Derivatives of 2-Hydroxy-p-phenetidine. I. Azomethines ${ }^{1}$

Mosfs J. Namkuyg and T. Lloyd Fletcher
Chemistiy Research Laboratory of the Department of Surgery, University of Wasington School of Medicine, Seattle, Washington 98105

Received November 12, 1969
We have reported ${ }^{2}$ an improved synthesis of 2 -hy-droxy- p-phenetidine. The N-acetyl derivative of this compound has recently been identified ${ }^{3}$ as a toxic metabolite of p-acetophenetide (phenacetin) in the urine of cats, dogs, and humans. Since the azomethine

Table I
Azomethine Derivatives of 2 -Hydroxy- p-Phenftidine

Compound	X	Yield, ${ }^{\text {a }}$		
		Mp, ${ }^{\circ} \mathrm{C}$	\%	Formula ${ }^{\text {b }}$
1	$\mathrm{H}^{\text {c }}$	109-110	90	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
2	$2-\mathrm{OH}^{\text {c }}$	131-152	90	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$
3	$3 \cdot \mathrm{OH}^{\text {d }}$	137-138	46	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$
4	$4 . \mathrm{OH}^{\text {c }}$	108-109	60	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$
5	$3-\mathrm{OCH}_{3}-4-\mathrm{OH}^{e}$	136-137	95	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$
6	3,4-CH2 ${ }_{2}{ }^{\text {f }}$	131-132	61	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$
7	3,4-(OCH_{3}), $\mathrm{c}^{\text {c }}$	114-115	84	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$
8	$3,4,5-\left(\mathrm{OCH}_{3}\right)_{3}{ }^{\text {f }}$	118-119	69	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}$
9	$4-\mathrm{NHCOCH}_{3}{ }^{\text {c }}$	190-191	81	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$
10	$4-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}^{e}$	167-168	77	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
11	$\stackrel{-}{ } \mathrm{NO}_{2}{ }^{\text {c }}$	104-105	49	$\mathrm{C}_{15} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$
12	$3-\mathrm{NO}_{2}{ }^{\text {c }}$	119-120	61	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
13	$4 \cdot \mathrm{NO}_{2}{ }^{\text {f }}$	147-148	70	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
14	$2 \cdot \mathrm{Cl}{ }^{\text {e }}$	85-86	53	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{2}$
15	$3 \mathrm{Cl} /$	97-98	68	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{3}$
16	$4 . \mathrm{Cl}{ }^{\text {c }}$	12.-126	65	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}_{2}$
17	2,6- $\mathrm{Cl}_{2}{ }^{\text {f }}$	111-112	63	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
18	$3,4-\mathrm{Cl}_{2}{ }^{\text {c }}$	117-118	63	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
19	$3, \dot{3}-\mathrm{Cl}_{2}{ }^{\text {o }}$	104-10:	83	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
20	H^{ϵ} [cinuanylidene]	11.)-116	57	$\mathrm{C}_{17} \mathrm{H}_{17}-\mathrm{NO}_{2}$

${ }^{a}$ Yield after one recrystallization (EtOH). ${ }^{b}$ All of the compounds had correct analrses for C, H, and N (within 0.4% of the theoretical) except compound 13: Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $62.93 ; \mathrm{H}, 4.93 ; \mathrm{N}, 9.79$. Found: C, $62.70 ; \mathrm{H}, 5.40 ; \mathrm{N}, 9.85$. All analyer were done by Dr. A. Bernhardt, Elbach über Engelskirchen, Germany. Aldehy deobtained from ${ }^{c}$ The Matheson Co., Inc. ${ }^{d}$ J. T. Baker Chemical Co. ${ }^{e}$ Eastman Kodak Co. ${ }^{f}$ Aldrich Chemical Co. oSynthesized in this laboratory by the method of H. S. Sharadamma, S. H. Kulkarni, P. B. Sattur, and K. S. Nargund, J. Karnatak Univ., 1, 61 (1956).
linkage is not unknown, and even plays a role, in certain physiological reactions, ${ }^{4}$ it occurred to us to

[^0]prepare a series of compounds condensing this biologically interesting amine with various aryl aldehydes seeking compounds of possible therapeutic value. Twenty new compounds were made and are presented in Table I. Their ir spectra had a band at 1626$1618 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}$ stretching $) .{ }^{5}$

In addition to these azomethines, the parent amine and its N-acetyl derivative were tested in BDF_{1} mice (with L1210 lymphoid leukemia) for antitumor activity by the Cancer Chemotherapy National Service Center: NCI. All of the compounds were inactive. It is of interest that whereas both 2 -hydroxy- p-phenetidine and 2 -hydroxy- p-acetophenetide were toxic at a dosage of $150 \mathrm{mg} / \mathrm{kg}$ ($5 / 6$ deaths with the amine, and $6 / 6$ with the N-acetyl derivative), only one of the 20 azomethines caused a death at $400 \mathrm{mg} / \mathrm{kg}$. the highest dose tested (2 , Table I, 1 death of 6 mice tested).

Experimental Section ${ }^{6}$

The condensations between the amine and the various aldehydes were performed as described in the following procedure for N-benzylidene-2-hydroxy- p-phenetidine. To a hot (60°) solution of 7.6 g (0.05 mol) of 2-hydroxy-p-phenetidine in 50 ml of EtOH, $5.3 \mathrm{~g}(0.05 \mathrm{~mol})$ of PhCHO was added slowly and the mixture was boiled for 10 min . Upon cooling to room temperature, a creamy white precipitate came out giving 15.5 g (95%), mp 109-110 ${ }^{\circ}$. One recrystallization from EtOH gave an analytical sample with the same melting point.

Acknowledgment.-We wish to thank Alice C. Lee for obtaining the ir spectra.
(5) K. Nakanishi, "Infrared Absorption Spectroscopy," Holden-Day Inc.. San Francisco, Calif., 1962, p 222; The usual range given for $\mathrm{C}=\mathrm{N}$ is $1690-$ $1640 \mathrm{~cm}^{-1}$, but this is shifted by the effects of conjugation. The spectra were run on a Beckman IR-5 instrument (KBr disks).
(6) Melting points were determined on a Fisher-Johns block and are corrected to standards.

2,3-Dihydro-4(1H)-quinazolinone Derivatives

G. Bonola and E. Shanesi
Research Division, Recordati s.a.s., Milan, Italy

Received August 1, 1969

As a part of a search for 2,3 -dihydro $4(1 \mathrm{H})$-quinazolinone compounds with possible pharmacological activity, ${ }^{1}$ some potential antipyretic, hypotensive, and CNS depressant 3 -aminoalkyl-2,3-dihydro- and 3 -amino2,3 -dihydro- $4(1 \mathrm{H})$-quinazolinone derivatives were prepared; moreover, a series of 3-hydroxy-2,3-dihydro$4(1 \mathrm{H})$-quinazolinone derivatives was synthesized as possible antibacterial ${ }^{2}$ and antifungal agents on the basis of the known activity of some benzohydroxamic and cyclic hydroxamic acids (Table I).
(1) G. Bonola, P. Da Re, M. J. Magistretti, E. Massarani, and I. Setnikar, J. Med. Chem., 11, 1136 (1968).
(2) Bacteriostatic 3-hydroxy-2,3-dihydro-4(1H)-quinazolinones have been quite recently reported by Farbwerke Hoechst A.-G., Netherland Appl. 6.609,924 (196i); Chem. Abstr., 68, 59609 (1968).

Table I (Continued)							
No.	R	R'		$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Yield, \%	Formula	Analyses
49	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$		C	180-182	50	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, N
49	4- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	$\mathrm{OCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	C	128-130	67	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$	C, H, N
50	2,3-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	OH	C	201-204	8.5	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	C, H, N
51	$2,3-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	J	122-124	30	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N
02	2,3-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$		H	140-142	52	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$	C, H, N
53	2,3-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{OCH}_{2} \mathrm{CH} \square$	H	143-145	40	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, M
54	2,3-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{OCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	C	126-128	66	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$	C, H, N
3.5	$3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	OH	C	191-193 dec	75	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	C, H, N
56	$3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{4} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	C	171-173	55	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, ${ }^{-}$
57	$3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$		C	192-194	47	$\mathrm{C}_{23} \mathrm{H}_{2}+\mathrm{N}_{3} \mathrm{O}_{5}$	C, H, N
58	$3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	${ }^{4} \mathrm{HCH}-\bigcirc$	C	156-158	48	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N
59	$3,4-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{OCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	C	150-157	75	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$	C, H, N
60	$2,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	OH	C	169-171	75	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	C, H, N
61	$2,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{OCH}_{3} \mathrm{CH}_{5}$	H	118-121	60	$\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N
62	$2,5-\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{OCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	C	150 - 107	6.5	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$	C, H, N
63	$2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	OH	K	208-211 dec	84	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N
64	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	OH	C	192-194	80	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N
6.$)$	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	OH	A	122-123 dec	73	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	C, H, N
66	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$\mathrm{OH}_{-} \mathrm{H}^{\circ}$	B	151-153	.5.5	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$	C, H, N
67	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	()CHCOOCH.	C	133-135	51	$\mathrm{C}_{18} \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{O}_{6}$	C, H, N
68	$2 . \mathrm{ClC}_{6} \mathrm{H}_{4}$	$1 \mathrm{H}^{\prime}$	C	170-172	80	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{2}$	C, H, N, Cl
69	$2 . \mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{OH}_{3} \mathrm{CH}_{2} \mathrm{~S}^{\square}$	C	190-192	60	$\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{O}_{3}$	C, H, N, Cl
70	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\left(\mathrm{CH}_{3} \mathrm{COOCC}_{2} \mathrm{H}_{4}\right.$	C	157-159	90	$\mathrm{C}_{18} \mathrm{H}_{1} ; \mathrm{ClH}_{2} \mathrm{O}_{4}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
71	2-Furyl	OH	D	163-166	30	$\mathrm{C}_{12} \mathrm{H}_{10} \stackrel{\sim}{2}_{2} \mathrm{O}_{3}$	C, H, N
72	2-Furyl	$\mathrm{OCH}_{3} \mathrm{CH}_{3} \longrightarrow \mathrm{HCl}$	H	197-201 ${ }^{\text {b }}$	50	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~S}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
73	2-Furyl	$\mathrm{OCH}_{2} \mathrm{COOCH}_{3} \mathrm{H}_{3}$	C	128-129	72	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$	C, H, M
74^{\prime}	$\mathrm{C}_{6} \mathrm{H}_{5}$	1) H	B	173-175	50	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N
75^{7}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{OH}_{2} \mathrm{CH}^{\square}$	J	116-118	45	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, M
$76{ }^{\text {f }}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathrm{HCl}$	H	181-184 ${ }^{\text {b }}$	60	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{HCl}$	
77 78	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & \mathrm{OCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5} \\ & \mathrm{OH} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 108-110 \\ & 193-195 \end{aligned}$	30 10	$\begin{aligned} & \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}, \mathrm{H}, \mathrm{~N} \\ & \mathrm{C}, \mathrm{H}, \mathrm{~N} \end{aligned}$
78		OH	A	193-195	10	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, .
79^{2}		$\mathrm{OCH}_{2} \mathrm{CH}_{-}$	A	143-144	50	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$	C, H, N
$80^{\prime \prime}$		$\mathrm{OCH}_{2} \mathrm{CH}_{N} \square$	H	130-135 dec ${ }^{\text {b }}$	70	$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$	C, H, N
$81^{\text {h }}$		$\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	F	132-133	75	$\mathrm{C}_{1} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N

${ }^{\text {a }} \mathrm{A}=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{~B}=i \cdot \mathrm{PrOH}, \mathrm{C}=95 \% \mathrm{EtOH}, \mathrm{D}=\mathrm{AcOEt}, \mathrm{E}=\mathrm{Me}_{2} \mathrm{CO}, \mathrm{F}=\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{ligroin}, \mathrm{G}=i-\mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{H}=\mathrm{MeCN}, \mathrm{I}=$ $\mathrm{MeOH}, \mathrm{J}=\mathrm{C}_{6} \mathrm{H}_{6}$-cyclohexane, $\mathrm{K}=\mathrm{AcOH} .{ }^{b}$ In sealed capillary tube. ${ }^{c}$ Unsharp. ${ }^{d} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}=$ citric acid. ${ }^{6}$ On a Kofler bench. ${ }^{\prime} 1-\mathrm{C}_{3} \mathrm{H}_{3}$, $\quad 2,2$-Pentamethylene. ${ }^{h} 2,2-\left(\mathrm{CH}_{3}\right)_{2}$.

Experimental Section ${ }^{3}$

λ^{\prime}-(2-Piperidinoethyl)-2-aminobenzamide.-To a solution of 12. $\mathrm{g}(0.1 \mathrm{~mol})$ of $\lambda-(2$-aminoethyl $)$ piperidine in 400 ml of $\mathrm{H}_{2} \mathrm{O}$ was added $16.3 \mathrm{~g}(0.1 \mathrm{~mol})$ of isatoic anhydride and the mixture was stirred for 0.5 hr at room temperature and for 0.5 h1' at 45°. After standing overnight a saturated solution of Na_{2} CO_{3} was added to ensure a complete separation of the product, which was collected, dissolved in dilute HCl , and precipitated from the filtered solution with excess $\mathrm{Na}_{2} \mathrm{CO}_{3}$: yield $20 \mathrm{~g}(81 \%)$, $\mathrm{mp} 130-132^{\circ}$. All analytical sample (from $\mathrm{C}_{6} \mathrm{H}_{6}$) melted at 130-132 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. The dihydrochloride salt decomposes at about 200° (from $99 \% \mathrm{EtOH}$). Anal. (C C_{1} $\left.\mathrm{H}_{\because 2} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}\right) \mathrm{N}, \mathrm{Cl}$.

[^1]N-(2-Pyrrolidinoethyl)-2-aminobenzamide.--To a solution of $11.4 \mathrm{~g}(0.1 \mathrm{~mol})$ of 2-pyrrolidinoethylamine in 100 ml of 99% EtOH was added 16.3 g (0.1 nol) of isatoica nhydride and the mixture was refluxed for 1 hr . The residue obtained by evaporating the solvent was takell up in dilute HCl . The acid solution was made alkaline with excess $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the product which separated was collected and recrystallized from ligroin to yield 11.6 g (50%) of pure product, mp 100-101 ${ }^{\circ}$. - tnal. $\left(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

2-Methylaminobenzohydroxamic acid was prepared as described ${ }^{4}$ for 2 -aminobenzohydroxanic acid, substituting methyl N-methylanthranilate for methyl authranilate. After concentrating the reaction mixture, the sodium salt was collected and dissolved in $\mathrm{H}_{2} \mathrm{O}$. The filtered solution was made acid with AcOH and a cream-colored solid in 72% yield was obtained, mp $120-124^{\circ}$. An analytical sample ($\mathrm{C}_{6} \mathrm{H}_{6}$) melted at $122-124^{\circ}$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Aminoalkyl-2,3-dihydro-, 3-Amino-2,3-dihydro-, and 3-Hydroxy-2,3-dihydro-4(1H)-quinazolinone Derivatives.

[^2]General Procedures,--The products were prepared by condensing equimolar amomuts of the approptiate :-aninio benzamide or 2-aminobenzohydroxamic acid and of the addeInde or ketone ill absolute EtOH at room ($43,65,68$) or at boiling (63,64) temperature, in boiling aqueons EtOH in the presene of $\mathrm{VaOH}(1,6,11,16,21,32,43,45,50,55,60,71$), or in beiling al solute LitOH in the presence of piperidine (74) , $\mathrm{dry} \mathrm{HCl}(78)$, , NaOEt (remaining products). Work-up followed as usual.

3-N, I-Disubstituted Aminoethoxy-2,3-dihydro-4 (1H)quinazolinones. General Procedure...T, 1 nuol of the K salt of the $3-1 \mathrm{y}$ drexy-2,3-dihydro-4(1II)-cpuinizolinome in $i=$ Profl, 1 mol of 2-dialkyaninoethyl dheride was :udded. The mixnure was refluxed for :3-4 hand filtered from KCl . The
 mation. Recrystallization from an appopriate solvent gave pinc bimes except $\mathbf{7 2}$ and 76 , for which ouly the hydrochdurde sadufulfilled the analytical regurement.

3-Carbalkoxymethoxy-2,3-dihydro-4 1 H -quinazolinones. General Procedure. T_{0} it odution of 3 -hydroxy-2;;-
 equiv of alkyl bromoncetate was added and the mixture wat allowed to stand till the product sepanated: 77 was obtained an dilution with H_{2} ().

2-Phenyl-3-carboxymethoxy-2,3-dihydro-4 1H)-quinazolinone (42) was whaned hey hydrosis at rom temb-

2-Phenyl-3-benzoyloxy-2,3-dihydro-4(1H)-quinazolinone (39) was whained by Schotem-Bamban andation of ?

2-Phenyl-3-benzyloxy-2,3-dihydro-4(1H)-quinazolin-

 wis refluxed for 1 hir and the product separated on coding. In if similur way 2,2 -dimethyl-3-benzyloxy-2,3-dihydro-4 1 H quinazolinone (81) wie obtaind iffer dilution with 1 I () , if the ramemionixture.

2-Phenyl-3-allyloxy -2,3-dihydro-4 (1H)-quinazolinone (37),- T', al solution of 2.4 g (0.01 mol) of the potasium sale
 and of DMF 0.x g (0.01 mon) of ally bromide was added. The ration mixture was for 4 ha at rom temperature and then

 Wule 37 . Similarly, 2-phenyl-3-propargyloxy-2,3-dihydro4) 1 H)-quinazolinone (38) wis plepared.

Hexachlorocyclopentadiene Adducts of Insaturated Amides

Southr'n higional liseaph haboratory, Ine Oricans, Labisiant ro119

Beriand Vonmbra, lyse

It was previously shown that monoulefinie compounds react with hexachlorocyclopentadiene to give Diel--Alder adducts, some of which have exceptional insecticidal activity: Previous publications ${ }^{3-5}$ from this Iaboratory have shown that many long chain amides possers antimeontie activity. In contiruing

[^3]these investigations a momber of hexachlormerolopertat-
 pared and are presented in liable I
T.

18

<゙っ.	11	\cdots	1) Menci. at 30	1 ¢onma*
1	Nictl:		1.1.int	($11, \ldots 10 \times 1)$
\because	1	1. $51: 4$	1.1.in;	($211 \times 1 \mathrm{Na}$
\because	NCHCNO	1.404;	1.12(if)	
4	\because	1. 2166	1.91\%	(i H6($\left.\mathrm{H}_{6} \mathrm{~N}\right)$
:	5	1. 1115	1.131	(H (1)NO)

14	\square	1-30	1.2.1:	$(-11)(1, \mathrm{Na}$
$1 \therefore$	$\mathrm{N}, \mathrm{Cl} \mathrm{H}_{3}$?	1. 20.4 .8	1.14	(11.1 BN
16	$\mathrm{NoCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$	1. $\quad .1+1$	1.24:	
17		1.30:	1.30-	
1s	$\sqrt{5}$	1. $5+40$	1.311:	

 were within ± 0.4 ", of the cillalated valnes.

Experimental Section ${ }^{6}$

The densities were determined by pyomemer it: at thermosated bath controlled to within 0.1 ${ }^{\circ}$. Reframive indice were measured at $30.0 \neq 0.1^{\circ}$ with a precivion Bancoll and L mb, refractometer using the o Ni: line.

[^4]
[^0]: (1) Supported in part by Grant No. CA-01744 from the National Cancer Institute and by Career Development Award 5-K003-CA-14,991 (T,L.F.).
 (2) M. J. Namkung and T. L. Fletcher, J. Med. Chem., 12, 348 (1969).
 (3) A. Klutch, M. Harfenist, and A. H. Conney, ibid., 9, 63 (1966).
 (4) D. E. Metzler, M. Ikawa, and E. E. Snell, J. A mer. Chem. Soc., 76, 648 (1954).

[^1]: (3) Melting points are uncorrected and were determined on a Kofler micro hot stage unless otherwise specified. The uv absorptions of all the 2,3-dihydro-4(1H)-quinazolinone compounds were consistent with the given structures, i.e., maxima around 220 and $345 \mathrm{~nm}(\log \epsilon c a .4 .5$ and 3.4), respectively (cf. G. Bonola and E. Sianesi, Ber., in press.). When analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values.

[^2]: (4) A. W. Scott and B. L. Wood, J. Org. Chem., 7, 515 (1942).

[^3]: (1) I labotatory of the sombern libization Researn and Develonment DNision, NRS. LSDA. Naming i emmpans or proluct does not imply appoval or recommandation by the lepartment wer others whoh mas abs be suinatis.

 Sw.. 38, 321 (1961)
 61:i (19164).
 ;3, 1. . 46, 244119609.

[^4]:

