drying over P_2O_5 in vacuo, 2.6 g of 111 was obtained; bmr peaks (D₂O) (sodium 3-(trimethylsilyl)propanesnlfonate (TSS) standard) δ 3.43 (dd, 2, J = 7 and 8 Hz, CH₂), 4.17 (dd, 1, J = 7 and 8 Hz, CH), 6.90 (m, 3, aromatie H).

 β -Methylthio- β -(3,4-dihydroxyphenyl)ethylamine Hydrochloride (IV),—Into a solution of 1.8 g of Na in 50 ml of MeOH was passed 6.1 g of MeSH; then 9.0 g of I was added while stirring and cooling (Dry Ire-Me₂CO). The mixture was further stirred while cooling for about 3 hr, filtered, and coocentrated *i.e. vacuo* to dryness. Anhydrons Et₂O was saturated with dry HCl and added to the reaction mixture. After repeated evaporation the mixture was treated with hot glacial AcOH, filtered, and cooled. The yield of IV was 6.2 g, mp 178-180°.

Method A. General Procedure.—To a suspension of 2.25 g of I in 10 ml of glacial AcOH, 3.0 ml of the appropriate mercaptan was added. The mixture was heated on a steam bath for about 10 min to complete solution. After cooling the precipitate was filtered and recrystallized (Table II).

2-Amino-1-(3,4-dihydroxyphenyl)ethylmercaptoacetic Acid Hydrate (X). Method A, \sim A mixture of 3.3 g of I and 5.0 ml of mercaptonectic acid was heated on a steam bach for 0.5 hr. After cooling the mireacted mercaptoacetic acid was extracted with Et₂O; the residue thus obtained was dissolved in H₂O and the pH was brought to about 5 with NaHCO₃. The precipitated solid was collected and washed with 96% EtOH and Et₂O; yield 2.2 g, mp 149–151°. Recrystallization from H₂O and 50%EtOH gave 1.2 g, mp 153–155°.

Method B. β -(*n*-Butylthio)- β -(3,4-dihydroxyphenyl)ethylamine Hydrochloride (VII),---Norepinephrine (1.0 g) in 10 ml of dry dioxane and 10 ml of *n*-C₄H₂SH were heated on a steam bath for 2 hr while passing dry HCl into the mixture. A small amount of insoluble material was removed by filtration and the filtrate was evaporated to dryness under vacuum. The residue was tri(parated with Et₂O and EtOAc and the solid material was collected by filtration to give 1.6 g, mp 152–158°.

2-*n***-Butylthio-2-(3,4-dibenzyloxyphenyl)-1-nitroethane (VIIc).** --Na (1.0 g) was dissolved in 25 ml of MeOH and 2.0 ml of *n*-C₄H₉SH was added. 3,4-Dibenzyloxy-*β*-nitrostyrenel¹² (7.2 g) in 10 ml of dioxane was added while stirring at 10° for 0.5 hr. After stirring for 2 hr at room temperature, the mixture was poured into H₂O and made neutral with AcOH, and the separated oil was extracted with Et₂O. The dried extract was evaporated and the residue was extracted with petrolenm ether (bp 60-80°). On cooling the extract deposited 4.5 g (50°) of crystals, mp 42.5-44°. Recrystallization from hexane gave mp 44-46°. .t*ual*. (C₂₆H₂₉NO₄S) C, H, N, S.

 β -(*n*-Butylthio)- β -(3,4-dibenzyloxyphenyl)ethylamine Hydrochloride (VIIb). —LAH (5.0 g) was suspended in 50 ml of dry Et₂O, and 4.5 g of VIIc was added. The reaction mixture was refineed for 3 hr. H₂O was slowly added, followell by NaOH solution. The Et₂O layer was separated, dried (Na₂SO₄), and acidified with dry ethereal HCl. The yield of precipitated VIIb was 2.8 g (61%), mp 123–125°. Recrystallization from EtOAc gave a pure material, mp 128.5–130.5°. Anal. (C₂₆H₃₁NO₂S-HCl) C, H, Cl, S.

Compound VIIa was prepared by hydrolyzing 0.25 g of VIIb in a mixture of 10 ml of AcOH and 5 ml of concentrated HCl. The mixture was stirred for 4 hr at 60–70° and evaporated. The residue was stirred overnight with EtOAc to give 0.1 g, mp 147-149°; the ir spectrum was identical with that of VII; the on silica gel in *i*-PrOH-glacial AcOH H₂O (45:42:10), E_1 (VIIa and VII) 0.62, R_1 (VIIb) 0.76.

2-Amino-5-(3,4-dihydroxyphenyl)-2-thiazoline (XII), —Compound 1 (2.2 g) was added to 1.8 g of KSCN in 10 ml of H₂O. The solution was heated for 3 min and a precipitate was formed. The reaction mixture was heated for an additional 5 min, cooled, and filtered. After recrystallization from H₂O and 96% E1OH the yield was 1.3 g (62%); mp $227-228^{\circ}$; mmr (DMSO-d₈, Me₈Si) δ 3.30 (dd, 1, J = 10 and 11 Hz, 1 H in CH₂), 3.90 (d, 1, J = 10 flz, 1 H in CH₂), 4.80 (dd, 1, J = 10 and 11 Hz, CH), 6.70 (m, 3, aromatic H), 7.95 (bs, 1, OH), 8.42 (bs, 1, OH), 8.82 (bs, 2, NH₂). Anal. (C₈H₉N₂O₂S) C, H, N, S.

2-Amino-1-(3,4-dihydroxyphenyl/ethanesulfonic Acid (XIII).

A mixture of 8.5 g of norepinephrine, 5.2 g of NaHSO₃, 31.0 g of Na₂SO₃, and 50 ml of H₂O was refluxed for 7 hr ander N₂. After 15 min of reflux the pH was lowered to 6–7 with 4 N HCl. The mixture was evaporated *in racuo* and extracted with EtOH. The EtOH was removed *in racuo* and the product was recrystal-

lized twice from H₂O; yield 5.0 g (43%) of X11I, mp >350°; nmr (D₂O, TSS standard) δ 3.60 (m, 2, CH₂), 4.25 (m, 1, CH), 6.95 (m, aromatie H). Anal. (C₈H₁₁NO₅S) C, H, N, S.

6-(3,4-Dihydroxyphenyl)thiomorpholin-3-one (XIV). Compound X (2.1 g) was heated at 150° for 2.5 hr. The product was recrystallized from H₂O to give 1.1 g (61^{ℓ}_{ℓ}) of XIV: inp 199–201°; nmr (DMSO- d_{6} , Me₉Si) δ 3.30 (s, 2, SCH₂CO), 3.45 (m, 2, CH₂NH), 4.21 (t, 1, J = 7 Hz, CHS), 6.78 (m, 3, aromatic H), 7.85 (bt, 1, NH), 8.7 (bs, 2, OH). Anal. (C₁₉H₁NO₈S) C, H, N, S.

Acknowledgment. The authors are grateful to Professor H. H. Frey for the pharmacological testing; to G. Cornali and W. Egger for microanalyses; to N. Rastrup Andersen for the interpretation of mmr data; and to E. Juhl Nielsen, F. Lund, and H. J. Petersen for helpful discussions.

Synthesis of Some Antithyroid Compounds. II

P. K. SRIVASTAVA AND M. SALEEM

Department of Chemistry, University of Roorker, Roorker, India

Received January 2, 1969

This paper deals with the preparation of some additional¹ alkyl- and aryl substituted amidinothioureas²⁻⁴ as possible antithyroid compounds. The most highly active antithyroid substances contain thiourea moieties, NHCSNH, capable of being easily oxidized; the suggestion has been made that the interference with thyroxine synthesis is by a direct reaction between I₂ and SH (formed by enolization) to form a disulfide.⁵⁻⁵ It was thought worthwhile to synthesize more amidinothioureas, due to their very facile oxidation into 1,2,4thiadiazolidine derivatives.² The reaction for the synthesis of I follows.

$$\frac{HCI}{gas} = \frac{HCI}{\Lambda r N HCN S N H_2 + \Lambda r N HCN MCS N H_2 + HCI} = \frac{HCI}{N H} =$$

. .

Experimental Section

It has been found $possible^{2-4.9}$ to prepare many substituted amidinothionreas hydrochlorides (Table I) by the interaction of anyleyanamides with appropriate thionreas.

Equimolecular quantities of arylcyanamides in dry Et₂O solution and 1-alkylthionreas dissolved in Me₂CO were mixed. Dry HCl was passed through the mixture for a few minutes. A colorless crystalline product separated which was filtered and washed thoroughly with warm Me₂CO followed by Et₂O.

Pharmacological Screening.¹⁰⁻¹⁴—Male Sprague-Dawley rats

(1) P. K. Srivas(ava and M. Saleem, J. Med. Chem., 12, 196 (1969).

(2) C. P. Joshna, V. K. Verma, and K. S. Suresh, Tetrohedrov Lett., 19, 663 (1961).

(3) C. P. Joshna, J. Sci. Lod. Res. (India), 21B, 588 (1962).

(4) S. N. Pandeya, Indian J. Chem., 1, 525 (1963).

15) D. Campbell, F. W. Landgrebe, and T. N. N. Morgan, Leweet, 246, 630 (1944).

(6) E. J. Banmann, N. Metzger, and D. Marine, Eudocricology, 34, 14 (1944).

(7) C. H. Li, J. Amer. Chem. Soc., 67, 1065 (1945).

(8) R. H. Williams, A. R. Weinglass, and G. A. Kay, An. J. Met. Soc. 207, 701 (1944).

(9) P. K. Srivastava, Indian J. Chem., 1, 432 (19)3).

(10) C. S. Pit(man and E. E. Jones, Emborrinology, 73, 403 (1963).

(11) R. Pitt-Rivers, V. Galbon, and N. S. Halmi, *itid.*, **63**, 699 (1958).

(12) W. D. Alexander and J. Wolf, "Current Topics in Thyroid Research," Proceedings of the International Thyroid Conference, 5th, Rome, May 23-27, 1965, p 271.

(13) V. A. Galion and R. Pitt-Rivers, Endocrisology, 64, 835 (1959).

(14) R. Pitt-Rivers, Ann. N. Y. Acad. Sel., 86, 362 (1960).

TABLE I R ArNHCNCNH2 HCl ΫNŜ

				Yield.	
No.	Ar	R	$\mathrm{Formula}^{a}$	Se	Mp, °C
I	$CH_2 = CHCH_2$	$CH_2 = CHCH_2$	$C_8H_{14}N_4S \cdot HCl$	80	145146
II	$2,6-(CH_2)_2C_6H_3$	$n ext{-Bu}$	$C_{14}H_{22}N_4S\cdot HCl$	7.5	139-140
III	p-CH ₃ OC ₆ H ₄	<i>n</i> -Bu	$C_{13}H_{20}N_4OS \cdot HCl$	75	134 - 135
IV	m-CH ₃ OC ₆ H ₄	<i>n</i> -Bu	$C_{13}H_{20}N_4OS \cdot HCl$	72	142 - 144
V	p-CH ₃ C ₆ H ₄	n-B11	$C_{13}H_{20}N_4S\cdot HCl$	77	129 - 130
VI	p - $C_2H_3OC_6H_4$	<i>n</i> -Bu	$C_{14}H_{28}N_4OS \cdot HCl$	70	159 - 160
VII	$p-\mathrm{ClC}_6\mathrm{H}_4$	n-Bu	C ₁₁ H ₁₇ ClN ₄ S HCl	78	144 - 146
VIII	$p-\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	CH_3	$C_{10}H_{14}N_4S$ HCl	76	158 - 160
IX	2,6-(CH ₃) ₂ C ₆ H ₃	CH_3	$C_{11}H_{16}N_4S \cdot HCl$	75	152 - 153
Х	$C_6H_{\bar{o}}$	CH_3	$C_9H_{12}N_4S\cdot HCl$	78	167-168

" All compounds were analyzed for N and S and the analytical results were within $\pm 0.4\%$ of the theoretical values.

TABLE	П	

Antithyro	IDAL ACTION IN INTACT RATS
	id radioactivity. dpm ± std error
	7201051

Compd ^a (mg)	Th 125I uptake	yroid radioactivity, dpm \pm std error PB ¹²⁵ I	Inorg ¹²⁵ I	Estd act. $(thiouracil = 1.0)$
Blank	$272,189 \pm 13,670$	$237,730 \pm 12,340$	$25,017 \pm 1238$	
Thiouracil	,	, , ,		
(0.500)	$39,428 \pm 9233^{b}$	$30,679 \pm 7645^{b}$	$8,102~\pm~1694^{b}$	1.0
I (0.913)	$45,714 \pm 6683^{b}$	$38,247 \pm 5857^{b}$	$5,933~\pm~899^{b}$	0.63
II (1.22)	$41,152 \pm 17,735^{b}$	$34,984 \pm 16,240^{b}$	$4,837 \pm 1341^{6}$	0.57
III (1.45)	$24,764 \pm 5672^{b}$	$18,318 \pm 4762^{b}$	$5,155~\pm~601^{\circ}$	L.01
IV (1.43)	$64,265\pm12,059^{b}$	$52,448 \pm 10,708^{b}$	$9,852 \pm 1251^{b}$	0.74
V (1.30)	$22,967 \pm 5011^{b}$	$15,674 \pm 4151^{b}$	$6,253 \pm 691^{b}$	1.31
VI (1.54)	$29,005 \pm 4056^{b}$	$22,538 \pm 3658^{b}$	$5,408 \pm 339^{b}$	0.91
VII (1.46)	$65,647 \pm 10,866^{b}$	$52,935 \pm 8888^{b}$	$8,482 \pm 1203^{b}$	0.62
VIII (1.01)	$87,405~\pm~25,535^{b}$	$74,372 \pm 21,921^{b}$	$8,468 \pm 2041^{b}$	0.42
IX (1.06)	$74,005 \pm 12,561^{b}$	$62,403 \pm 22,513^{b}$	$8,324 \pm 979^{t}$	0.54
X (1.19)	$128,604 \pm 33,855^{\circ}$	$113,338 \pm 31,297^{\circ}$	$10,189 \pm 1768^{b}$	0.33
loweentration of test	earmounda aquimalan ta thia	$p_{\rm max} = \frac{b}{D} = 0.001 c D = 0.001$	1	

^a Concentration of test compounds equimolar to thiouracil. ^b P < 0.001. ^c P < 0.01.

(100-125 g) were maintained on a low-iodide diet for 3 days then divided into groups consisting of four rats in each group. The animals in each group received an intraperitoneal injection of 1 ml of either a blank (0.9% NaCl), thiouracil, or one of the test compounds. One hour later, 1 $\mu \rm Ci$ of Na^{125}I (carrier free) was injected intraperitoneally. Three hours after the injection of ¹²⁵I, the animals were sacrificed and the thyroids were removed. The whole lobes were placed in ground-glass homogenizing tubes and counted in a Nuclear-Chicago well scintillation counter to determine total thyroidal uptake. The whole lobes were then homogenized in 1 ml of 0.05 M barbital buffer (pH 8.6) containing $1.0 \times 10^{-5} M$ thiouracil. One milliliter of cold 20% trichloroacetic acid (TCA) was added and the homogenate was centrifuged. The precipitate was washed twice with 1.0 ml of cold 10% TCA. The original supernatant and the two washes were combined and the radioactivity was determined. The ¹²³I in this fraction indicated the concentration of inorganic ¹²⁵I or TCA-soluble ¹²⁵I. The washed precipitate was counted in the homogenizing tube. The radioactivity in this fraction indicated the PB125I (proteinbound iodine) or the TCA-precipitable ¹²⁵I. The counts were all corrected for counting efficiency and are expressed as disintegrations per minute.

All compounds were dissolved in saline for injection. Thionracil and IX were dissolved with heating to 55°; III was only partially dissolved in saline, EtOH, or NH4OH, and therefore it was injected as a suspension in saline. All compounds (except III, IX, and X) were assayed at concentrations equimolar and ten times equimolar to 0.5 mg of thiouracil (3.9 μ moles) and the biological effect was almost the same at both doses. Table II summarizes the observations made with compounds I-X.

All the compounds have antithyroidal activity and appear to inhibit incorporation of I_2 in a manner similar to thiomacil. Compounds III, V, and possibly VI appear to be slightly more potent than thiouracil while IV and VII-X appear to be slightly less potent.

Acknowledgment.-The authors are thankful to Professor S. B. Barker and Dr. R. H. Lindsay (Medical Center, University of Alabama) for their cooperation in carrying out the biological screening of certain compounds and to Professor W. U. Malik for providing necessary laboratory facilities.

Antiinflammatory Aryl Pyridyl Ketones

GOETZ HARDTMANN, WILLIAM J. HOULIHAN,¹ AND E. I. TAKESUE

Sandoz Pharmaceuticals Research Laboratories, Hanover, New Jersey 07936

Received May 28, 1969

In a routine screening evaluation for nonsteroidal antiinflammatory² agents, it was found that 2-benzoylpyridine (1) possessed a good level of activity in the carrageenan foot edema assay.³ This finding prompted us to prepare a series of aryl pyridyl ketones for evaluation as potential antiinflammatory agents.

⁽¹⁾ To whom inquiries should be addressed.

⁽²⁾ For a survey of recent developments in nonsteroidal antiinflammatory agents see T. Y. Shen in "Annual Reports in Medicinal Chemistry, 1967,"

C. K. Cain, Ed., Academic Press, New York, N. Y., pp 215-226. (3) C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exptl. Biol. Med., 111, 544 (1962).