Table I
Antitumole Activity of 1-Substiteted 3 -Hydroxytreas (1a-g)

Compd	$\operatorname{Mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)$	Formula	Analysis	$\begin{gathered} \text { Test }{ }^{b} \\ \text { system } \end{gathered}$	$\begin{gathered} \text { Dose } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Survivors	$\overbrace{\text { Test }}^{\mathrm{Tu}}$	weiglit ${ }^{6}$ (days) \qquad Control	Per cent (T / C)
1 a	171-173	$29{ }^{\text {d }}$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$	C, H, N	LE	400	4/4	9.5	9.5	100
					WM	400	6/6	4.5	5.7	78
1 b	146-147	43^{e}	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N	LE	400	$4 / 4$	10.0	$9 . \overline{0}$	105
					LE	200	$4 / 4$	9.5	9.5	100
1 c	134-136	46^{e}	$\mathrm{C}_{7} \mathrm{H}_{;} \mathrm{ClN}_{2} \mathrm{O}_{2}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}$	LE	400	$4 / 4$	9.5	9.5	100
					LE	200	6/6	9.7	9.4	103
					WM	400	4/6	1.0	5.7	17
1d	128-129	31^{e}	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N	LE	400	4/6	12.5	9.6	130
						200	6/6	10.8	8.7	124
					WM	400	6/6	6.8	8.9	76
1 e	116-118	16^{d}	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N	LE	400	6/6	9.2	9.6	95
					WM	400	6/6	5.0	5.7	87
1 f	140-142	28^{d}	$\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N	LE f	200		12.3	8.1	151
						400		16.2	8.1	200
$1 g$	125-126	43^{3}	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$	C, H, N	LE ${ }^{\prime}$	200	6/6	12.0	9.4	127
						400	6/6	12.5	9.1	137
					$\mathrm{SA}^{\prime \prime}$	375	6/6	808	1185	68
					CA^{\prime}	337	10/10	680	1536	44

${ }^{a}$ Testing was done at Cancer Chemotherapy National Service Center, National Cancer Institute, Bethesda, Md. See Cancer Chemother. Rep., 25, 1, 10 (1962). ${ }^{b}$ LE, L-1210 lymphoid leukemia; WM, Walker carcinosarcoma 256; SA, sarcoma 180; CA adenocarcinoma 75.5 . ${ }^{c}$ For test systems SA and CA total tumor weight in grams: for test systems LE and WM, survival time in days. d.e Recrystallization solvents chloroform and 1,2 -dichloroethane, respectively. f See ref 6 .
equal vol of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.0557 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}$. The gas that evolved from the blue solution was bubbled through 10 ml of cold ($0-5^{\circ}$) $\mathrm{Et}_{2} \mathrm{O}$ using a gas dispersion tube. Five minutes after mixing, the reaction vessel was heated to 50° for 10 min , producing a nearly colorless solution. An ir spectrum of the $\mathrm{Et}_{2} \mathrm{O}$ solution showed strong absorptions at $233 \overline{5}, 66 \overline{5}\left(\mathrm{CO}_{2}\right), 2280(\mathrm{~N}=\mathrm{C}=\mathrm{O})$, and $2220(\mathrm{~N} \equiv \mathrm{~N} \rightarrow \mathrm{O}) \mathrm{cm}^{-1}$.
$\mathrm{Fe}\left(\right.$ III)-HU Complex.-A $7.06 \times 10^{-1} \mathrm{M}$ solution (25 ml) of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in abs EtOH was added to an equal vol of an EtOH solution of $7.06 \times 10^{-1} M \mathrm{HC}$. The solvent from the blue solution was then evaporated off at reduced pressure and the resulting dark blue oil dissolved in 2 ml of abs EtOH. The colorless residue was filtered off and the filtrate on removal of the solvent at reduced pressure gave a dark green oil. As before, the formation of $\mathrm{Fe}($ III $)$-HU complex was shown by spectrophotometric methods.
Spectrophotometric Determination of $\mathrm{Fe}($ III $)-\mathrm{HU}$ and $\mathrm{Fe}($ III $)-$ EHU Complexes. Continuous Variation Method. $\mathrm{Fe}(\mathrm{III})-\mathrm{HU}$ Complex in $\mathrm{H}_{2} \mathrm{O}$.-Aqueons solutions (250 ml) of $2 \times 10^{-2} \mathrm{M}$ $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and HU were prepared and appropriate volumes of each were added to ten $25-\mathrm{ml}$ volumetric flasks to give the following mole fractions of ligand: $0.8,0.20,0.28,0.40,0.48,0.52$, $0.60,0.72,0.80$, and 0.92 . The solutions were mixed immediately prior to the determination of the absorbance at $560 \mathrm{~m} \mu$. The results are plotted in Figure 1 as absorbance $v s$. mole fraction of the ligand.
$\mathrm{Fe}(\mathrm{III})$-EHU Complex in EtOH.-Appropriate volumes of $1 \times$ $10^{-3} M$ abs EtOH solutions of EHU^{-}and $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were added to sixteeen $25-\mathrm{ml}$ volumetric flasks such that the following mole fractions of ligand, $0.400 .08,0.12,0.16,0.20,0.40,0.48$, $0.52,0.60,0.80,0.88$, and 0.92 resulted. Each solution was mixed immediately prior to the determination of absorbance at $610 \mathrm{~m} \mu$. As before, the results are plotted as absorbance vs. mole fraction ligand.
Molar Ratio Method.-The molar ratio method of Yoe and Jones ${ }^{11}$ was applied to the Fe (III)-HU and Fe (III)-EHU complexes. The results, as shown in Figure 2, showed the formation of $1: 1$ complex in each case.

Acknowledgment.-This work was supported by Grants $\mathrm{Ca}-07333$ and $\mathrm{Ca}-06140$ from the National Institutes of Health.

Potential Antineoplastics. III. A Series of 1-Thiocarbamoyl-3-methyl-4-arylazo-5methyl(or phenyl)pyrazoles

H. G. Garg and R. A. Sharma
Department of Chemistry, University of Roorkee, Roorkee, India

Received October 29, 1969

The discovery that isoquinoline-1-carboxaldehyde thiosemicarbazone and its several congeners which possess the $\mathrm{N}-\mathrm{N}-\mathrm{S}$ or $\mathrm{O}-\mathrm{N}-\mathrm{S}$ tridentate ligand system, exhibit substantial antineoplastic activity, ${ }^{1.2}$ and the

Table I
1-Thocarbamoyl-3,5-dimethyl-4-arylazopyrazoles

No.	R	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Color ${ }^{\text {a }}$	Formula	Analyses
1	Ph	88	121-122	OYN	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{~S}$	N, S
2	$2-\mathrm{MePl}$	85	138-139	YN	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{~S}$	N. S
3	$4-\mathrm{MePh}$	82	142-143	YN	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{~S}$	N, S
4	$3-\mathrm{ClPh}$	84	118-119	YN	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{~S}$	N. S, Cl
5	4 -ClPh	81	150-151	ON	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{~S}$	N, S, Cl
6	2 -EtOPl	78	146-147	YN	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}$	N. S
7	4 -EtOPh	75	132-133	YP	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}$	N, S
8	2 - MeOPh	79	147-148	YF	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{OS}$	N. S
9	$2-\mathrm{NO}_{2} \mathrm{Ph}$	75	153-154	OYP	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$	N. S
10	$2.5-\mathrm{Mez} \mathrm{Ph}$	75	192-193	ON	$\mathrm{C}_{44} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{~S}$	N, S
11	$2-\mathrm{Cl}-6-\mathrm{MePh}$	65	167-168	ON	$\mathrm{C}_{13} \mathrm{H}_{4} \mathrm{ClN}_{5} \mathrm{~S}$	N. S. Cl

${ }^{a} \mathrm{~B}=$ bright; $\mathrm{F}=$ fibers; $\mathrm{G}=$ golden; $\mathrm{N}=$ needles; $\mathrm{O}=$ orange $; \mathrm{P}=$ plate $; \mathrm{Pe}=$ pale; $\mathrm{Y}=$ yellow.

[^0]

N，	$1:$	Yinum	119 ${ }^{\circ} \mathrm{C}$			． 1 aialy
1	1＇b	St	144－14．5	$Y ゙$	$\left(\mathrm{CaH}_{6} \mathrm{H}_{6} \mathrm{~N} \times\right.$	N，
\because	\because－Melph	76	16：3－164	OP	（6） $\mathrm{H}_{6} \mathrm{~N}$ N	N，
；	4－Nel ${ }^{\text {a }}$	－1）	172－17：	31N	（	N．
4	；－CHP	St	1：3－1\％	M	$\left(1 ; \mathrm{H}_{4} \mathrm{ClN}\right.$	A，s，（\％
\therefore	＋－（ $\mathrm{ll}^{\text {l }} \mathrm{l}_{1}$	6.	192－19\％	Perl	（1\％ $\mathrm{H}_{4} \mathrm{ClN}$	$\therefore \mathrm{N}, \mathrm{l}$（1）
（	t－BrIh	70	20s－209	Y	（ $\mathrm{CaH}_{4} \mathrm{HBrN}$	\therefore ，$\therefore B^{\prime}$
－	$\because-3601{ }^{\text {a }}$	－	185－136	11Y		N，
N	：－－\eoph	7	1．5：-1.54	Y゙		N N：
$!$	；－NO． Nh	（i）	10： $3-104$	PeYp		\therefore
111	4－ドイ）	（i）	176－177	Peyl：		N，
11		70	179）－190	YX	（6， H ） N －	N．
12	$\because, \mathrm{S}-\mathrm{M}$	\because	191 19\％	ゾ	（ 6 H	N，
1：；	$\because, 6-11 e_{1} h_{1}$	7	14i）－144	11 N	（1） H_{1} N－	\therefore 人
14	2 －（］－6－M（1P）	（6．）	12x－129	（）F	（ $\mathrm{SH}_{\text {H }} \mathrm{CON}$	N， N

＂Seroothole a of lablel．

Tame III
 1．sthemmoximbiv is BbF，Mhe：

\cdots 人	1：	Surimer	Tr，＂a	\therefore V．	1：	Sorvivers	T／${ }^{\prime}$ ．
				，	$\because-\mathrm{Sa}(\mathrm{d}) \mathrm{l}$＇h	＋ 6	101
1	Pl_{1}	6.6	107			15 6	96
\because	$\because-$ Mer ${ }^{\text {a }}$	i 6	（1）．	（1）	$\because-N(1)$	06	（1）
：	4－Mcl＇h	（i） $1 i^{\text {d }}$	10：	10		$6^{6} 1{ }^{1}$	is
4	： i －$(1 \mathrm{Pl})$	i i^{\prime}	10．5			（i） 6	94
		$10^{\prime \prime}$	10.5			$6{ }^{6}$	10：；
		6． $\mathrm{i}^{\text {d }}$	100	11	$\because, 4-\lambda l_{\text {c }} \mathrm{P}^{\prime}$	（5） 6	4.7
		（i） ib^{3}	96	12	$2,5-$ Mef） Ph	6． 6	（1．）
i；	4－（ $\mathrm{Il}^{\prime} \mathrm{l}_{1}$	（i） 6	14	$1:$	$2,6-\lambda 1 e_{0} 1_{1}$	$\therefore 0$	（9．）
6	$\because-以 10) P{ }^{\text {a }}$	66	102	14	$2-\mathrm{Cl}-6-\mathrm{Mc} \mathrm{Pl}_{1}$	10	sis
7	4－E（0）Ph	$6 \cdot 6$	94				
，	$\underline{2-N e O l}{ }^{\text {a }}$	15	114				
4	$\because-N 0 . P l)$	46	111	$\mathrm{RN}=\mathrm{N}$			
101	$\because, \mathrm{T}-\mathrm{M}$ ¢ Ph_{1}	63	107		$\mathrm{RN}=\mathbf{N}$	－ 1	
11		（1） 6	$1 W^{2}$				

1－T	usyl－i－m	4－721	olces	1	$\because-\mathrm{Me} \mathrm{P}^{\prime}$	6． 6	x
1	Ph	46^{1}	101	$\underline{\square}$	4－Me Pl_{1}	4	！ $1 \times$
		（i）${ }^{\text {a }}$	（1） 5	；	4－SONTH2 Pl_{1}	60	（）1
2	$\because-M e P_{1}$	$1{ }^{1} 6$	（1） 2	4	$\because-\mathrm{ClP}_{1}$	6）${ }^{\text {a }}$	（1）$)$
：	$4-\lambda \mathrm{ClP}_{1}$	， 6	Si	－	4－CH1 ${ }_{1}$	（6） 6	Sis
		$\therefore 6^{\prime \prime}$	（1）	（i）	4－B． $\mathrm{Bl}^{\text {d }}$	66	Sis
		（i） 6	194	7	：－NO．Ph	（1）	76
4	；－（1）	1 j 1 j	101	\checkmark	$\because-\mathrm{MeOPh}$	（i）${ }^{\text {d }}$	＊s
		（1） $6^{\prime \prime}$	104	9	$4-\mathrm{MeOPh}$	66	9 S
－	4－Cll ${ }^{\text {m }}$	6.6	14	10	$2.4-\mathrm{Me}_{0} \mathrm{Pl}_{1}$	66	（1）
6	$4-\mathrm{Br} \mathrm{Ph}$	（6） 6	（1） 2	11	$2,5-1 \mathrm{MePl}_{1}$	66	S！
7	\cdots－Melth	（6） 6	100	12	$\because .6-\lambda 19 \mathrm{Ph}$	66	9.5

[^1]essential role of azomethine linkages play in certain biological reactions, ${ }^{3,4}$ led us to a study of compounds having mixed structural features of these types.

The present investigation reports (a) the synthesis of several 1-thiocarbamoyl-3-methyl-4-arylazo-5methyl (or phenyl)pyrazoles and (b) the antinemethtic potency and host toxicity of 3,5-dimethyl-, 3-oplasyl-5-phenyl-, and 3,5-diphenyl ${ }^{5}$-1-thiocarbamoyl-4-arylazopyrazoles against $\mathrm{L}-1210$ lymphoid leukemia.

The new 1-thiocarbamoylpyrazoles ($\mathrm{I}, \mathrm{R}^{\prime}=\mathrm{Me}$ or Ph) which were prepared by using the conditions for the preparation of 1 -thiocarbamoyl-3.5-diphenyl-t-arylazopyrazoles in our laboratory earlier, ${ }^{5}$ are listed in Tables I and II.

Biological Results.-In a screen in BDF_{1} mice for antitumor activity against $L-1210$ lymphoid leukemia (Table III) the compounds showed the following order of decreasing potency: 3,5-dimethyl-, 3-methyl-5-phenyl-, and 3, $\overline{0}$-diphenyl-1-thiocarbamoyl-4-arylazopyrazoles. 1-Thiocarbamoyl-3-methyl-5-phenyl-4($2, \overline{0}$-dimethoxyphenylazo) pyrazole was screened against Human epidermoid carcinoma in a nasopharynx cell culture tube assay and found inactive.

Experimental Section

Melting points are micorrected and were determined using a Kofler hot-stage apparatus. Where analyses are indicated only by symbols of the elements, analytical results obtained were within $\pm 0.4 \%$ of the theoretical values.

3-Arylhydrazono-2,3,4-pentanetriones were prepared by the method of Garg and Sharma. ${ }^{5}$

2-Arylhydrazono-1-phenyl-1,2,3-butanetriones were synthesized by the procedme of Garg and Singh. ${ }^{6}$ Characteristics of

Table IV
Characteristics of
2-Arylhydrazono-1-phenyl-1,2,3-buranetiriones

No.	R	Yield. \%	Mp, ${ }^{\circ} \mathrm{C}$	Color ${ }^{\text {a }}$	Formula	Analyses
1	Pl	80	97-98	PeYN	$\mathrm{C}_{16} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}$	C. H, N
2	$4-\mathrm{BrPl}_{1}$	72	103-104	Y'	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrSN}_{2} \mathrm{O}_{2}$	N. Br
3	$2.6-\mathrm{Me}_{2} \mathrm{Pl}_{4}$	65	90-91	GYP	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	C. H. N
4	$2-\mathrm{Cl}-6-\mathrm{MePl}$	70	101-102	GYP	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}$	N, Cl
5	$3-\mathrm{ClPh}$	75	81-82	YN	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}$	N, Cl

[^2]new derivatives are summarized in Table IV.
1-Thiocarbamoyl-3-methyl-4-arylazo-5-methyl(or phenyl)pyrazoles were abtained by the ronte used for the preparation of 3,5-diphenyl congeners. ${ }^{5}$ Characteristics of 1 -thiocarbamoyl-3,5-dimethyl-4-arylazopyrazoles ($\mathrm{I}, \mathrm{R}^{\prime}=$ Me) and 1 -thio-carbamoyl-3-methyl-4-arylazo-5-phenylpyrazoles. ($\mathrm{I}, \mathrm{R}^{\prime}=\mathrm{Ph}$) are given in Tables I and II, respectively.

Acknowledgment.--The authors are greatly indebted to Drs. H. B. Wood and H. W. Bond of the Cancer Chemotherapy National Service Center for their cooperation and for making the screening data available. We are also thankful to Professor W. U. Malik, Head of the Chemistry Department, for providing the necessary facilities for this work and the C.S.I.R., New Delhi (India) for a Junior Research Fellowship (held by R. A. S.).
(6) H. G. Garg, and P. P. Singlt, J. Chem. Suc. C, 1141 (1964).

Synthesis of Mono-, Di-, and Trimethoxy Derivatives of N, N-Bis(2-chloroethyl)aniline and Related Compounds as Antitumor Agents

A. H. Sommers, Urstla Bhemicher, Sindra Bongwardt Brehm, and James H. Shome

Organic Chemistry Department, Division of Experimental Therapy, Abbott Laboratories, North Chicago, Illinois 60064

Received November 10, 1969

The observation ${ }^{1}$ that N, N-bis(2-chloroethyl)-2,3dimethoxyaniline, originally prepared in these laboratories, caused significant inhibition of a number of test tumors including carcinoma 755 and Walker carcinoma 256 led us to synthesize the other dimethoxy isomers as well as the analogous mono- and trimethoxy derivatives for screening as antitumor agents. Other analogs including chloro and trifluoromethyl derivatives, as well as some 2 -chloropropyl homologs, are also described.

The desired compounds were prepared in two steps starting with the appropriately substituted aniline. The latter compound was alkylated with ethylene oxide or propylene oxide as described in a previous publication. ${ }^{2}$ The diols not described in that paper are collected in Table I.

The diols were converted into the desired dichloro derivatives with POCl_{3} utilizing the procedures of Ross ${ }^{3}$ and Elderfield. ${ }^{4}$ They are listed in Table II.

In agreement with an unproven but often-observed rule, the activity of the other compounds in Table II was of a lower order than that of N, N-bis(2-chlo-roethyl)-2,3-dimethoxyaniline (4). The antitumor screening data for many of the compounds in Table II have been published. ${ }^{\text {. }}$

[^3]
[^0]: (1) R. W. Brockman. J. R. Thomson, M. J, Bell, and H. E. Skipper, Cancer Res., 16, 167 (1956).
 (2) F. A. French, and E. J. Blanz, Jr., ibid., 26, 1454 (1965); 26, 1638 (1966).

[^1]:

[^2]: (3) D. D. Metzler, M. Ikawa, and E. E. Snell, J. Amer. Chem Soc., 76, 648 (1954).
 (4) E. E. Snell, Fhysiol. Rev., 33, 516 (1953).
 (5) H. G. Garg, and R. A. Sharma. J. Med. Chem., 12, 1122 (1964).

[^3]: (1) J. Leiter, A. R. Bourke, S. A. Schepartz, and I. Wodinsky, Cancer Res., 20, 760 (1960).
 (2) M. Freifelder and G. R. Stone, J Org. Chem., 26, 1477 (1961).
 (3) W. C. J. Ross, J. Chem. Soc., 183 (1949).
 (4) R. C. Elderfield, I, S. Covey, J. B. Geiduschek. W. L. Meyer, A. B. Ross, and J. H. Ross, J. Org. Chem., 23, 1749 (1958).
 (5) J. Leiter, B. J. Abbott. S. A. Schepartz, and I. Wodinsky, Cincer Res. 24, 383, 1066 (1964): 25, 27, 164 (1965).

