30	$o ext{-NHCOC}_6 ext{H}_4 ext{NO}_2 ext{-}p$	$C(NH_2) = NH \cdot T_SOH$	\mathbf{E}	35°	191 - 194	$C_{30}H_{30}N_4O_8S$
31	p-NO ₂	CN	А	52^{*}	100-102	$C_{16}H_{14}N_2O_4$
32	p-Cl	CN	А	84^{h}	84-86	$C_{16}H_{14}CINO_2$
33	$p ext{-OCH}_{i}$	CN	А	42^{h}	63-65	$C_{17}H_{17}NO_{3}$
34	p-CO ₂ CH ₃	CN	А	80^{h}	81-82	$C_{18}H_{17}NO_4$
35	$m-\mathrm{NO}_2$	CN	А	35^i	73-74	$C_{16}H_{14}N_2O_4$
36	m-NHCOCH ₃	CN	Α	55^h	81 - 82	$C_{15}H_{18}N_2O_3$
37	$o-\mathrm{NO}_2$	CN	Α	80^{h}	81 - 83	$\mathrm{C}_{\mathfrak{t}6}\mathrm{H}_{\mathfrak{t}4}\mathrm{N}_{2}\mathrm{O}_{4}$
38	3,4-Cl ₂	CN	А	47^h	78 - 80	$C_{16}H_{13}Cl_2NO_2$
39	$3-NO_2-4-CH_3$	CN	А	70^{h}	103 - 105	$C_{17}H_{16}N_2O_4$
40	p-C ₆ H ₅	CN	А	64^{h}	99-101	$\mathrm{C}_{22}\mathrm{H}_{19}\mathrm{NO}_{2}$
41	$p ext{-NHCOC}_6 ext{H}_5$	CN	D	65'	150 - 153	$C_{23}H_{26}N_2O_3$

° Methods: A.⁴ alkylation of *m*-cyanophenol with 1,3-dibromopropane, then further alkylation of the bromopropyl ether; B,⁸ CN \rightarrow iminu ether \rightarrow amidine: C,⁸ reduction of NO₂; D-F, see Experimental Section. ^b Analyzed for C, H, N. ^c Recrystallized from H₂O. ^d The intermediate nitrile was an oil that was not purified. ^e Recrystallized from Me₂CO-H₂O. ^f Recrystallized from 50% EtOH. ^e Recrystallized from EtOH. ^b Recrystallized from petroleum ether (60-120°)-C₆H₆. ⁽⁵Sublimed in vacuo for analysis. ⁱ Recrystallized from C₆H₆.

a fourfold loss in inhibition occurred; **30** was still about eightfold more effective than the parent **2**.

From these studies, it is clear that substitution of benzamido or phenylureido groups on the *meta* position of the phenoxy moiety of **2** gives the best enhancement of activity. The most potent inhibitor of complement to date is the *m*-(*p*-nitrophenylureido) derivative (**29**) on the phenoxy moiety of *m*-phenoxypropyloxybenzamidine (**2**); not only is **29** 30-fold more effective than **2**, but activity has been enhanced about 400-fold over benzamidine, the inhibitor of complement with which these studies were started.⁵

Under investigation is the synthesis of candidate irreversible inhibitors of complement such as replacement of the NO₂ group of **27** and **29** with SO₂F.^{*}

Chemistry.—The necessary substituted *m*-(phenoxypropoxy)benzonitriles were prepared by the previously described alkylation of *m*-cyanophenol (method A);⁴ these were converted to the amidines through the imino ether hydrochlorides (method B).⁸ Catalytic reduction of the nitro group of **3**, **10**, or **16** with 5% Pd-C (method C)⁸ gave crystalline aminoamidine salts which could be acylated to the desired amides or ureas (methods E and F). Another route was reduction of **31** followed by acylation to **41**, which could be converted to the amidine **21**; this route was used for **7** and not pursued further.

Experimental Section

Melting points were determined in capillary tubes on a Mel-Temp block and are uncorrected. All analytical samples had ir spectra compatible with their assigned structures and moved as

⁽⁸⁾ B. R. Baker and E. H. Erickson, J. Med. Chem., 11, 245 (1968), paper CXV of this series.

a single spot on the on Brinkmann silica gel GF or polyamide NM_{134} ; each gave combination values for C, H, and N within 0.4% of theory.

 $w_{\ell}(\mu$ -Aminophenoxypropoxy)benzamidine (12) Dihydrochloride (Method C).--To a solution of 3.5 g (10.0 mmoles) of 10 in 100 ml of EtOH containing 200 mg of 5% Pd-C was added 0.83 ml (10.0 mmules) of 12 N HCl. The resulting mixture was shaken with H₂ at 2-3 arm; reduction was complete in 2 hr. The fibered solution was evaporated in cacaa and the residue recrystallized; yield 3.1 g (85%) of white crystals. See Table 11 for additional data.

 μ -i ρ -Carboxyphenoxypropoxy)benzamidine Toluenesulfate (9). Solution of 0.511 g (10.0 number) of 8 in 5 nd of 6 N HCl and 5 ml of HOAc was stirred at reflux fur (6 hr, then evaporated *in racuo*. Two recrystallizations from H₂O gave 0.210 g (43%) of white crystals, mp 213–215°. ... *Init.* (C₂₀H₂₀NO₅S) C, H, N.

m-(*p*-Benzamidophenoxypropoxy)benzonitrile (41) (Method D). A solution of 2.85 g (0.55 mmoles) of **31** in 200 ml of EtOH containing 0.30 g of 5^{17} Pd-C was shaken with 11_2 at 2–3 atm; reduction was complete in 1 hr. The filtered solution was evaporated *in racio* to yield 2.6 g (100⁷) of a colorless oil suitable for the next reaction.

To 2.0 g (7.45 number) of the crade oil was added 20 nd of CHCl₄ and 4.1 nd (8.0 number) of Et₅N followed by 0.92 nd (8.0 number) of henzoyl chloride. The resulting solution was stirred at ambient temperature for 24 hr, then washed successively with three 50-nd portions of 1 N HCl, three 50-nd portions

of (N NuOII, and three 30-nd portions of H₂O. The dried solution was evaporated *in racuo*. Two recrystallizations from C₆H₆ afforded (.8 g $(057'_{1})$ of white crystals, mp 150 153°. And, $(\psi_{s}H_{20}N_{1})_{3} \in C_{1}$ H, N.

m-[m-(p-Nitrobenzamido)phenoxypropoxy[benzamidine Toluenesulfonate (27) (Method E).—To a solution of 0.310 g (0.86 mmole) of 12 in 2 nd of DMF was added 1.0 g of 4A Molecular Sieves (Einde) followed by 0.245 nd (1.75 mmoles) of $F_{0.5}N$. To the resulting mixture was added a solution of 0.209 g (1.14 mmoles) of p-nitrobenzoyl chloride in 2 nd of DMF. The mixture was stirred 1 hr at anhieut temperature, then poured into 30 nd of 11₂0 containing 0.380 g (2.0 mmoles) of p-toluenesulfonic acid. The crystalline product was collected and recrystallized from 11₂(1) yield 0.274 g (537), and 135 137°. See Table H (or additional data.

m-(ρ -Phenylureido)phenoxypropoxybenzamidine Toluenesulfonate (26) (Method F). To a solution of 0.30 g (0.48 number) of 5 in 2 ad of DMF was added 0.077 ad (0.48 number) of Et₃N (ollowed by 0.129) g (0.50 number) of O-(ρ -nitrophenyl) Nphenylearhamate.⁹ The resulting solution was stirred at room temperature for 16 hr, then poared into 30 ad of H₂O, and the product was collected. Recrystallization from H₂O gave 0.20 g (72)⁺(), up 134–135°. See Table 11 for additional data.

(9) B. R. Baker and N. M. J. Vermenten, J. Med. Cocm., 12, 71 (1990) paper CNNNIV of this series.

Synthesis and Biological Activity of Some New N^B-Substituted Purine Nucleosides

M. H. FLEYSHER, A. BLOCH, M. T. HAKALA, AND C. A. NICHOL

Department of Experimental Therapeuties, Research Park Memorial Institute, Buffalo, New York - 13203

Thereired March 21, 1969

The synthesis of N⁶-2-phenoxyethyl-, N⁶-benzyl-, N⁶-*n*-hexyl-, N⁶-*n*-pentyl-, N⁶-phenyl-, N⁶-2-thienyl-, and N⁶-2-ethoxyethyladenosines was carried out by quaternization of the N⁴ of adenosine with the appropriate halide, followed by rearrangement to the product in aqueous NH₃₆ or by nucleophilic substitution of 6-chloropurine riboside with the appropriate anine. Also synthesized were the N⁶- Δ^2 -isopentenyl) and N⁶-allyl derivatives of the antibintic tuberridin (7-deazadenosine). The compounds were examined for biological activity in a number of test systems. All of the adenosine derivatives examined showed cytokith activity in the tobaccopith binassay. Similarly, at low concentrations (10⁻⁶ to 10⁻⁶ M), the N⁶-substituted adenosine steeted stimulated the growth of a human leakenic cell line (6410). At higher concentrations, they decreased the viability of this line of leakenic myeloblasts of line HRHK of Burkitt's lymphoma, and line LKHD of leakenic lymphohlasts, whereas they were all ineffective against a culture of normal leakorytes. The N⁶-substituted ubercidius on the other hand inhibited the normal leakorytes, but were variably effective against the tumor lines. Most of the compounds interfered with the growth of *Escherichio coli* and some with the growth of Sarcuna 180 cells *in ifuco*. A moderate but significant increase in survival time of mice heating leakenia 1.1210 was produced by four of the adenosine derivatives.

N⁶-(3-Methyl-2-butenyl)adenosine or N⁶-(Δ^2 -isopentenyl)adenosine (IPA) occurs in sRNA¹ and was originally synthesized by Leonard, *et al.*^{2,4} This nucleoside has high cytokinin activity.^{10,4} It also inhibits the growth of human myelogenous leukemic cells and certain mouse tumors^{4,3} and has undergoue preliminary clinical trials.⁶ Because of these findings.

(5) 11. Suk. U. L. Sonpson, and E. Mildeir, *July*, 9, 60 (1968).

(6) R. Jones, Jr., J. T. Grave, Jr., A. Mittelman, and R. E. Gertter, *ibid.*, 9, 35 (1968). several other N⁶-substituted adenosines were synchesized and found to have biological activity.⁷ⁿ Additional N⁶-substituted adenosines have now been prepared^{7h} and their biological properties have been studied. The new series of compounds reported in this paper are the N⁶- β -p-ribofuranosyl derivatives of those N⁶-substituted adenine bases which have shown potent cytokinin activity as reported by Strong⁸ and by Skoog, *et al.*⁹ⁿ They include the N⁶-2-phenoxyethyl-(I), N⁶-benzyl- (II), N⁶-*n*-hexyl- (III), N⁶-*n*-pentyl-(IV), N⁶-phenyl- (V), N⁶-thienyl- (VI), and N⁶-2-

(7) (a) M. H. Fleysher, M. T. Hakala, A. Bloch, and R. U. Hall, J. Med. Chron., 11, 717 (1968); (b) M. H. Fleysher, A. Bloch, M. T. Hakala, and U. A. Nichol, Abstracts, 156(i) National Meeting of the American Chronical Society, Atlantic City, N. J., 1998, Medi 25.

^{(1) (}n) R. H. Hall, M. J. Robius, L. Stasiuk, and R. Thedford, J. Am. Chem. Soc., 88, 2614 (1006); (b) M. J. Robius, R. H. Hall, and R. Thedford, Biochemistry, 6, 1837 (1007); (c) H. G. Zachau, D. Dütting, and H. Feldmann, Amper. Chem., 78, 302 (1006); (d) H. Feldmann, C. Dütting, and H. O. Zachau, Z. Physiol. Chem., 347, 236 (1006).

⁽²⁾ N. J. Leounrd, Trans. Morris County Res. Connect (N. J.), 1, 11 (1965).

⁽i) N. J. Leonard, S. Arlomatowicz, R. N. Loeppky, K. L. Carcaway, W. A. Grimm, A. Szweykowska, H. Q. Hamzi, and F. Skoog, Proc. Null. Acad. Sci. U. S., 56, 709 (1966).

⁽¹⁾ J. T. Grave, Jr., M. T. Hakala, R. H. Hall, and J. Blackeslee, Proc. Am. Assoc. Conver Res., 8, 23 (1967).

⁽⁸⁾ F. M. Strong, "Topics in Microbial Chemistry," John Wiley and Sons, Inc., New York, N. Y., 1958, pp 125-131.

 ⁽i) (a) F. Skoog, H. Q. Habuzi, A. M. Szweykowska, N. J. Leonard,
K. L. Carraway, T. Fujji, J. P. Helgeson, and R. N. Loeppky, *Phytochemistry*, 6, (109) (1967);
(b) A. Bloch, R. J. Leonard, and C. A. Nichol, *Biochim. Biophys. Acto.*, 138, 10 (1967).