Experimental Section

N-Substituted 2,2'-Diphenamic Acids.—A CHCl₃ solution of the amine was added to an equivalent amount of diphenic anhydride⁸ dissolved in CHCl₃ and the mixture was stirred and refluxed gently for 2 hr. The solvent was evaporated on a steam bath and the residue recrystallized. When necessary the crude residue was purified by dissolving in dil NaOH, filtering, and precipitating with dil HCl. For 6, 9, 10, 11, and 14, PhMe was used as 50-90% of the reaction solvent to increase amine solubility and to raise the temperature at reflux.

N-Substituted 2.2'-Diphenimides.—A mixture of 0.01 mol of the N-substituted diphenamic acid, 10 ml of Ac₂O, and 1 g of fused NaOAc was heated with constant mixing on a steam bath for 15-20 min. The mixture was then triturated with hot H₂O to remove excess Ac₂O. The product was filtered, washed with H₂O, dried, and recrystd.

For 25, the reaction was carried out on a low temperature hot plate at $120-130^{\circ}$ for 35-45 min.

Acknowledgment.—We thank Alice C. Lee for determining the ir spectra.

(8) Diphenic anhydride was prepared by refluxing diphenic acid with 8 equiv of Ac₂O for 0.5 hr and recrystallizing from Me₂CO to give 95%, mp 225-226° (lit. mp 217°, E. H. Huntress and S. P. Mulliken, "Identification of Pure Organic Compounds," John Wiley & Sons, New York, N. Y., 1941, p. 170).

Diphenimides. 2.^{1a,b} Some Ring Substituted N-2-Fluorenyl-2',2"-diphenamic Acids and Diphenimides. Derivatives of Fluorene. XXXII.^{1c}

HSI-LUNG PAN AND T. LLOYD FLETCHER

Chemistry Research Laboratory of the Department of Surgery, University of Washington School of Medicine, Seattle, Washington 98105

Received January 5, 1970

In view of the preliminary report of antimalarial activity in rodents exhibited by N-2-fluorenyl-2',2''-diphenimide (II, X = Y = H),^{1a} attempts were made to obtain increased activity by substitution of Cl on the rings.²

Preparation of the diphenamic acids (I) was carried out by condensation of the aminofluorenes with the corresponding diphenic anhydrides in CH_2Cl_2 . Ring closure of I in Ac₂O (with fused NaOAc) gave II in excellent yields. The diphenic anhydrides were synthesized from the appropriately substituted 2-bromobenzoic acid methyl esters through Ullmann coupling, followed by hydrolysis of the acid ester and dehydration of the diphenic acids in Ac₂O. The ir absorptions are essentially as discussed in paper 1 of this series.^{1a}

The antimalarial screening of these compounds was carried out by subcutaneous administration in young ICR/Ha Swiss mice infected with *Plasmodium berghei*. All of these compounds were inactive. The Cancer Chemotherapy National Service Center is also screening these compounds for antitumor effects in BDF_1 mice

with L1210 leukemia, with negative results from the testing thus far.³

Experimental Section⁴

Methyl 2-Bromo-5-chlorobenzoate.—Methyl 2-bromo-5-nitrobenzoate[§] (150 g) was reduced with Zn dust (300 g) in 80%EtOH (1.5 l.) containing NH₄Cl (45 g) giving methyl 5-amino-2bromobenzoate (123 g) which was used directly in the next step.[§]

The amine (97 g) was diazotized at -10° in 8 N HCl (0.6 l) with NaNO₂ (35 g) and the diazonium salt was reacted with freshly prepared Cn₂Cl₂ (160 g) at 60°. The reaction mixture was then cooled in ice with rapid stirring mutil crystallization of the chloro compound took place. The product was collected on a prerefrigerated filter and taken up in ether which was washed with dil HCl, dil NaHCO₃, and H₂O, dried (MgSO₄), and evaporated. The residue was recrystallized from MeOH-H₂O giving 87 g (83%), mp 37-38° (MeOH). Anal. (C₈H₆BrClO₂) C, H, Br, Cl.

4.4'-Dichloro-2.2'-diphenic Acid.—The above ester (77 g) and Cu powder (450 A; Metal Distintegrating Co.) (30 g) were rapidly stirred at 200° while a second portion of Cu (30 g) was added in small amounts over a period of 20 min. The temperature was then kept at 205° for 0.5 hr and the cooled mixture was extracted with Me₂CO. The crystalline solid from the Me₂CO extract was recrystallized from MeOH giving 31.1 g (61%) of the dimethyl ester, mp 103–106°, which was hydrolyzed in a refluxing mixture of AcOH (420 ml), H₂SO₄ (240 ml), and H₂O (120 ml) (30 hr) to the diacid, 22.5 g (80%), mp 255–261° (H₂O) (lit.⁷ mp 264–265°). Anal. (C₁₄H₃Cl₂O₄) Cl.

4,4'-Dichloro-2,2'diphenic Anhydride.—The diphenic acid (3.1 g) in Ac₂O (20 ml) was boiled with stirring for 45 min, cooled, and the product filtered off giving 2.6 g (89%), np 325–326° (C₆H₆) (lit.⁻ mp 308–310°). *Anal.* (C₁₄H₆Cl₂O₈) C, H, Cl.

(3) The data were kindly supplied by Dr. Harry B. Wood, Jr.

(4) Melting points below 250° were taken on a Fisher-Johns block and are corrected to standards. The melting points above 250° were determined with a Thomas-Hoover apparatus in open capillaries and are uncorrected, Where analyses are indicated by symbols of the elements, analytical results, obtained for those elements were within ±0.4% of the theoretical values. Their spectra (KBr) were made on a Beckman IR-5. The elemental analyses were performed by A. Bernhardt, Elbach über Engelskirchen. West Germany. (5) A. E. Holleman and B. R. deBruyn, *Rec. Trav. Chim. Pays-Bast.* 20, 206 (1901).

(6) The amine is not distilled because of the possibility of violent decomposition; for example, see (a) H.-L. Pan and T. L. Fletcher, J. Med. Chem., 8, 491 (1965), footnote 15, and (b) M. J. Namkung, T. L. Fletcher, and W. H. Wetzel, *ibid.*, 551, footnote 15.

(7) E. H. Huntress, I. S. Cliff, and E. R. Atkinson, J. Amer. Chem. Soc., 55, 4262 (1933).

 ^{(1) (}a) Part 1: C. Cole, H.-L. Pan, M. J. Namkung, and T. L. Fletcher, J. Med. Chem., 13, (565) (1970); (b) this work was supported in part by Grant CA-01744, and by Career Development Award 5KO-3-CA-14991, from the National Cancer Institute; (c) Part XXXI: M. J. Namkung and T. L. Fletcher, Chem. Commun., 1052 (1969).

⁽²⁾ This type of modification was suggested by Dr. T. R. Sweeney. Walter Reed Army Institute of Research, to whom we are grateful for a supply of diphenic acid and the antimalarial screening data.

4,4'-Dinitro-2,2'-diphenic Anhydride.--As described previously, methyl 2-bromo-5-nitrobenzoate (130 g) and Cu powder (40 g) were allowed to react at 200-205° for 40 min giving 46 g (51.2%) of 4,4'-dinitro-2,2'-diphenic acid dimethyl ester which was refluxed for 26 hr in a mixture of AcOH (670 ml), H₂SO₄ (400 ml), and H₂O (200 ml) giving 35.8 g (85%) of the dinitrodiphenic acid, mp 255-257° dec (lit.⁸ mp 257-258°). The diphenic acid (18.4 g) was then heated in an open flask with Ac₂O (100 ml) multi the temperature of the mixture reacthed 160°. It was cooled and the product was separated by filtration, giving 14.5 g (83.5%), mp 231-233° (C₆H₆). Anal. (C₁₄H₈N₂O₇) C, H, N.

5,7-Dichlorofluoren-2-amine. A mixture of 2,4-dichloro-7pitro-9-oxofluorene^{6a} (7.3 g), 85% N₂H₄·H₂O (40 ml), and 2,2'oxydiethanol (400 ml) was refluxed gently for 24 hr. The solution was evaporated until its temperature reached 210°. Upon H₂O dilution there was obtained 5.7 g (91%), mp 124-125° (EtOH). Anal. (C₁₃H₂Cl₂N) C, H, N.

N-2-Fluorenyl-4',4''-dichloro-2',2''-diphenamic Acid (Ia).---Fluoren-2-anime (1.1 g), 4,4'-dichloro-2,2'-diphenic anhydride (1.8 g), and CH_2Cl_2 (175 ml) were refluxed for 24 hr and the mixture was stripped of solvent giving 2.9 g (100 $\frac{C}{7}$), mp 132–135° (glassy melt). *Anal.* ($C_{27}H_{37}Cl_2NO_4$) C, H, Cl, N.

N-2-(5,7-Dichlorofluorenyl)-4',4''-dichloro-2',2''-diphenamic Acid (**Ib**).—Similarly, 5,7-dichlorofluoren-2-amine (2.5 g) and 4,4'-dichloro-2,2'-diphenic anhydride (2.9 g) gave 5.3 g (98%), mp 256–261° dec (C₄H₄-CH₂Cl₂-Me₂CO). Anal. (C₄₇H₁₅Cl₄NO₃) C. H. Cl. N.

N-2-Fluorenyl-4',4''-dinitro-2',2''-diphenamic Acid (Ic),— Fluoren-2-annine (1.8 g) and 4,4'-dinitro-2,2'-diphenic anhydride (3.1 g) were treated in like manner to give 4.8 g (98%), mp 259– 260° (Me₂CO). *Anal.* (C₃;H₁₇N₃O₇) C, H, N. N-2-Fluorenyl-4',4''-dichloro-2',2''-diphenimide (IIa).—Ia

N-2-FluorenyI-4',4''-dichloro-2',2''-diphenimide (IIa).--la (1g), freshly fused NaOAc (0.5 g), and Ac₂O (10 nl) were mixed and heated with vigorons shaking on a steam bath for 15 min, cooled, and the Ac₂O was destroyed with H₂O giving 0.9 g (94%), mp 311-312° (Me₂CO). Anal. (C₂₇H₁₅Cl₂NO₂) C, H, Cl, N.

N-2-(5,7-Dichlorofluorenyl)-4',4''-dichloro-2',2''-diphenimide (IIb),---Likewise, Ib (1.5 g) and fused NaOAe (0.5 g) in Ac₂O (15 ml) gave 1.4 g (100%), mp 298-299° (AcOH). Anal. (C₂₇H₁₃-Cl₃NO₂) C, H, Cl₃N.

X-2-Fluorenyl-4',4''-dinitro-2',2''-diphenimide (IIc).---Heating Ic (2.5 g) with NaOAe (0.5 g) in Ae₂O (15 ml) gave 2.4 g (100%), mp 302-303° (PhMe). Anal. (C₂₇H₃₅N₈O₆) C. H. N.

Acknowledgment.—We thank Miss Alice C. Lee for determining the ir spectra.

(8) R. Kolea and O. Albrecht, Justus Liebigs Ann. Chem., 455, 272 (1927).

Synthesis of Potential Anticancer Agents. 5,12-Naphthacenequinones

JACOB FINKELSTEIN AND JOHN A. ROMANO

Chemical Research Department, Hoffman-La Roche Inc., Nutley, New Jersey - 07110

Received December 12, 1969

This report describes the syntheses and biological activities of several naphthacenequinones, an area of increasing interest.¹

In a Friedel-Crafts type of reaction, 1,4-dihydroxynaphthalene (1) was allowed to react with several 3substituted phthalic anhydrides (2) according to the B_2O_3 method of Weizmann and coworkers,² or in the

presence of anhydrous AlCl₃, to give the compounds **3** listed in Table I.

TABLE 1	
INFRARED AND ULTRAVIOLET SPECTRAL	Data

No.	Derivative of 5,12- naphthacenequinone	∿C± (), (°m ⁻⁺)	$\lambda_{10.5,S}, (\alpha \mu \rightarrow \epsilon)$
	5,12-Naphthacene-	1680	265, 275, 293, 373.
	$qnino e^a$		395, 415, 440, 468
			$\{7,400; 2,400; 1,200\}$
			2,400: 4,500: 7,600:
			9,900)
3	6,14-(OH) ₂	1629, 1585	263, 452, 483, 515
			-(24,800; 5,200; 7,200;
			6,800)
3e	1,6,11-(OH) ₅	1600	265, 460, 490, 525
			(54,000; -14,400; -14,400; -14
			26,000; -26,800)
3a	1-NO ₂ -6,11- $(OH)_2$	1631, 1580	264, 487, 517 (47,900);
			12,000; 8,700)
3f	1-NH ₂ -6,11-(OH) ₂	1595	254, 374, 393, 507.
			539(50,800; -1,800;
			-1,900; -20,350; -21,600)
3d	1-AeNH-6,11-(OH) ₂	1580 broad	248, 271, 468, 497.
			534(39,800):54,200):
			15,050; -26,300;
			28,200 i
Зе	1-Me ₂ N-6,11-(OH) ₂	1582, 1567	266, 520~530 sh, 550
			(59,200; -16,000;
			18,400)

^a The authors are grateful to Dr. H. Vollmand, Bayer, A. G., Leverkusen, West Germany for an authentic sample of 5,12naphthacenequipone, *Justus Liebigs Aux. Chem.*, **669**, 43 (1963).

For preparation of the larger amounts of 1 required, we found that the Fieser³ method of reductive acetylation of naphthoquinone followed by hydrolysis was rather tedious. We discovered that 1.4-dihydroxynaphthalene (1) could be prepared easily and in good vield by hydrogenation of naphthoquinone at low pressure.

When $2(\mathbf{a}, \mathbf{c}, \mathbf{d})$ was fused with 1 at 190° in the presence of B_2O_3 , the corresponding 3 was obtained. However, when $2\mathbf{b}$ was used under similar conditions. *in situ* deacetylation took place, and the resulting 1,6,11-trihydroxynaphthacenequinone ($3\mathbf{c}$) was obtained, identical with the product obtained from 1 and $2\mathbf{c}$. Upon hydrolyzing 1-acetamido-6,11-dihydroxynaphthacenequinone ($3\mathbf{d}$) in HCl, 1-amino-6,11-dihydroxynaphthacenequinone ($3\mathbf{f}$) was obtained. Compound $3\mathbf{e}$ was prepared by the AlCl₃ fusion procedure of 1 with 3-dimethylaminophthalic anhydride ($2\mathbf{e}$), which was

 ⁽a) F. Arcamone, C. Franceschi, P. Orezzi, and S. Penco, Tetrahedron Lett., 3349 (1968);
(b) J. R. D. McCornick, J. Reichenthal, S. Johnson, and N. O. Sjolander, J. Amer. Chem. Soc., 85, 1694 (1963);
(c) H. Brockmann and J. Niemeyer. Chem. Bor., 101, 2409 (1968);
(d) H. Brockmann, R. Kunker, and H. Brockmann, Jr., Justus Liebigs Ann. Chem., 696, 145 (1966), and other references cited therein.

C. Weizmann, L. Haskelberg, and T. Ber(in, J. Chem. Soc., 398 (1939).

⁽³⁾ L. Fieser, J. Amer. Chem. Soc., 70, 3165 (1948).