higher than the original concentration of the buffer during exposure to SolBA-H³. As mentioned earlier Hokin, et al.,² have demonstrated the irreversible inhibitory action of alkylating cardiac steroids on brain Na-, K-ATPase. We have also reported similar irreversible inhibition of SinBA on rabbit heart Na-, K-ATPase in a preliminary report⁵ (a detailed report will be published elsewhere). However, as indicated in the present study the positive inotropic effect of SinBA and SolBA are readily reversible and have a very short duration of action. Therefore, there appears to be a dissociation between inhibition of Na-, K-ATPase and the positive inotropic effect of SinBA. Thus, present indirect evidence suggests that inhibition of cardiac Na-, K-ATPase may not be responsible for the positive inotropic action of cardiac steroids. Furthermore, the long persistence of the drug in the myocardium after all positive inotropic effect has disappeared following washout suggests that the drug remaining in myocardial cells is bound to nonspecific sites.

Experimental Section⁶

Strophanthidin 3-bromoacetate (SinBA) was prepared as described by Kupchan, et al.⁷ The SinBA prepared was chromatographically identical with a reference sample kindly supplied by Professor S. Morris Kupchan, mp 190–193°. Anal. ($C_{25}H_{33}$ -BrO₇): C, H, Br.

Strophanthidol 3-Bromoacetate (SolBA).—A solution of SinBA (0.500 g, 0.95 mmol) in purified dioxane (25 ml) was treated with NaBH₄ (0.32 mmol) and H₂O (0.5 ml). The mixture was then stirred at room temperature for 6 hr. The was used to fractionate and identify the reaction products. The the consisted of silica

(5) G. T. Okita, F. Richardson, B. Roth-Schechter, and R. E. Thomas, Fed. Proc., 28, 607 (1969).

(6) Where analyses are indicated only by symbols of the elements or functions, analytical results obtained for those elements or functions were within $\pm 0.4\%$ of the theoretical values.

(7) S. M. Kupeban, M. Mokotoff, R. S. Sandhu, and L. E. Hokin, J. Med. Chem., 10, 1025 (1967).

gel G as the absorbent and EtOAc (system 1) and CHCl₃-EtOH (6:1) (system II) as the solvent systems. Prior to use, the tlc plates were activated by heating for 30 min at 110°. The spots were identified by spraying the plates with a solution of 10%phosphomolybdic acid in MeOH and were heated for 5-10 min at 110° to locate the spots. Using the tlc systems the presence of four substances was noted and these were tentatively identified as strophanthidin 3-bromoacetate, strophanthidin, strophanthidol 3-bromoacetate, and strophanthidol. The reaction mixture was diluted with H₂O (25 ml) and the dioxane was removed rapidly below 25°. The crystalline product formed during the removal of the dioxane was collected and dried over P_2O_5 (yield $0.38~{\rm g}).~$ Tlc indicated that the material was a mixture of SinBA and SolBA with only a trace of the more polar decomposition products. Chromatography on silica gel followed by repeated crystallization from Me₂CO-petroleum ether gave 65 mg (13%)of SolBA, mp 206-208°. Anal. (C25H35BrO7): C, H, Br.

Strophanthidol 3-Bromoacetate-19-H³ (SolBA-H³).—A solution of SinBA (25 mg, 0.048 mmol) in purified dioxane (2 ml) and H₂O $(50 \ \mu l)$ was mixed with the contents of a vial of tritiated NaBH₄ (6.7 Ci/mmol, total activity 100 mCi, equivalent to 0.015 mmol NaBH₄). The mixture was shaken at room temperature for 5 hr, diluted with H₂O saturated with NaCl (10 ml), and quickly extracted with CHCl₃ (3 \times 25 ml), and then dried (Na₂SO₄). The CHCl₃ was removed under reduced pressure and the resulting residue was redissolved in MeOH and induced to crystallize by the addition of H_2O . The crystalline product was dried and then applied, as a MeOH solution, to two 20 \times 20 cm tlc plates. The chromatograms were developed with EtOAc. Autoradiography (2 hr) indicated the presence of one major band corresponding to SolBA as well as several minor more polar bands. The major band was eluted with MeOH and after crystallization gave 2.93 mg of radioactive material (specific activity 3.18 mCi/mg). The radioactive material was then dissolved in DMF and reserved for future use. An aliquot of this solution was then added to a methanolic solution of nonradioactive SolBA (20 mg) and crystallized to constant count to yield strophanthidol 3bromoacetate-19-H³ (8.2 mg, specific activity 73 μ Ci/mg).

Acknowledgment.—The authors wish to express their sincere appreciation to Dr. S. Morris Kupchan of the University of Wisconsin for generously supplying us with a reference sample of strophanthidin 3-bromoacetate.

Hypocholesteremic Agents. I. Substituted Stilbazoles and Dihydrostilbazoles

FRANK J. VILLANI, CLAIRE A. ELLIS, ROBERT F. TAVARES,

Medicinal Chemical Research Department

MERL STEINBERG, AND SIBYLLE TOLKSDORF

Department of Physiology and Biochemistry, Schering Corporation, Bloomfield, New Jersey 07003

Received November 12, 1969

The clinical use of estrogens to lower serum cholesterol levels in the human male is limited because of the undesirable hormonal effects of this group of compounds. In attempts to chemically modify the structure of diethylstilbestrol, a series of substituted stilbazoles and dihydrostilbazoles were prepared and examined for their hypocholesterenic and estrogenic properties. Maximum separation of these biological properties was observed in the dihydrostilbazole series containing small alkyl groups on both carbons of the ethylene bridge. Other structure-activity relationships in this series are discussed.

Several groups of workers¹ have reported that estrogens lower serum or plasma cholesterol levels in humans. The clinical use of estrogens for lowering the elevated serum cholesterol levels in the human male is limited, however, because of the adverse endocrinological effects of these agents. In an attempt to synthesize compounds related to diethylstilbestrol in which the hypocholesteremic activity is dissociated from the estrogenic activity, a series of substituted stilbazoles (I) and dihydrostilbazoles (II) were prepared by the methods shown in Chart I.

2- or 3-pyridyllithium was added to a substituted ketone of type III to produce a racemic mixture of the *erythro* and *threo* forms of carbinol IV. In the majority of cases (Table I) the stereoisomers were not separated

^{(1) (}a) M. L. Eilert, Amer. Heart J., **38**, 472 (1949); (b) M. L. Eilert, Metabolism, **2**, 137 (1953); (c) E. M. Russ, H. H. Eder, and D. P. Barr, Amer. J. Med., **11**, 468 (1951); (d) M. M. Gertler, P. B. Hudson, and H. Jost, Geriatrics, **8**, 500 (1953).

													Choles-
		1				1.	Вр, ^в С (юю)		Yield.				terol lowering
No."	X	R,	Rit	Run	RI	R	or mp of	an (remp, °C)	- 5	Me(hod	Fornula	A hal.	activity ⁰
LA		11	C ₂ H ₅	OH	$C_{2}\Pi_{5}$	$2-C_5\Pi_4N$	98-99"		32	l	C ₅₇ H ₂₉ NO	С, П, Х	+
1B	H	11	C ₂ H ₅	OII	C ₂ H.	2-C ₄ H ₂ N	127 - 132(2)	1.5564 (24)	12	1	$C_{17}H_{\mathfrak{Y}}NO$	С, Н, Х	
<u>·)</u>	p-OCH ₃	11	11	OH	CH _a	2 - C_5H_9N	189 - 191(5)	1.5678 (24)	66	I	$\mathrm{C}_{15}\mathrm{H}_{17}\mathrm{NO}_{2}$	С, Н	
$2 \cdot \Pi Cl$							179-1804				$C_{05}H_{05}NO_2 \cdot HC1$	С, П	
.;	p-OCH _a	11	H	OH	$C_{2}II_{-}$	2-C ₅ H ₄ N	170 174 (2)	L 5621 (25)	82	1	$C_{16}H_{19}NO_2$	C,	
4	p -OCH $_{s}$	Н	$C\Pi_{a}$	OH	CH^{3}	2-C5H4N	180(183)(25)		70	I	$\rm C_{16}H_{12}NO_2$	С, Н	
							$97 - 98^{\circ}$						
4 · HCl							198~2007				C56H55NO2 HCl	C, Π	
5	p -OCH $_3$	Н	CH_3	OH	$C_2 \Pi_2$	2-C ₅ H ₅ N	155 - 160		98	1	$\mathrm{C}_{47}\mathrm{H}_{20}\mathrm{NO}_2$	119	
							77-78°						
$5 \cdot \mathrm{HCl}$							$178 \ 180^{4}$				$C_{27}H_{29}NO_{21}HCl$	С, П	
БA	ρ -OCH $_3$	II	$C_2 \Pi_5$	OH	$C_2 \Pi_1$	2-C.II.N	175~180 (1)		62.5	I	$C_{38}H_{29}NO_2$	C, H	
							9D-917.8						
6A+HCl							$204 - 205* \cdot \cdot$				$C_{18}H_{23}NO_2$ HCl	С, Н	-+-
6B	p -OCH $_3$	II	$C_{2}H_{1}$	OH	$C_2 H_2$	2 - C_5H_4N	155-160 (13	1.5520 (24)	20	I	$C_{28}H_{23}NO_{2}$	С, П	+
ī	o-OCH ₃	H	$C_2 H_3$	OH	$C_2 \Pi_a$	2-C ₅ H ₄ N	<u>92</u> 94°		66	1	$C_{08}H_{23}NO_2$	Ci	
7+11C1							$192 - 194^{3}$				CosH20NO2 HCl	C_{1} H	
2	nt-OCH5	II	$C_{2}\Pi_{2}$	OH	C_2H_5	2-C ₅ H ₄ N	160-165 (1)	1.5554 (24)	51	I	$C_{18}H_{29}NO_2$	С, Н	
ί) Ω	p -OCH $_3$	Π	i-CaH ₇	OH	C_2H_5	2 - C_3II_4N	19D-195 (3)	1,5538 (26)	56	1	$\mathrm{C}_{19}\mathrm{H}_{25}\mathrm{NO}_2$	С, П	-i
10	p -OCH $_3$	H	11	OH	p-(OCH ₃)C ₅ H ₄	2 - $C_5H_4N^k$	132 - 134'		34	I	$C_{2}H_{2}NO_{3}$	С, П	
$10 \cdot HCl$							185-1874				$C_{29}H_{29}NO_{3}$ ·HCl	С, Н	
11	p-OCH:	11	$C_{2}H_{2}$	OH	p-(OCHa)C ₆ H ₄	2-C5H5N **	$127, 128^{\circ}$		89	I	$\mathrm{C}_{23}\mathrm{H}_{25}\mathrm{NO}_2$	СП	
12	p-OCH ₃	H	1 I	OH	p-OCH ₂ CH ₂ N-								
					$E_{12}C_{6}\Pi_{1}$	2-C ₅ H ₂ N	91-93		52	Π	$\mathrm{C}_{26}\mathrm{H}_{32}\mathrm{N}_{2}\mathrm{O}_{5}$	C, II	()
13	p-(OCH ₂ -												
	CH ₂ NE ₁₂	11	$C_{2}\Pi_{2}$	OH	$C_2 U_c$	2-CallaN	205 211 (1)	L.5380 (26)	49	Ι	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{N}_2\mathrm{O}_2$	C, H, N	
t-t	p-OCH _a	11	$C_{2}H_{5}$	1)H	$C_2 \Pi_2$	2 - $C_5H_{tu}N^*$	183 - 186 (3)	1.5335 (25)	93	111	$C_{18}H_{29}NO_2$	C, H	
15	H	OH	CH_a	II	I1	2 - C_5H_4N	135~138 (2)	1.5636(28)	60	IV	$C_{24}H_{25}NO$	C, H	
15 (HC)							1841857				$C_{34}H_{15}NO \cdot HC1$	C, 1I	(1
ЦБ]·I	OH	C_2H_a	11	Н	$2-C_5H_4N$	144147 (1)	U.5583 (23)	30		C ₃₅ H ₃₅ NO	ø	
$10 \cdot 11C1$							163-165				$C_{15}H_{17}NO \cdot HCl$	С, П	
17	p-C1	OII	CH_3	II	П	2-C ₅ IL ₄ N	$76-78^{\circ}$		53	IV	C ₅₄ H ₅₄ CINO	С, П	
17 · HC1	•						$184 \cdot 185^{d}$				C14H14CINO+HC1		(1
15	p-OCH ₃	OH	CH_3	11	11	$2-C_{a}H_{4}N$	$169 \cdot 171 \cdot (2)$		51	IV	C _{1.} H ₁₇ NO ₂	C. H. N	Ð
							6364'						
19	p-CH _a	OH	CH3	II	II	$2-C_{b}H_{4}N$	150-156 (3)	1.5572 (24)	59	IV	C15H17NO	C. H. N	0
19-HCl	1		, ,				163-1654				C15H17NO+HCl	С. Н. Х	0
20	p-SCH	ОH	CII	П	11	2-C5H4N	78-80°		66	IV	CMLNOS	C. II. N	
- 20+ HC1						v • - •	140-1424				CosH ₃ NOS · HCI	C. H. N	U U
21	p-OCH:	ОH	Calls	H	П	2-C _a ILaN	52-534		7:;	IV	C ₁₆ H ₁₀ NO ₂	С. Н	••
21/11/21	,						150-1524		• •		CallaNO ₅ HCl	., Ц <i>р</i>	(1
											S JORRAPHANNE REC L		··

VILEANI, et al.

22	<i>p</i> -OII	OH	C_2II_5	Н	11	$2-C_5II_4N$	$89 - 90^{q}$		31	IV	C15H17NO2	H۲	0
23A	p -OCH $_3$	OH	CH₃	Н	CH_3	$2-C_{3}H_{4}N$	91-93 ^c		14	IV	$C_{16}H_{19}NO_2$	C, II, N	+
23B	p-OCH _a	OH	CH_3	Н	$\mathbf{ClI}_{\mathfrak{A}}$	2-C ₅ H ₄ N	68-69 ^c		47	IV	C ₁₆ H ₁₉ NO ₂	C, H, N	+
24	p-OCH ₃	OH	$C_2H_{\bar{o}}$	н	CII ₃	$2-C_5H_4N$	$100 - 102^{f}$		18	IV	$C_{17}H_{21}NO_2$	С, Н, М	+
25	p-OCH _a	OH	CII ₃	Π	$C_2 \Pi_5$	2-C₅H₄N	71-72		15	IV	$C_{17}H_{21}NO_2$	C. H. N	0
26	<i>p</i> -Cl	OH	$C_2 H_5$	Π	C2H5	2-C ₃ H ₄ N	150-152(2)	1.5351(24)	29	IV	C ₁₇ H ₂₀ ClNO ₂	C. 11. N	0
27A	p -OCH $_{a}$	OH	C_2H_5	Н	C ₂ H ₄	2-C ₅ II₄N	101-102°		15	1 V	C18H23NO2	\mathbf{C}^{s}	+
27B	p-OCII _a	OH	C_2H_5	н	C_2II_5	2-C ₅ H ₄ N	162 - 167(1)	1.5543(25)	42	IV	C ₁₈ H ₂₃ NO ₂	С. П	+
28	<i>p</i> -ОН	OH	C_2H_5	Н	C_2H_5	$2-C_5H_4N$	156-158		23	IV	$C_{17}H_{21}NO_{2}$	H, N ⁴	+
$29 \cdot HCl$	p -OCII $_{3}$	OH	n-C ₃ H ₇	Π	$C_{2}H_{3}$	2-C ₅ H ₄ N	$170 - 17.5^{d_{10}}$		14	IV	C19H25NO2 HCl	C, H, N	+
			CII								- 1,1,	. ,	
30	p-OCH ₃	OH	CII2-CH2	Н	C_2H_5	2-C ₅ H ₄ N	90-911		17	IV	C1.9H23NO2	C, H, N	-+-
31	p-OCH ₃	OH	C ₆ H ₅ CH ₂	Π	$C_2 H_5$	2-C ₅ H ₄ N ^v	120-121		30	П	C ₂₃ H ₂₅ NO ₂	C, II, N	0
32A	p-OCH ₃	ОП	CH_3	Π	$C_6H_{\tilde{a}}$	2-C ₅ H ₄ N ^w	$165 - 166^{x,y}$						+-
33	$3,4(OCH_{a})_{2}$	OH	CH_3	Н	C ₂ H ₅	$2-C_5H_4N$	164-180(1)	1.5735(25)	15	IV	$C_{18}H_{23}NO_3$	C, H, N	
33 · HCl							108-110	· · · ·			$C_{18}H_{23}NO_3 \cdot HCl \cdot$	H, N ^z	0
34	OCH.	н	П	ÓН	m-(OCH.CH.N-						$\Pi_2 O$		
	0011,			()11	P-(COH2CH2R-	3-CHLN	122-12500		75	n	CarHarNaOa	СП	
35A	n-OCH.	н	C.H.	ÓН	C.H.	3-C.H.N	105-106*		4.7	T	$C_{26}\Pi_{32}\Pi_{2}O_{3}$	С. н	
35A · HCl	p o cons		02113	011	0.2115	0-0511410	190-1910		т	I	CarHaNOar HCl	C H	
35B	p-OCH ₂	н	C.H.	OH	Cath	3-C.H.N	175-180(1)		15	т	C ₁₈ H ₂₃ NO ₂ ·HOI	СИ	
36	p-OCH ₂	н	C.H.	011	C ₂ H ₃	4-011-3-C-11-N	234-2356		57	Ť	CigH ₂₃ NO ₂	СН	
37	p-OCH ₃	II	$p_{-}(OCIL_{2})_{-}$		02113	1 011 0 0511310	201 200		01	1	01811231(0)3	0, 11	
	F 0 0 5		Cella	OH	n-(OCH2)CeH4	3-C₌HJN∞	$100 - 104^{x}$		10	T	C.I.I.v.NO.	CHN	0
38	p-OCII ₃	OH	C ₂ H ₅	Н	Н	4-C ₃ H ₄ N	165 - 170(4)	1 5722 (26)	12	īv	C14H10NO2	С. Н	^v
39	p-OCH ₃	OH	C ₄ IL	Î	Ĉ,H	4-CallaN	152-154	1.0,122 (20)	14	īV	CieHanNO.	C II N	-+-
40	$p-N(CH_3)_2$	OH	II	н	II	4-C5H4N	165-1679		46	$\frac{1}{dd}$	CisH ₂ N ₂ O	С. Н	•
41	$p-N(CH_3)_2$	OH	C ₆ IL	П	Н	4-C₅H₄N	$170 - 172^{x}$		21	dd	C ₂₁ H ₂₂ N ₂ O	C. H	
42	p-OCH ₃	Н	$C_{*}H_{*}$	OII	C ₂ H ₂	CaHoNSee	99-100°		53	T	C ₁₆ H ₂₁ NO ₂ S	С. Н	
$42 \cdot HCl$	•		- •			• • •	$203-204^{d}$				C16H21NO2S · HCl	1111	
43	p-OCII ₃	H	C_2H_5	ОП	C2H5	C4II5N200	95-970		35	I	C17H24N2O2	С. н	
$43 \cdot \text{HCl}$					v	• -	$145 - 147^{d}$			_	C ₁₇ H ₂₄ N ₂ O ₂ · IICl	С, н	
44	p-OCH ₃	ОЦ	C_2H_5	II	C_2H_5	$C_4II_3N_{2}^{hh}$	114-116		5	IV	$C_{17}H_{22}N_2O_2$	C, H, N	0/+

"The designations A and B represent stereoisomers only when isolated ^b Biological activity code: +, greater than 20% reduction in serum cholesterol; 0/+, borderline minimal activity; 0, 00 significant effect. ^c From hexane. ^d From EtOH-Et₂O. ^eH: caled, 7.44; found, 6.96. ^f From petroleum ether (bp 30-60°). ^gC: caled 75.24; found 76.13. ^hL. Gorum and W. L. Nobles report mp 94-95° (*J. Pharm. Sci.*, 57, 1265 (1968)). ⁱ Reference *h* reports mp 204-205°. ⁱII: caled 8.12; found 7.56. ^k From 2-pyridyllithium and deoxyanisoin. ⁱ 2-C₃II₁₀N is 2-piperidyl. ^o This compound could not be obtained in analytical purity and was contaminated with starting ketone. ^pC: caled 65.41; found 64.90. ^g From C₆II₆. ^rC: caled 75.22, ^eII: caled 8.12; found 7.55. ^tC: caled 75.24, found 75.71. ^w Isolated as IICl salt. ^g From PhCH₂MgCl and α -ethyl-p-methoxyphenacyl-2-pyridine. ^w From the Li derivative of 2-benzylpyridine and p-methoxyacebophenone. ^g From C₆II₆-hexane. ^w Mp reported 154-156° by W. D. Dixon, Ph.D. Dissertation, University of Kansas, Lawrence, Kansas (1960). ^z C: caled 60.74; found 59.84. ^{au} From *i*-PrOAC-petroleum ether. ^{be} From 4-picolyllithium prepared by the method of K. Sisido, K. Okano, T. Isida, and H. Nozaki, J. Amer. Chem. Soc., 77, 6580 (1953). ^{dd} From 4-picolyllithium prepared by the method of J. Puwella Sis 2-thiazolyl. ^{ff}C: caled 58.61; found 59.22. ^{au} C₄H₅N₂ is 1-Me-2-imidazyl. ^hC₄H₃N₂ is 2-pyrazyl.

	Cholesterol lowering activity ^a	0		0	0		0					+	+/0	0		+		0	÷	•	=	աս (՝ _ն Нւպրեւտ–		$(1)_{0}$ for 1 of 2	lowering activity		; 0	•	÷	÷	i n	
	1 a. d.	C,c	с, н	С, II, N С, II	C, H, N C, H, N	2 = = ປັບ	τ Π Ο		С, Н,	C, II	С, Н	С, Н	С, Н	H	с, п	С, П	C, II	: : :	C, E C, E	С, Н, N	C. H	d 79.99. Fr			4 6.01.	NHU	н С	C, H, N	C, H, N	С, П	ドロン	
	Formula	hisN·HCI	4H ₁₂ CIN	4H ₁₂ CIN · HCl 4H2N	HisN.HCI		HGNS-HCI		rH ₁₇ NO · HCI	6H17NO	6H17NO · HCI	7H19N	0N ¹¹ H ₆	0Ne1H7	8II ₂₁ NO	*H ₂₁ NO-11CI				3H32N2O	()N."H	aled 80.9a) foun			Formula	CallaCIN	G ₁ H ₂₀ CIN	C ₄₅ H ₁₇ NO	$C_{i7}H_{2i}N$	$C_{18}\Pi_{23}N$	CigH ₆ NO Cultano	UNGERTED.
	of	ن	່ ບັ	ਹ ਹ	50	50	5 5		ت ت	G	Ű	ت ت	Ū	Ū	ບັ	<u>5</u>	5 v	» ک	י פֿי	3	U)	не. С			Method	4	LIIV	ΠΛ	ΝI	IIIA	ILA	111
	l, Meth	V	V	7	Λ	> >	· >		~	Λ		I A	N	N	N		4				ΓΛ	From hexa			Yiehl, %	(9)	7	65 76	()?	42	59	ċ
TABLE II $R^{i} = R^{i}$ $R^{i} = C - R^{i}$	Yield 26	0 <u>2</u>	208	41		60	99		2::	17		47	99	62	64	ļ	47		31	19	64	-60°). v			())	6 (26)	5 (25)	0 (27)	5(25)	5 (24)	S (25) 0 (26)	10710
	(16mp, °C)			.6161 (27)		.3937 (27)				.3984 (26)		.3660 (27)	.5827 (24)	. 5758 (24)	. 3663 (24)			- 2022 (24)	(02) (800). 	. ə4əZ (26)	. 3645 (26)	her (bp 30			474	1.567	1.333	1.554	1.542	I.539	1.550	
	Bρ, ^o C (m.n.), or mp	$137 - 130^{b}$	$62-64^{d}$	179–181* 163–169 (2) 1	$183-186^{h}$	1 (5) (5) 1	151-153		255-256'	173–176 (1) 1	134 - 136'	107-110 (1) 1	145-150 (1)	172-174 (3)	169-170 (1) 1	$154 - 156^{h}$	144-140"		147-100 (1) 1 004 006 (1)	1 (1) 002-402	122-158 (I) 1	^t From petroleum et	$\mathbf{T}_{ABLA} \mathbf{III}$	u u	Bn, °C (mm). or mp, °C	134-140 (1)	154 - 158 (2)	128-132 (0.5)	122-125 (2)	149-153 (5)	147~153 (4) 165-170 (4)	100 010 001
	R ^{III}	$2-C_5H_4N$	2-C ₅ H ₄ N	2-C ₅ H ₄ N	N/II/OF6	2-CallAN	2-C,11,N		2-C ₅ H ₄ N	$4-C_5H_4N$		2-C3H4N	2-C3114N	2-(5,H4N	2-C,II,N					Z-1.5H4N	3-C3H4N	3.56; found ž.93. *			RW	2-C,H,N	2-C ₅ H ₄ N	2-C ₅ H ₄ N	$2-C_5H_4N$	2-C ₆ H ₄ N	2-C,H,N 2-C,H,N	
	R ^{Li}	11	Н	Н	Ξ	H	H		Η	П		$C_2\Pi_5$	CH ₃	C ₂ II ₅	$C_{2}\Pi_{5}$		(547) 7 H	C2115 C 11	715) Cell?	(-211 ₅	C ₃ II,	• II : caled (ынс	1	2211 ₅	Ι	2II.	2H.	лц, БЛГ,	
	КI	21 I a	3H3	3H3	°11,	ы. Ы.	H_3	E	JH₂CII₂	' ₂ Η ₅)II ₃	H ₃	2114 2		-211. - 11	2115 C 11	-(.311) • LI	¢Na	5,H5	EtOI1-Et ₆ 0, of 56 .			R ^{III}	H H	=	I II	H	;	==	:
		J	Ŭ	Ŭ)				<u> </u>	0		0		<u> </u>	<u> </u>	`					U	* Frun thylation			R ^I	CII_3	$\mathrm{C}_{2}\mathrm{H}_{\mathrm{a}}$	CH3	G ₂ II,	$C_{2}\Pi_{a}$	CH3	•••
	2	11	p-C1	p -CII $_3$	n-OCII.	p-OCII3	p -SCH $_{\rm s}$		p -OCH $_3$	p -OCH $_3$;	H	p-OCII3	p -OCH $_3$	p -OCH $_3$		p-UII	0-0-013 	p-OCH3	p-OCH3CH2	$p-0CH_3$	ore b in Table I. ^A By IIBr deme			X	p-Cl	p-CI	p-OCH ₃	Н	p-CII ₃	<i>p</i> -0CII ₃ <i>p</i> -0CII ₃	e and a
	Nii	45-HCI	46	46+11C1 47	47 · 11('] 48	49	30-HCI		51 - HCI	55	52-HCI	22	54	18	90	56-IICI 52	201	ç ç	69. 93	00	61	" See friotric Jenne other.			No.	62	65	64	65	99	66	

362 Journal of Medicinal Chemistry, 1970, Vol. 13, No. 3

VILLANI, et al.

68A						$50 - 51^{c}$			d	$\mathrm{C}_{17}\mathrm{H}_{21}\mathrm{NO}$	C, H, N	
68A · HCl						17()-1710				$C_{17}H_{21}NO \cdot HCl$	С, Н	+
68B						147 - 152(1)	1.5478(25)		d	$C_{17}H_{21}NO$	С, Н, N	+
69A	<i>p</i> -ОН	CH_3	Н	$C_{2}H_{2}$	2-C₅H₄N	163165 ^g		67	f	C)6H19NO	C, II, N	
69A · HCl						208-211*			IX	Cı6H⇔NO∙HCl	С, Н	+
69B						$155 - 157^{g}$			IX	C16H19NO	С, Н, N	
69B · HCl						213-216 ^{d.e}			IX	$C_{16}H_{19}NO \cdot HCl$	С, Н	+
70	p-OCII ₃	C_2H_5	Н	CH_3	2-C5H₄N	149 - 154(1)	1.5517(24)	44	VIII	$C_{17}H_{21}NO$	C, II, N	+
71	p-OCH ₃	C_2H_5	H	C_2H_3	2-C₅H₄N	145 - 150(1)	1.5466(24)	93	VII	$C_{18}H_{23}N()$	С, Н	+
71A · HCl						237-239 ^{d.e}			IX	$C_{18}H_{23}NO \cdot HCl$	С, Н	+
71B						155 - 160(3)			\mathbf{IX}	C ₁₈ H ₂₃ NO	h	
71B · HCl						125-128°			IX	$C_{18}H_{23}NO \cdot IICl$	С, Н	
72	p-OH	C_2H_5	Н	C_2H_3	2-C ₅ II ₄ N	130-132¢			f	$C_{17}H_{21}NO$	С, Н	+
72A · HCl	-			-		253-256*			•	C ₁₇ H ₂₁ NO · HCl	C, H, N	+
72B						$126 - 128^{4}$				$C_{17}H_{21}NO$	C, H	
72B·HCl						103-104*				C ₁₇ II ₂₁ NO · HCl	С́. Н	0/+
73	p-OCH ₃	i-C ₁ H ₇	н	C-H	2-C4H4N	161 - 165(1)	1.5473(24)	87	VII	C10H25NO	Ć. H. N	, .
73 · HCl	1 -			-•••	-01	253-255				C19H25NO · HCl	C. H	+
74	o-OCH3	C ₉ H ₅	Ħ	C ₂ II ₅	2-C₅ILN	142-143(1)	1.5504 (24)	94	VIII	C18H23NO	C. H	•
74 · HCl	0	102-23		030	- 0,14	176-179				CuH22NO · HCl	C. 11	0
75	p-OCH.	C.H.	н	CH ₃ CH ₃ N(Et) ₃	2-C/ILN	185 - 188(1)	1,5333,(25)	30	i	C 20 H 20 N 20	C. H	0
76	p-(OCH ₂ CH ₂ -	02.13		0112011211(121)/2	- 0311411		1.0000 (=0)	00	5	0 12 13 321 12 0	0, 12	
	N(Et)a)	$C_{0}H_{r}$	н	$C_{*}H_{*}$	2-CalLN	200-204(1)	1 5328 (26)	89	VH	Ca2H24N3O	C. H. N	0/+-
77	n-OCH	CIL	н	C ₂ H ₂	3-C-ILN	155-156(1)	1.5527(24)	88	VII	C17Ha1NO	СИ	0/ 1
77 · HCl	<i>p</i> 00113	Ons		02113	0 0311411	150-155	1,0001 (21)	0.9	, 11	C _a H _w NO ₂ HCl	СН	+
78	n-OCIL	Call	Ħ	C-H-	3-C.1LN	164 - 165(2)	1 5531 (21)	86		Cullano no	C H	
•••	<i>p</i> 00113	02115		07115	0.02114-1	78-80	1.0001 (21)	00		01811231117	0, 11	
78-HCI						185-1870				C. IL NO HC	СН	+
79	n-OH	C.H.	н	CJL	3-CHLN	$185 - 187^{i}$			f	CH.NO	СН	'
79.HCI	pon	02115	11	02115	0-0311414	201_2030			J	C ₂ H ₂ NO ₂ HCl	СН	4
80	n-OC.II.	C.H.	н	C.II.	3-C.ILN	167_169 (1)		64	k	C ₂ H ₂ NO noi	СН	1
80. HCl	p=0.02115	02115	11	02113	0-0511414	202-2030		01	10	C., H., NO. HCl	C II	÷
81	n-OCH.	C.H.	н	C.H.	4-C.H.N	175 - 178 (9)		70	VIH	C.H.NO	Сн	0
81A.HCL	<i>p</i> -00113	O_{2119}	11	02115	4-0511414	205-206		•0		C. H. NO. HCl	СН	ň
SIR HC						100-103				C.H.NO.HCI	Сн	Ő
81D-1104 89	n OCH.	CH	CH	CH	ACHN	160 170 (2)		91	VIII	$C_{18}H_{23}HO^{-}HO^{-}$	C H	0
82. HCl	p-0.0113	02115	0113	0113	1-0511410	167 16Se		21	VIII	C.H.NO.HC	СИ	0
82.1101	m OCH	CH	СИ	CH CH N(CH)	2 С Н N	207 208 (1)		14	VIII	$C_{18}H_{23}NO^{-}HOI$	СН	Т
699 674	p-OCH ₃		C 11	$CH_2 OH_2 N(OH_3)_2$	2-05114N	207 - 205(1)		20		$C \parallel N \cap$	С, П С П	- TF
01 95	p-OCH ₃	CII CII		$C II_2 C II_2 N (C II_3)_2$	2-05114N	210-217(1)		39 50		$C_{26}\Pi_{32}\Pi_{2}O$		
00 02 A	p-OCH ₃	OH_3	п	06115	$2 - O_5 H_4 N$	100-80%		90	V II	$C_{21}\Pi_{21}\Pi_{0}$	C U N	
оэд 92	()CH	CIT	сu	C II	9 C H N	100-110		91	VIII	$C_{21} H_{21} NO$	C, H, N	+
00	p-OOH ₃				2-05114N	200-208(1)	1 2000 (00)	61 09		$O_{29}\Pi_{25}NO$	С, н С н	+
01 90	p-OOH ₃	C2115	п		$2-U_3\Pi_{10}N^m$	152-154(1)	1.5236 (26)	92	111	O II NO	С, н	- +-
88	p-OCH ₃	C_2H_5	H		$2-C_6\Pi_{12}N^n$	180-183 (4)	1.5225 (24)	80	0	$C_{19}H_{31}NO$	О, П	+
89	p-OCH₃	C_2H_3	Н	C_2H_5	$2-C_4H_3N_2{}^p$	147 - 150(2)	1.5472(26)	11	VIII	$C_{17}H_{22}N_{2}O$	\mathbb{H}^q	0

^a See footnotes a and b of Table I. ^b P and I₂ in HOAc-H₂O reduction of 17. ^c From hexane. ^d See alternate separation of isomers in Experimental Section. ^e From EtOH-Et₂O. ^f IIBr demethylation. ^a From C₆H₆. ^hC, H: caled 80.25, 8.61; found 79.81, 8.19. ^c From C₆II₆-petroleum ether. ^f NaNH₂-liquid NH₃ alkylation of 2-(2-pyridyl)-3-(*p*-methoxyphenyl)butane, bp 135-140° (1 mm), using Et₂N(CH₂)₂Cl. ^kAlkylation of 79 with NaOEt and EtI. ^dC: caled 83.13; found 83.96. ^m 2-C₆H₁₀N is 2-piperidyl. ⁿ 2-C₆II₁₂N is N-Me-2-piperidyl. ^a Eschweiler-Clarke methylation of 87. ^p 2-C₄II₃N₂ is pyrazyl. ^a C: caled 75.52, found 76.01.

In a few cases, the stereoisomeric carbinols were separated by fractional crystallization from petroleum ether or hexane. The solid form, designated as isomer A, was the predominant isomer in the mixture and on the basis of Cram's rule² is assumed to be the *erythro* form although definitive conformational studies were not attempted. The second minor component (isomer B) was obtained from the petroleum ether filtrates by distillation. The carbinols IV were resistant³ to the conventional acid dehydrating agents, H_3PO_4 , ptoluenesulfonic acid, Ac₂O, and/or H₂SO₄. However, fusion of the carbinol IV with potassium pyrosulfate⁴ (method VI) gave good yields of the stilbazoles (I). Several attempts to separate the *cis* and *trans* olefins by physical or physical chemical methods failed. The stilbazoles (I) were hydrogenated (method VII) to the dihydrostilbazoles II. Separation of the stereoisomers was effected by the differences in solubility in petroleum ether, by solubility differences of the hydrochloride salts, and by column chromatography over alumina. As in the case of the carbinols, the higher melting form is designated as the A isomer.

The reaction of p-methoxybenzylmagnesium chloride (method II) with p-(diethylaminoethoxy-2- or -3-benzoyl)pyridine (VIa,b) gave the expected tertiary carbinols (IV) in good yield. However, a similar reaction with the 2-thienyl ketone VIc gave only the unsaturated compound VII.

$$\begin{array}{c} O \\ \parallel \\ (EO_2NCH_2CH_3OC_*H_3C - R \\ Vla, R = 2 \text{-pyridyl} \\ b, R = 3 \text{-pyridyl} \\ c, R = 2 \text{-thienyl} \\ \end{array}$$

To prepare the isomeric carbinols V, the Na derivative of a 2- or 4-picoline was allowed to react with an aromatic ketone in liquid NH_3 . In our laboratory these conditions gave consistently better yields and cleaner products than the corresponding reactions employing the picolyl-Li derivatives. In these latter cases considerable quantities of lower boiling fractions were obtained.

In contrast to carbinols IV, compounds V ($R^1 = H$) are easily converted into the stilbazoles by acid dehydrating agents (HCl and HOAc). However, when R^1 is lower alkyl, the tertiary carbinols are very labile and acid treatment results in a reverse aldolization with the isolation of the starting ketone and the substituted picoline. This may account for the poor yields of some of these compounds listed in Table 1.

The desirable combination of biological activity, *i.e.*, high hypocholesteremic activity with minimum estrogenic activity, was observed in the dihydrostilbazoles II $(R^1 \text{ and } R = \text{lower alkyl})$. Accordingly a direct synthesis of 11 was developed which would permit the synthesis of a maximum number of compounds. This simplified procedure (method VIII) involves the alkylation of a substituted 2- or 4-picoline with a secondary aromatic halide in the presence of NaNH₂. The resulting diastereometric mixture could be separated into its components by the methods indicated. To further study structure-activity relationships in this series of compounds, the pyridyl ring was replaced by other heterocyclic systems, e.g., 2-piperidyl, N-methyl-2piperidyl. 1-methyl-2-imidazyl, 2-thiazolyl, and 2pyrazyl. Details of the synthesis and the properties of the compounds are given in the accompanying tables (Tables I-III).

Biological Methods.—Male rats, Charles River CD strain, 6–8 weeks of age, were used to screen compounds for hypocholesteremic activity. All materials were suspended in peanut oil and injected subcutaneously for 4 days, generally at a daily dose of 10 mg/kg. On the fifth day, after a 24-hr fast, the animals were anesthetized with Et_2O and bled from the aorta to determine serum cholesterol levels. Total scrum cholesterol was measured by the Zak method⁵ initially

⁽²⁾ D. J. Cram and F. A. Effafez, J. Amer. Chem. Soc., 74, 5828 (1952).

⁽³⁾ L. Gorom and W. L. Nobles, J. Pharm. Sciences, 57, 1265 (1968).

⁽⁴⁾ F. V. Wessely, E. Kerschhamm, A. Kleedarfer, F. Prillinger, and E. Jajie, Monotsk. Chem., 73, 127 (1940).

⁽⁵⁾ B. Zak, Tech. Bull, Registry Med. Tech., 27, 71 (1957).

and later by the Technicon Autoanalyzer procedure.⁶ Compounds that were active in the initial test in male rats were administered by gavage to 8-week old ovariectomized rats in order to determine the degree of separation of cholesterol-lowering and estrogenic activities and to obtain relative potency estimates. The treatment schedule was the same as in the male rats. Estrogenicity was determined by exam ning vaginal smears during the experimental period and weighing the uteri at autopsy.

Biological Results.-The hypocholesteremic activities of compounds 68A · HCl and 78 · HCl, which had the most favorable separation of estrogenic and hypocholesteremic activities, were compared quantitatively with several standard estrogens in acute and chronic experiments. In ovariectomized rats the doses required to lower serum cholesterol by 50% were estimated to be 20 mg/kg for $68\mathrm{A}\cdot\mathrm{HCl},$ and 24–30 mg/kg for 78 · HCl. Several dose-response curves of 68A · HCl indicated that a dose of 5 mg/kg, which lowered serum cholesterol by 30% (ED30 cholesterol) produced no estrogenic stimulation of the uterus and vagina in ovariectomized female rats, and did not reduce seminal vesicle weights in male rats. Compound 68A·HCl has approximately 0.002-0.004 times the hypocholesteremic activity of ethinylestradiol or stilbestrol. It was much less estrogenic than conjugated equine estrogen (Premarin), ethinylestradiol, and stilbestrol at comparable hypocholesteremic doses. A standard oral estrogen assay of 68A HCl by the rat vaginal smear technique indicated that 68A HCl had 0.0004 times the estrogenic potency of ethinvlestradiol.

The acute oral toxicity (LD_{50}) of **78** was greater than 2500 mg/kg in mice. The oral LD_{50} of **68**A·HCl in mice was 1632 mg/kg and the intravenous LD_{50} was 94.5 mg/kg. Compound **68**A·HCl is undergoing clinical evaluation in man, and the results, when available, will be published in the appropriate medical journals.

Structure–Activity Relationships.—In this series of compounds the combination of maximum hypocholesteremic activity and minimal estrogenic potency is found in the dihydrostilbazole group (Table III). This desirable combination of biological properties is observed in those compounds wherein both C atoms in the ethylene bridge connecting the two rings are substituted by a small alkyl group (e.g., Me or Et). The 2-pyridyldihydrostilbazoles were more active than the corresponding 3-pyridyl compounds, whereas the 4pyridyl compounds were generally inactive at this screening dose. Reduction of the 2-pyridyl ring gave a compound of slight hypocholesteremic activity even at high doses.

Substitution of the p-OCH₃ by Cl, Me, or H gave compounds of lower activity. The p-OH compounds, 72A and 72B, were very active in the cholesterol lowering screen but were very estrogenic even at low doses (less than 1 mg/kg). The p-diethylaminoethoxy derivative 76 was inactive in male rats at a dose of 10 mg/kg.

In this series, the stilbazoles (Table II) were essentially inactive or of lower potency than the corresponding dihydro compounds. The presence of OH on either carbon of the bridge (Table I) gave variable results. Those carbinols which were active in the hypocholesteremic screen were also very estrogenic.

Experimental Section⁷

Ketone Intermediates.—The following ketones were prepared by a standardized procedure involving Fe-HCl[§] reduction of the corresponding phenylnitroalkenes: 1-phenyl-2-propanone; 1phenyl-2-butanone; 1-(*p*-methoxyphenyl)-2-propanone, and 1-(*p*-methoxyphenyl)-2-butanone. Similarly prepared were: 1-(omethoxyphenyl)-2-butanone; yield 84%, bp 115-120° (3 mm), $n^{21}D$ 1.5215. Anal. (C₁₁H₁₄O₂) C, H. 1-(*m*-Methoxyphenyl)-2butanone; bp 115-120° (3 mm), bp 138-139° (15 mm).⁹ Anal. (C₁₁H₁₄O₂) C, H.

4-(o-Methoxyphenyl)-3-hexanone.—A mixture of 175 g (0.98 mol) of 1-(o-methoxyphenyl)-2-butanone and 160 g of commercial NaOMe was cooled in an ice bath while 500 g of EtI was added dropwise with stirring. After the addition (exothermic reaction) the mixture was heated under reflux on the steam bath for 3 hr; H₂O was added and extracted (Et₂O) and the solution was dried (Na₂SO₄) and distilled: bp 114-115° (1 mm); n^{25} D 1.5074; yield 140 g (70%). Anal. (C₁₃H₁₈O₂) C, H.

4-(*m*-Methoxyphenyl)-3-hexanone was obtained in a similar manner: bp 107-112° (1 mm); n^{25} D 1.5064; yield 90%. Anal. (C₁₃H₁₈O₂) C, H.

4-(*p*-Methoxyphenyl)-5-methyl-3-hexanone was obtained in 68% yield by the alkylation of 4-(*p*-methoxyphenyl)-3-butanone with isopropyl iodide and NaOMe: bp 133-136° (4 mm); $n^{27}D$ 1.5070. Anal. (C₁₄H₂₀O₂) C, H. This standardized alkylation procedure was used for the following ketones: 3-phenyl-2butanone, 4-phenyl-3-hexanone, 3-(*p*-methoxyphenyl)-2-butanone, 2-phenyl-3-pentanone, 2-(*p*-methoxyphenyl)-3-pentanone, and 4-(*p*-methoxyphenyl)-3-hexanone.

4-(*p*-**Hydroxyphenyl**)-**3-**hexanone.—A mixture of 78 g (0.38 mol) of 4-(*p*-methoxyphenyl)-3-hexanoue and 500 ml of 48% HBr was heated under reflux for 20 hr and allowed to cool, poured into water, and extracted with CHCl₃. The product was distilled, bp 160–165° (2 mm). On cooling the product solidified and was recrystallized from hexane: mp 63–65°; yield 45 g (62%). Anal. (C₁₂H₁₈O₂) C, H.

4-(*p*-2-Diethylaminoethoxyphenyl)-3-hexanone.—To a refluxing solution of 5 g of Na in 300 ml of EtOH was added 38 g (0.2 mol) of the above phenol followed by 27 g of diethylaminoethyl chloride. The mixture was refluxed with stirring for 12 hr. The EtOH was removed *in vacuo* on the steam bath and the residue was dissolved in H₂O and extracted with CHCl₃. The product was distilled: bp 165-170° (1 mm); n^{25} D 1.5052; yield 27.5 g (48%). Anal. (C₁₈H₂₉NO₂) C, H. The hydrochloride, mp 134-135°, was recrystallized from EtOH-Et₂O. Anal. (C₁₈H₂₉NO₂·HCl) C, H, N.

p-(2-Diethylaminoethoxyphenyl 2-Pyridyl Ketone (VIa).— This ketone was prepared from 47 g (0.23 mol) of p-hydroxyphenyl 2-pyridyl ketone, 5.8 g of Na, and 34 g of 2-diethylaminoethyl chloride in 300 ml of EtOH: bp 206-212° (1 mm); n^{27} D 1.5835; yield 45.5 g (66%). Anal. (C₁₈H₂₂N₂O₂), C, H.

In the same manner, p-(2-diethylaminoethoxyphenyl 3pyridyl ketone (VIb) was prepared in 43% yield: bp 207-215° (1 mm); n^{26} D 1.5830. Anal. (C₁₈H₂₂N₂O₂) C, H.

p-Diethylaminoethoxyphenyl 2-thienyl ketone (VIc) had bp 237-240° (2 mm); n^{26} D 1.5955; yield 68%. Anal. (C₁₇H₂₁NO₂S) C, H.

Method I. 4-(p-Methoxyphenyl)-3-(2-pyridyl)-3-hexanol.— To an Et₂O (500 ml) solution of *n*-BuLi prepared under N₂ at -10° from 5.5 g (0.8 g-atom) of Li shot and 55 g of *n*-BuBr (0.4 mol) was added, at -40°, a solution of 63 g of 2-bromopyridine (0.4 mol) in 100 ml of Et₂O. The mixture was stirred for 20-30 min and an Et₂O solution of 41 g (0.2 mol) of 4-(p-methoxyphenyl)-3-hexanone was added dropwise, and, after 2 hr, the mixture was permitted to warm to room temperature and stirring was continued for 6 hr. Ice-H₂O was added and the organic

⁽⁷⁾ Melting points are uncorrected and were obtained on a Thomas-Hoover melting point apparatus. Microanalytical results were obtained by the Physical-Analytical Department of the Schering Corp. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

⁽⁸⁾ F. W. Hoover, and H. B. Hass, J. Org. Chem., **12**, 501 (1947); also B. R. Baker, J. Amer. Chem. Soc., **65**, 1572 (1943).

⁽⁹⁾ R. Royer and E. Bisagni, Bull. Soc. Chim. Fr., 395 (1960).

material was extracted with Et_2O . The combined Et_2O solutions were extracted several times with 10% HCl and the acid extracts made basic (NH₄OH) and extracted with CHCl₃. The CHCl₃ was removed and the brown oily residue was triturated with cold petroleum ether. The crude crystalline product (isomer A) was filtered and the petroleum ether filtrates were concentrated and distilled *in vacuo*. In several examples (Table I) the crude carbinol mixture was distilled prior to trituration and the distillate solidified on standing. The solid isomer A was obtained therefrom by crystallization from the designated solvent.

Similar metallation procedures were used with 3-bromopyridine, 2-bromothiazole,¹⁰ and 1-methylimidazole,¹¹

Method II. 1-(p-2-Diethylaminoethoxyphenyl)-1-(2-pyridyl)-2-(p-methoxyphenyl)ethanol.—p-Methoxybenzyl chloride (31 g, 0.2 mol) in 200 ml of Et₂O was added dropwise with stirring at refux to 24 g (1 mol) of Mg and 200 ml of Et₃O over a period of 2–2.5 hr. The cloudy solution was decanted from the excess Mg, 20 g (0.067 mol) of p-(2-diethylaminoethoxyphenyl) 2pyridyl ketone in an equal volume of Et₂O was added dropwise, and the mixture heated for 6 hr. A solution (20%) of NH4Cl was added, the product was extracted with Et₂O, and the residue, after removal of solvent, was triturated with petroleum ether.

1-(p-2-Diethylaminoethoxyphenyl)-1-(2-thienyl)-2-(p-methoxyphenyl)ethylene (VII),—Using the procedure of method II from 25 g (0.08 mol) of p-(2-diethylaminoethoxyphenyl) 2-thienyl ketone, this compound was obtained as a viscous red oil which would not crystallize: yield 23 g (71 %); bp 235-250° (0.8 mm). *Anal.* (C_{2s}H₂₂NO₂S) C, H.

Method III. Reduction Procedure.—A solution of 0.03 mol of pyridylcarbinol in 150 ml of abs EtOH containing 4.0 ml of concd IICl was reduced in a Parr hydrogenator at room temperature in the presence of 0.5 g of PtO₂. The reduction was permitted to run overnight, the catalyst was filtered, and the filtrate was concentrated to dryness *in vacuo*. The residue was dissolved in H₂O, neutralized (NH₄OH), and extracted with CHCl₈.

Method IV.—To a suspension of NaNH₂ prepared from 14 g (0.6 g-atom) of Na in about 800 ml of anhyd liquid NH₃ in the presence of Fe(NO₃)₃ catalyst was added an equivalent molar amount of the picoline in an equal volume of Et₂O, and the mixture was stirred for an additional hour. The ketone (0.3 mol) was added dropwise and stirring continued for 1 hr. NH₄Cl (45 g) was added cantiously followed by 400 ml of anhyd Et₂O, and the NH₃ was allowed to evaporate, usually overnight. Ice- H_2O was added, and the Et₂O layer was extracted (10% HCl) and discarded. The acid extracts were basified (NH₃OH) and extracted with CHCl₃. The solvent was removed and product isolated as in Table I.

Method V. Dehydration Procedure,—A mixture of 0.1 mol of carbinol, 60 ml of coned HCl, and 200 ml of glacial HOAc was heated under reflux for 4 hr. The solution was concentrated *ia vacuo* on the steam bath. The HCl salt which often crystallized on standing was recrystallized. The free amine was obtained by neutralizing (NH₄OH) an aqueous solution of the HCl salt and extraction (CHCl₄). The solvent was removed and product isolated as indicated in Table H.

Method VI. Dehydration Procedure.—A mixture of tertiary carbinol and 4 times its weight of finely powdered potassium pyrosulfate was heated in a bath at an external temperature of

(10) R. P. Kurkjy and E. V. Brown, J. Amer. Chem. Soc., 74, 6260 (1952).

(11) D. A. Shirley and P. W. Alley, *ibid.*, 79, 4025 (1957).

260–270° with occasional manual stirring potal the mixture liquefied and then for an additional 2 min. The cotire procedure required about 20 min. The dark green viscous solution was poured while still hot into a large volume of ice, and the solution made basic (NH₄OH) and extracted with CHCl₃. The CHCl₄ extracts were washed (H₂O) and distilled.

Method VII.—A solution of 0.02 mol of the stillazole (Table II) in 150 ml of EtOH was hydrogenated in a Parr hydrogenator at room temperature in the presence of freshly prepared Racey Ni catalyst. H₂ uptake was, in the majority of cases, very rapid and the reduction was permitted to rap 2–3 hr. In those cases in which the reduction did not proceed readily, particularly in the 3-pyridyl series, the reaction was carried out at 50–55° for 15–20 hr. The catalyst was removed and the product isolated by distillation.

Method VIII. 1-(*p*-Methoxyphenyl)-1-bromopropane was prepared from the commercially available anethole by the following modified procedure.¹² To a cold (-35 to -40°) solution of 14.8 g (0.1 mol) of anethole in 50 ml of tolucoe was added 8.4 g of anhydrous HBr (requires 3-5 min). The solution was warned to 0° , CO₃ gas was bubbled through the mixture for 15 20 min, and the system was then flushed with N₂ for 15-20 min. The solution was then diluted with an equal vol of dry Ei₂O and kept at -40° until required in the next step. Similarly, a solution of 1-(*p*-methoxyphenyl)ethanol (15.2 g) in 100 ml of PhMe was saturated with HBr gas for i hr at 0° . The lower H₅O layer was removed and the PhMe solution was treated with CO₂ and N₂ as previously described. The solution was dried (Na₂SO₄) and stored at -10° until needed.

To a solution of NaNH₂ [from 2.3 g of Na in 5 h of NH₄ [Fe(NO₃)₂ catalyst]] 12 g (0.1 mol) of 2-*n*-propylpyridine was added dropwise and stirring continued for 0.5 hr. The E₄O-PhMe solution of *p*-methoxyphenyl-1-bromopropane was added dropwise and the mixture was stirred for an additional 4 hr. The NH₃ was then displaced by $E(_{2}O,$ and the mixture was stirred overnight at room temperature, decomposed with H₂O, and extracted with Et₂O. The combined Et₂O solution was extracted (HOC_{1} HCl), and the acid extracts were neutralized (NH₄OU), extracted with CHCl₃, and distilled.

Method IX. Separation of Stereoisomers,—A solution of 133 g of 3-(*p*-methoxyphenyl)-4-(2-pyridyl)hexane in 2.5 l, of anhydrons Et₂O was saturated with HCl until precipitation was complete. The Et₂O mixture was warmed on the steam bath for a few minutes to expel the excess HCl, Et₂O was decented and the residue was dissolved in 1.3 l, of anhyd EtOH, clarified with charcoal, and filtered. The product was precipitated with 3.5 l, of anhyd Et₂O. The product, isomer A+HCl, was filtered and reerystallized several times from EtOH-Et₂O: mp 237-239°; yield 52 g (33%).

The filtrate from isomer A-HCl was concentrated in racuo to dryness, dissolved in H₂O, basified (NH₄OH), extracted with CHCl₄, and distilled: bp 155–160° (3 mm); yield 66 g.

Alternate Separation of Isomers. Chromatography. A solution of 28 g of 2-(p-methoxypheuyl)-3-(2-pyridyl)pentane in 300 ml of pentane was chromatographed on 840 g of alumina using pentane as eluent and collecting fractions of 1200-4500 ml. Isomer A (13 g) (rap $50-52^{\circ}$) was collected in the first 14-15 fractions, at which point the eluent was changed to Eu₂O and 14.5 g of an oily residue was obtained in the aext 5 fractioos (isomet B).

⁽¹²⁾ M. S. Kharasel, and M. Kielman, *ibid.*, 65, 493 (1945).