Journal of Medicinal Chemistry

(C) Copyright $19 \% 0$ by the American Chemical Society

β-Adrenergic Blocking Agents. VII. 2-(1,4-Benzodioxanyl) and 2-Chromanyl Analogs of Pronethalol [2-Isopropylamino-1-(2-naphthyl)ethanol]

R. Howe, B. S. Rao, and M. S. Chodnekar
Imperial Chemical Industries Limited, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, England
Received .August 15, 1969

Abstract

A series of 1-(1,4-benzodioxall-2-yl)- and 1-(chroman-2-yl)-2-aminoethanols, e.g., 3 and 5, which contain features of both pronethalol (2) and propranolol (1), has been synthesized by standard methods. Several pairs of geometric isomers have been separated by fractional crystallization, and related by nmr and chemical methods, and relative configurations assigned. The $R R$ racemate of $1-(1,4$-benzodioxan- 2 -yl)-2-t-butylaminoethanol 16 is the most potent β-adrenergic blocking agent yet reported. Structure-potency relationships are discussed.

When it became clear that compounds of the propranolol ${ }^{2}$ (1) type were considerably more potent as β-adrenergic blocking agents than those of the pronethanol ${ }^{3}$ (2) type it became of interest to prepare 1,4-

benzodioxan ${ }^{4}$ and chroman ${ }^{\text {5 }}$ analogs, such as $\mathbf{3}$ and $\mathbf{5}$, which contain features of both types. Rosnati and de IIarchi 6,7 had previously prepared a series of 1,4 benzodioxans related to, and including a mixture of, the racemic isomers 3 and 4 . They reported that the compounds were not markedly active as α-adrenergic blocking agents, but had some stimulant action on the central nervous system.

[^0]Most of the compounds in Table I (6 to 53) were prepared from an amine and the appropriate halohydrin (which with base forms the epoxide) (eq 1, Scheme I). When this method was used in the pronethalol series la,d a mixture of position isomers was obtained because the oxirane ring of the intermediate epoxide opened in two ways. In the propranolol series only the secondary alcohol was formed. 1b.e It was assumed that only the secondary alcohol would be obtained in the 1,4benzodioxan and chroman series, and the assumption held for those compounds which were made by alternative unambiguous methods (eq 2, 4, and 5), and for those prepared by methods A and B whose structures were checked by nmr. A third main method (C, eq 2) was reductive amination $\left(\mathrm{JaBH}_{4}\right)$ of a glyoxal. ${ }^{\text {1a }}$ In addition, certain compounds were prepared by methods described in previous parts of this series. Compound $\mathbf{5}$ was obtained by reductive alkylation of either 39 with acetone and NaBH_{4} (eq 3), ${ }^{12}$ or of the diazoketone 54 with acetone and $\mathrm{Pt}-\mathrm{H}_{2}(\text { eq } 4)^{1 \text { 1a }}$ Reduction of the aminoketone 55 with NaBH_{4} gave 16 (eq 5). This route could not be used generally because the intermediate aminoketones could not be obtained. Bromination of $\mathbf{1 6}$ gave $\mathbf{3 7}$, and of $\mathbf{4 2}$ gave $\mathbf{5 2}$ (eq 6).

All the compounds reported here have at least two centers of asymmetry. In five cases the two possible racemates were obtained by fractional crystallization, i.e., $\mathbf{3}$ and 4, 6 and 7, 15 and 16, 32 and 33 , and 41 and 42. No deliberate attempt was made to separate the isomers of the other compounds. Catalytic reductive alkylation of $\mathbf{6}$ in the presence of acetone gave 3, and in the same way 7 gave 4 (eq $3, \mathrm{R}=1,4$-benzodioxan $2-y \mathrm{l}$). Thus $\mathbf{3}$ and $\mathbf{6}$ belong to the same stereochemica series, and 4 and 7 belong to a different series.

It was thought at first that 20 and 21 were geometric isomers, ${ }^{\text {a }}$ but 21 is now considered (on nmr and mass

Table I

Tambel (Contimura)										
Connown!	Vermula	Methuls ${ }^{\text {a }}$	Firrm	(ryanm simme ${ }^{\text {a }}$	$\begin{aligned} & \text { My, "C. of } \\ & \text { amine ur salt } \end{aligned}$	Fromiula	Analyses	1 !itusi,n rate, $\mu \mathrm{L} / \mathrm{kr}$ ner min	Th chang ill heart r:ali	+1. inlimio tion of Tachy- cardill
$2{ }^{2}$	HOH	Sel: Expt ${ }^{*}$	Basp	1'40)	108-1111	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrNO}$	C. II, Br, N	H/k	+16	78

$\mathrm{RCHOHCH}_{2}, \mathrm{NR}^{\prime} \mathrm{R}^{*}$ (1

$\mathrm{RCHOHCH} . \mathrm{NHR}^{2}$

RCHOHCH NHCHMe. (:
5

54
SCHIME: 1

55

16

spectrum evidence) to have the structure showne It must have been formed from a trace of $\mathbf{5 6}$ in the intermediate chlorohydin. Compound 56 would be firmed

from further reaction of the intermediate chloromethyl ketone (in Eq 7) with CH_{2} ㅇ.

Many of the intermediates were gums which failed to crestallize, probably because they consisted of two or more racemic isomers. Those new intermediato. which did crotallize are listed in Table II (57 to 69). New intermediates not listed were characterized only ber is spectra. The hatohrdrin intermediates were
Compd
${ }^{a}$ Intermediate Me ketone, D. Misiti and F. De Marchi, Gazz. Chim. Ital., 93, 46 (1963). ${ }^{b}$ Intermediate acid chloride, J. Koo. S. Avakian, and G. J. Martin, Chem. Ind. (London), 832 (1958). ${ }^{\circ}$ Intermediate Et ester, J. Augstein, S. M. Green, A. M. Monro, G. W. H. Potter, C. R. Worthing, and T. I. Wrigley, J. Med. Chem., 8, 446 (1965). ${ }^{d}$ See Experimental Section.
generally made by the route exemplified for the naphtho $[2,3-b]-1,4$-dioxan analogs (eq 7). The bromo ketone 57 was also made by brominating the corresponding methyl ketone. ${ }^{8} \quad \mathrm{NaBH}_{4}$ reduction of the chloromethyl ketone 69 also reduced the chromenone ring system to the hydroxychroman system exemplified in 53. Treatment of the chloromethyl ketone derived from the acid 68 with NaBH_{4} also removed the acetyl group. The glyoxals were made either by oxidation of the corresponding methyl ketone with SeO_{2} or by oxidation of the corresponding bromomethyl ketone with D.MSO. ${ }^{\text {la. } 9}$ The 1,4 -benzodioxans were prepared by the general route (eq 8) which gave the intermediates 66 and 67 of uncertain orientation. Compound 68, also of uncertain orientation, was prepared by acetylating the hydroxy acid obtained by using pyrogallol in the

[^1]above condensation. Chroman-2-carboxylic acid was prepared from 2-bromo-1-tetralone, ${ }^{10}$ and also by reduction of chromen-4-one-2-carboxylic acid ${ }^{11}$ with amalgamated Zn and HCl .

Stereochemical Relationships.-It has been shown above by a chemical correlation that $\mathbf{3}$ and $\mathbf{6}$ belong to the same stereochemical series, and 4 and 7 belong to another stereochemical series. These two series differ in the relative stereochemical configurations at C_{2} and $\mathrm{C}_{1}{ }^{\text {1 }}$, and for convenience may be referred to as the $R R$ and the $R S$ series. (Because the compounds are racemates they could equally well be called the S, S and the $S R$ series.)

[^2]B!: analysis of mmr data, relative configurations have been assigned to centers C_{2} and C_{1}^{\prime}. It was necessary to identify the sigmal due to H at $\mathrm{C}_{1}{ }^{\prime}$, and to measure the coupling constant to H at C .

The epectrom of 15 was: $+\left(\mathrm{CDCl}_{3}\right), 3.15-30$ (multiplet, Ar-H, 4), inio- 5.20 (multiplet. H at C_{2} and H_{A} and H_{11} at $\mathrm{C}_{3}, 3$), $6.30-6.53$ (triplet of doublets. X part of $\mathrm{ABXY}, J=7.0,7.0$, and $3.7 \mathrm{c} \mid \mathrm{s}, \mathrm{CH}(\mathrm{OH})$ 1), 7.00 -7.4.5 (four doublets, AB peattern of ABX . $J=3.7,7.0$, and $12.0 \mathrm{cps},\left(\mathbf{H}_{2}-, \cdot 2\right), 7.10-7.60(\mathrm{brom}$.
 porant coupling H at C to H at (C_{1} was $\overline{7} .0 \mathrm{cps}$. Tha spectrum of 16 w:心: $\tau(C D(1)$. :3.1. -3.30 (multiplet. Ar-H, t). $\overline{1} .65-6.00$ (multiplet, H at C a and H_{A} and H_{1}; at (3 , 3), ($0,20-6.40$ (triplet of doublets. I part of $\mathrm{A}_{2} \mathrm{XY}, J=\overline{1.5}, 5.5$, and 3.0 (ps. $\mathrm{CHOH}, 1$) : $\overline{7} .23$
 8.00 (bread, OH and $\mathrm{NH}, 2$). 8.90 トinglet, $\mathrm{C}\left(\mathrm{CH}_{3}\right)$, 9. The important coupling H at. (2 to H at (y^{\prime} wio 3.0 cps, and a chameteristic foatme of the spectrmm Was that the H atoms at $\mathrm{C}_{2}{ }^{\prime}$ happened to have the same chemical shift. Piatial nmo sucetra of $\mathbf{1 5}$ and 16. logether with the expanded apectr: ate shown ine l"igure 1.

Figure 1.-Nmr spectra of 15 and 16, measured in CDCl_{3} at 100 Mcps, with expansion of the region $\tau 5.5-7.5$.

The spectrum of 4 was essentially similar to that of 15, after allowing for the change t-butyl into $i-\mathrm{I}^{\prime}$ ': $\boldsymbol{\tau}\left(\mathrm{CDCl}_{3}\right) 7.20$ (septet, $\left.i-\mathrm{Pr} \mathrm{CH}, 1\right), 8.96$ (doublet,
 7.0 chs. The spectrum of 3 was esentiodly similal on that of $16: \tau\left(\mathrm{CDCl}_{3}\right) 7.20$ (soptct. i-1) $(H, 11$, s.9.3

 sime (hemiced-hith

The -pectimm of 20 w: (multiphet. Ar-H. is). $3.10: 3.30$ (multiplet, Ar-H. ti,

 6.0. and :3.0 (p) ('HOH. 1): $7.1+$ (douhlet. A. mart af

 the salne chemical whift.

 The impertant compling H at (310 H at (1^{\prime} was 7.0

 unchanged after douhle irradiation at $\tau 7.25$) . 6.15 (6.40

The chemical comversimis and the mine complations shew that 3. 6, 16, 20, 37, and 41 betong to the sance stereochemical serior and 4. 7. 15. 42. and 52 belong to the othere sterenchemical seris-s.
 center- Camd Ci' the asomption can not be made that the ethanotmang side chatin achopts an equatemial
 the matio axial: equatorial side chan tor ouch geometric: isumer of : a pair. The appropriate coupling eomstatat$\mathrm{H}_{2} \mathrm{H}_{3.2}$ and $\mathrm{H}_{2} \mathrm{H}_{\text {se }}$ conidd not he absained from the edove -pectra, which were all run at 100 Me. In the nome

 $\left.J_{21}\right)^{\prime}$ the sepsamt: coupling constants conld mot he identified with certainty. Thus both $\mathbf{1 5}$ and $\mathbf{1 6}$ have the side chatic in the s:ome axial equatorial ratio. Ii the eq ax and ed af compling constants are 2.3 (p) and
 axial: equatorial sule chain is opproximately $1: 1$.

Assuming that the OH group will prefer to H homd to S rather than to an () of the benzodioxan ring, then relative configurations can be assigned to the two geometric isomers hasod on the coupling constante of

[^3]the \mathbf{H} atoms at C_{2} and $\mathrm{C}_{1}{ }^{\prime}$, and the relative sizes of the groups attached to C_{2} and $\mathrm{C}_{1}{ }^{\prime}$. Thus, provided that the interactions are purely steric in orgin, the isomer 15 which has the higher coupling constant will have the configuration $\mathbf{7 0}$ which inspection shows has the $R S$ (or $S R$) absolute configuration. 16 will have the $R R$ (or $S S$) configuration 71.

70

Thus $\mathbf{4}, \mathbf{7}, \mathbf{1 5}, \mathbf{4 2}$, and $\mathbf{5 2}$ are RS (or SR) racemates and $3,6,16,20,37$, and 41 are RR (or SS) racemates.

Biological Results and Discussion.-The results of the biological screening tests ${ }^{14}$ are given in Table I. The test procedure was identical with that reported previously. ${ }^{\text {1a }}$

The benzodioxans 15 and 16 are the most potent β adrenergic blocking agents so far reported and are five to ten times more potent than propranolol. Structurepotency relationships in the benzodioxan series resembled those in the propranolol series. ${ }^{16}$ Potency was highest when the \mathcal{I} substituent was an alkyl group of $3-4 \mathrm{C}$ atoms branched at the $\alpha-\mathrm{C}$, e.g., $3,4,15$, and 16. As in the propranolol series, potency was not improved by appending Ar to the alkyl group e.g., 20, 22, and 23, whereas in the pronethalol series ${ }^{1 a}$ and the isoproterenol series ${ }^{15}$ the presence of such an aryl group often increased the potency. Introduction of $\mathrm{Me}\left(\mathrm{R}^{3}\right)$ (Table I) appeared to lower potency, if but caution is required because the compounds being compared may not belong to the same stereochemical series. Introduction of Me groups R^{4} or R^{4} and R^{5} markedly lowered the potency. Substitution in the benzene ring, e.g., $\mathbf{3 2}$ to 38 lowered potency with respect to the unsubstituted analog.

Comparison of the potencies of 3 and 4 with that of 72 (6 in ref $1 \mathrm{e}, 55 \%$ block at $5 \mu \mathrm{~g} / \mathrm{kg}$ per min)

shows that a useful increase in potency is achieved by joining the OCH_{8} of $\mathbf{7 2}$ to the propanolamine side chain to form the more rigid molecule 3 or 4 . The increase in potency is the more remarkable because substitution of \ee in the propanolamine side chain as in structure 73 might be expected to markedly decrease potency as in the propranolol series. ${ }^{1 \mathrm{f}}$

Fewer chroman analogs were prepared but once again $t-\mathrm{Bu}$ and $i-\mathrm{Pr}$ substituents on N^{-}gave compounds of highest potency. Compounds in the chroman series were generally at least five to ten times less potent than their benzodioxan analogs. Comparison of 3 and 4 with 5 and with the tetrahydronaphthalene analog 74
(14) Biological testing was carried out by Drs, J. W. Black, R, G. Shanks, and Mr. D. Dunlop. For further information see J. W. Black, W. A. M. Duncan, and R. G. Shanks, Brit. J. Pharmacol. 25, 577 (1965),
(15) H. D. Moed. J. van Dijk. and H. Niewind, Rec. Trav. Chim., 74, 919 (1955).
(24 in ref $1 \mathrm{~d} ; 45 \%$ block at $50 \mu \mathrm{~g} / \mathrm{kg}$ per min) is interesting. Replacement of O-4 of $\mathbf{3}$ and 4 by CH_{2} reduces potency by about 10 times and replacement of $\mathrm{O}-1$ and 4 by CH_{2} 's reduces it by about 75 times. The comparative potencies of 5 and 74 are in line with the

observation that replacement of the ethereal O of the propranolol side chain by CH_{2} markedly lowers potency. ${ }^{16}$ The comparison between 3 and 4 , and 5 is not in line with that between 72 and 75 (3 in ref $1 e$; 74% block at $2.5 \mu \mathrm{~g} / \mathrm{kg}$ per min), where a similar structural change is involved in a less rigid molecule.

The difference in potencies between the pairs of racemates was not particularly marked, except perhaps for the chromans 41 and 42. The $R R$ (or $S S$) racemates were the more potent.

Experimental Section ${ }^{17}$

When diastereoisomers were separated by fractional crystallization the salt or base mentioned first in Table I crystallized first from the solvent given. Hydrogenations were carried out at room temperature and atmospheric pressure. Methods A, B, and C are representative for the compounds listed in Table I.
A. 1-(1,4-Benzodioxan-2-yl)-2-i-butylaminoethanol (15, 16). -A mixture of 1-(1,4-benzodioxall-2-yl)-2-chloroethanol ${ }^{\mathbf{8}}$ (18.8 g) and $t-\mathrm{BuNH}_{2}(120 \mathrm{ml})$ was heated in a sealed vessel at 100° for 10 hr , and then the excess of $t-\mathrm{BuNH}_{2}$ was evaporated. The residual oil was shaken with $2 N \mathrm{HCl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The acidic aqueous solution was made alkaline with 8 V NaOH and then extracted with $\mathrm{E}_{2} \mathrm{O}$. The dried extract was evaporated and the residual oil (15.6 g) was stirred with petroleum ether ($\mathrm{bp} 40-60^{\circ}$) $(60 \mathrm{ml})$. The solid which separated was fractionally crystallized from petroleum ether ($\mathrm{bp} 40-60^{\circ}$) and gave 15, mp 104-105 . $\mathbf{1 5} \cdot \mathrm{HCl}$, prepared by adding a slight excess of ethereal HCl to a solution of 15 in $\mathrm{Et}_{2} \mathrm{O}$, was crystallized twice from $\mathrm{MeOH}-$ EtOAc, mp 162-163 ${ }^{\circ}$. An aqueous solution of this $15 \cdot \mathrm{HCl}$ was made alkaline with $2 N \mathrm{NaOH}$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract gave 15, mp 104-105 ${ }^{\circ}$.
The mother liquors remaining from the fractional crystalization which gave 15 yielded crude $16, \mathrm{mp} 79-81^{\circ}$, not changed by four crystallizations from petroleum ether (bp 40-60). Crude $16 \cdot \mathrm{HCl}, \mathrm{mp} \mathrm{168-178}{ }^{\circ}$, was fractionally crystallized to give pure $\mathbf{1 6} \cdot \mathrm{HCl}, \mathrm{mp} \mathrm{193-194}$, which gave pure $\mathbf{1 6 , \mathrm { mp } \mathrm { 91 }} 9 \mathbf{9 2}^{\circ}$.
B.-In method B,1-(1,4-benzodioxan-2-yl)-2-bromoethanol was used in place of 1-(1,4-benzodioxal-2-yl)-2-chloroethanol.
Bromomethyl 1,4-Benzodioxan-2-yl Ketone (57) - $\mathrm{Br}_{2}(7.5 \mathrm{~g})$ was added during 2 hr to a stirred solution of 1,4-benzodioxan-2-yl methyl ketone (8.36 g) in $\mathrm{Et}_{2} \mathrm{O}$ (250 ml) at 10°. When the Br_{2} color had been discharged the solution was washed with 3 $\mathrm{N} \mathrm{NaHCO}_{3}$ solution and then with $\mathrm{H}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ solution was dried and then evaporated to give $57(9 \mathrm{~g}, 75 \%)$.

1-(1,4-Benzodioxan-2-yl)-2-bromoethanol- $-\mathrm{NaBH}_{4}(4 \mathrm{~g})$ was added during 1 hr to a stirred solution of $57(14.0 \mathrm{~g})$ in MeOH (150 ml) at 0°. After 18 hr the MeOH was evaporated, $\mathrm{H}_{2} \mathrm{O}$ was added, and then the product was isolated by $\mathrm{Et}_{2} \mathrm{O}$ extraction. It had $\mathrm{mp} 8.5-87^{\circ}$ (from petroleum ether, bp $\left.60-80^{\circ}\right)(11.4 \mathrm{~g}$, 81%). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}\right) \mathrm{H}, \mathrm{Br} ; \mathrm{C}$: calcd, $46.3 \overline{5}$; found, 46.8 .
C. 1-(1,4-Benzodioxan-2-yl)-2-isopropylaminoethanol (3)$\mathrm{NaBH}_{4}(2.0 \mathrm{~g})$ was added during 1 hr to a stirred solution of 58 (2 g) and $i-\mathrm{Pr}_{\mathrm{NH}}^{2}(20 \mathrm{ml})$ in $\mathrm{MeOH}(50 \mathrm{ml})$ at 0°. After 18 hr the MeOH and the excess of $i-\mathrm{PrNH}_{2}$ were evaporated. The residue

[^4] was made alkatine with 2.1 NaOH and then extracted with Fto. The extract gave 3 .
(1,4-Benzodioxan-2-yl)glyoxal (58i(a), - A wolalion ot 57 (1.5) gi
 punced unta ice, and then extracted with Fto (). The extlat was evaporated and the residual gam was erstalhzed from Eno

 AcOH (30 ml) was heated at. 100° ty -2 hr and then heated under reflux for 1 hr . The cooled mixtme was fillered and the filtrate was evaporated to drynem. The residnal oil was disolved in

When heated with o-phenylenediamine in . IleOH whmion, 58

1-(2-Chromanyl)-2-isopropylaminoethanol (5) (a!.-N゙aBlI, (1).1. (g) was added during 1.5 min to s simed sohtion of 39 free
 1" hr the Meofl was evaporated in racuo, $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixtire was extracted with Eito. Ethereal HCl was added w the difed extraci :and $5 \cdot \mathrm{HCl}$ separated, ny) $17.5-176^{\circ}$, from

 drogenated in the presence of $P_{\text {P }}$ ill.t. of. The mixume was fillered and the fiblate was evapmated in bacno. The residue
 Was made alkatine with -1 NaOH and hen exaract with kio. Whereal HCl was added to the dried extract and $5 \cdot \mathrm{HCl}$ separated.

1-(1,4-Benzodioxan-2-yl)-2-t-butylaminoethanol i16:---t-B11-

 H BuNH: HCC. Ethereal HCl was added to the fillate and the abid which reparated was factionally arsablizen lo give ?-
 $1.2-184^{\circ}(79 \mathrm{mg})$, v $175.5 \mathrm{~mm}^{-1}$.
$\mathrm{VaBH}_{4}(0.25$ n) was adeled during hin min a timed sohntion ,f $\overline{5} 5(0.09 \mathrm{~g})$ in TheOH (50 mb) at 10°. After 12 he the MeOH watevpomed in macma: $16 \cdot \mathrm{HCl}$ was isulated in the same way :1s $5 \cdot \mathrm{HCl}$ ahove).

1-(6-Bromo-2-chromanyl)-2-t-butylaminoethanol (521.--131:
 Acoll (2 m m) and the the sohtion was kept at 4$)^{\circ}$ matil the Br : abor had largely been discharged. After 1 hr, Acolf was evapomated in ramo. $52 \cdot \mathrm{HCl}$ wa mhtamed by procechure h rivel: $\mathrm{f} \boldsymbol{\mathrm { m }} \mathrm{5} \cdot \mathrm{HCl}$.

1-(1,4-Benzodioxan-2-yl)-2-isopropylaminoethanol (3), A shluinn of $6 \cdot \mathrm{MCl}(0.1 \mathrm{~g})$ in EtOH (15 ml) and $\mathrm{Me} \mathrm{CO}(10 \mathrm{ml}$) was hedrogenated in the presence of Pt matalys. (0.2 g). The mixtme was fillered, the filtate was evaporated lo drymers, and

 extract gave 3. mmp s. 5 , 0°.

 (1) Eive 4 - 11 ('l, mun, $144-14.9^{\circ}$.

Ethyl Naphtho $[2,3-b]$-1,4-dioxan-2-carboxylate 62 ., R1hy!

 poredne deoribed in the has sentence wa- repeated twhe

Naphtho [2,3-b-1,4-dioxan-2-carboxylic Acid 63 :. (imupnula]

 wilh he (.11 ml .

Naphtho 2,3-b,-1,4-dioxan-2-carboxylic Acid Chloride (64).

Chloromethyl Naphtho [2,3-b) $-1,4$-dioxan-2-y] Ketone (65 :. \cdots A

2-(hloro-1-(naphtho 2,3-bl-1,4-dioxan-2-yl ethanol,- -

Acknowledgments. We thank 1)r. (i. Bedford :mil Mr. D. (ireathank- whon obtained and dircured the. ampresectia.

[^0]: (1) (a) Part I: R. Howe. A. F. Crowther, J. S. Stephenson, B. S. Rao, and L. H. Smith. J. Med. Chem.. 11, 1.000 (1968). (b) Part II: A. F. Crowther and L. H. Smith, ibid., 11, 1,009 (1968). (c) Part III: R. Howe and B. S. Rao. ibid., 11, 1,118 (1968). (d) Part IV: R. Howe. B. J. McLoughlin, B. S. Rao, L, H. Smith, and M. S. Chodnekar, ibid., 12, 452 11969). (e) Part V: A. F. Crowther. D. J. Gilman. B. J. McLoughlin. I.. H. Smith. R. W. Turner, and T. M. Wood, ibid., 12, 638 (1969). (f) Part VI: R, Howe. ibid., 12, 642 (1969).
 (2) Inderal ${ }^{(\mathrm{R})}$.
 (3) Alderlin. Trademark.
 (4) (a) M. S. Chodnekar. A. F. Crowther, and R. Howe. British Patent 1.038.332 (1966). (b) M. S. Chodnekar, A. F. Crowther, and R. Howe. British Patent 1.038.333 (1966). (c) R. Howe, British Patent 1.038.336 (1966).
 (5) R. Howe. British Patent $1,054,655$ (1966).
 (6) V. Rosnati and F. de Marchi, Gazz. Chim. Ital., 91, 605 (1961).
 (7) V. Rosnati, F. de Marchi, and D. Misiti. ibid., 91, 1365 (1961).

[^1]: (8) First carried out by a colleague. Dr. A. G. MeGregor. British Patent 1,038,334 (1966).
 (9) R. Howe. British Patent $1.038,335$ (1966).

[^2]: (10) G. Baddeley and J. R. Cooke, J. Chem. Soc., 2797 (1958).
 (11) R. Heywang and St. y. Kostaneki, Ber., 35, 288^{-}(1902).

[^3]: A. J. Sewell. Chem. Comom, 59 logis.

[^4]: (16) Part VIII of this series being prepared.
 (17) Where analyses are indicated only by symbols of the elements or functions, analytical results obtained for those elements or functions were within $\pm 0.4 \%$ of the theoretical values.

