TABLE II

$$\begin{array}{c} C_6H_5N \longrightarrow R_1 \\ ArSO_2NHN \longrightarrow S \end{array}$$

					Yield,		
Compd	Ar	\mathbb{R}_1	\mathbb{R}_2	$M_{\mathcal{P}}, {}^{\circ}\mathbf{C}^a$	$\%^b$	Formula	Analysis
Ha	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	$\mathrm{C}_6\mathrm{H}_5$	H	$180-182 \deg$	75	$\mathrm{C}_{22}\mathrm{H}_{19}\mathrm{N}_3\mathrm{O}_3\mathrm{S}_2$	C, H, N, S
IIb	$p ext{-}\mathrm{C}_2\mathrm{H}_5\mathrm{OC}_6\mathrm{H}_4$	$\mathrm{C_6H_5}$	H	$172-173 \deg$	77	$\mathrm{C}_{23}\mathrm{H}_{21}\mathrm{N}_3\mathrm{O}_3\mathrm{S}_2$	C, H, N, S
$_{ m IIe}$	p - n - $\mathrm{C_3H_7OC_6H_4}$	$\mathrm{C}_6\mathrm{H}_5$	H	$163-164 \deg$	88	$\mathrm{C_{24}H_{23}N_{3}O_{5}S_{2}}$	C, H, N, S
${f IId}$	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	${ m Me}$	COOEt	181 - 182	72	$\mathrm{C_{20}H_{21}N_{3}O_{5}S_{2}}$	N, S
IIe	p - $\mathrm{C}_2\mathrm{H}_5\mathrm{OC}_6\mathrm{H}_4$	Мe	COOEt	187-188	84	$\mathrm{C_{21}H_{23}N_{3}O_{5}S_{2}}$	C, H, N
IIf	p - n - $\mathrm{C_3H_7OC_6H_4}$	Me	COOEt	$194-195 \deg$	73	$\mathrm{C}_{22}\mathrm{H}_{25}\mathrm{N}_3\mathrm{O}_5\mathrm{S}_2$	C, H, N, S

reported as antituberculous^{3,6} and antibacterial⁷ agents. Compounds Ia, Ib, Ic. and Id all gave 100% control of *Meloidogne* spp at an application rate corresponding to 29.18 kg/acre.⁸ Compound Ib gave 90% control of *Puccinia sorghi* when applied sumultaneously to foliage at 500 ppm and to soil at 14.6 kg/acre.⁸

a=c See footnotes in Table I.

Experimental Section

1-Arylsulfonyl-4-phenylthiosemicarbazides (I).—The appropriate 1-arylsulfonylhydrazide (4 mmol) was dissolved in 95% EtOH (20 ml), followed by addition of phenyl isocyanate (5.4 g, 4 mmol). Refluxing for 30 min followed by cooling of the solution gave a white, crystalline solid that was recrystallized from MeOH or EtOH.

2-Arylsulfonylhydrazone-3-phenyl-4-thiazolines (II).—The appropriate I (5 mmol) was dissolved in DMF (25 ml), and 5 mmol of α -bromoacetophenone (1 g) or ethyl α -chloroacetoacetate (0.82 g) was added. The solution was heated 30 min on a steam bath, the dark red liquid was chilled, and 3 N NH₄OH was added to bring it to pH 8. Addition of H₂O (100 ml) gave the product as a greenish powder which was washed several times with H₂O and recrystallized from EtOH.

Acknowledgment.—We thank Dr. Juan Estevan of the University of Barcelona for elemental analyses and also the Diamond Shannock Corp. for generous supplies of several reagents.

- (5) P. C. Eisman, E. A. Konopka, T. Gisi, R. H. Mizzoni, and R. L. Meyer, Ann. Rev. Tuberc. Pulmowry Dis., 77, 703 (1958); Chem. Abstr., 53, 5494i (1959).
- (6) R. H. Mizzoni and P. C. Eisman, J. Amer. Chem. Soc., 80, 3471 (1958).
- (7) I. Ishii, M. Katagiri, M. Sakazume, and T. Misato, Nippon Nogei Kagaku Kaishi, 40, 437 (1968): Chem. Abstr., 66, 9270w (1967).
- (8) Personal communication from Mr. Norman M. Pollack, Diamond Shamrock Corp.

An Aminopyrimidine Steroid¹

DAVID M. PIATAK

Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115

AND ELIAHU CASPI²

Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545

Received October 17, 1969

Thus far, only two steroids where ring A is a pyrimidine ring capable of tautomeric forms have been re-

ported.³ This work describes the first amino analog of this type.

Experimental Section4

17β-Acetoxy-2,4-diaza-1-hydroxy-3-methylamino-1,3,5(10)-estratriene.—A solution of 50 mg of methyl 17β-acetoxy-1,5-seco-2,3,4-trisnorestran-5-on-1-oate, 3,5 100 mg of methylguanidine sulfate, and 150 mg of anhydrous NaOAc in 5 ml of anhydrous EtOH was refluxed 96 hr. The steroids were recovered from the H₂O-diluted mixture with CHCl₃, then dissolved in 2 ml of glacial HOAc and refluxed for 16 hr. The material was again recovered with CHCl₃ after H₂O dilution of the reaction. Chromatography of the resultant mixture of starting material and product on a silica tlc plate (50° EtOAc-CHCl₃) gave 16 mg of product. Recrystallization from EtOAc gave pure material, np 290 dec; $\nu_{\rm max}$ 3460, 3340, 3230, 1720, 1635, 1610, 1570, 1515 cm $^{-1}$; $\lambda_{\rm max}$ 234, 290 mμ: $\lambda_{\rm max}$ (acid) 230, 261 mμ. Anal. (C₁₉H₂₇N₃O₃) N.

Antituberculous Schiff Bases

J. R. MERCHANT AND D. S. CHOTHIA

Institute of Science, Bombay-32, India

Received September 16, 1969

Schiff's bases formed by the condensation of isoniazide [I] with various benzaldehydes are reported to possess antituberculous activity. We have prepared additional Schiff's bases (benzylideneisonicotinoyl hydrazones) which were tested for antituberculous activity by the technique of Doub and Youmans.

Experimental Section

Preparation of Schiff's bases.—Isoniazide (1 g) was dissolved in EtOH (30 ml) and to it was added aldehyde³ $\cdot 1.3$ g) in 20 ml of EtOH. The mixture was refluxed on a steam bath. In some cases, the compound separated while hot, in others on cooling or on dilution with H₂O. Most of the compounds were pale yellow and crystallized from EtOH.

⁽¹⁾ This work was supported by Public Health Service Grants A-5326 and CA-07137 and Niv Deans Fund.

⁽²⁾ Recipient of Career Program Award CA-K3-16614 from the National Cancer Institute.

⁽³⁾ D. M. Piatak and E. Caspi, Steroids, 3, 631 (1964); E. Caspi and D. M. Piatak, Experientia, 19, 465 (1963).

⁽⁴⁾ Melting points are corrected. When analyses are indicated by the symbol for the element, analytical results obtained for those elements were within ±0.4% of the theoretical values. Uv spectra were taken in MeOH or MeOH with 2 N HCl added (0.1 ml/5 ml).

⁽⁵⁾ E, Caspi, P. K. Grover, D. M. Piatak, and Y. Shimizu, J. Chem. Soc., 3052 (1965).

⁽¹⁾ M. Negwer, "Organisch-Chemische, Arzneimittel und ihre Synonyma," Akademie Verlag, Berlin, 1959, pp 199-200.

⁽²⁾ L. Doub and G. P. Youmans, Amer. Rev. Tuberc. 61, 407 (1950).

⁽³⁾ S. R. Agrawal, V. B. Desai, H. C. Kaushik, M. S. Khan, and J. R. Merchant, J. Indian Chem. Soc., 39, 759 (1962).