Reaction of 1，2，3，4－Tetrahydro－2－methylisoquinoline with BrCN．－－T0 a solution of $\mathrm{Br} \cdot \mathrm{CN}(7.50 \mathrm{~g}, 70.50 \mathrm{mmol})$ in 50 ml of anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$ ，a solntion of $1,2,3,4$－eenahydro－2－methyl－ isoquinoline（21）（ $6.00 \mathrm{~g}, 40.75 \mathrm{mmol}$ ）io 100 n n of anhedronts $\mathrm{C}_{6} \mathrm{l}_{6}$ was added slowly over a period of $2 \mathrm{l}_{\mathrm{n}}$ ．Essentially the sane procedine wan previnnsly employed tu obnain N－CN man－ ponnd was utilized to give a colorlens viscons residne which crystallized into finc needles， 22 （3．52 g， 22.25 manol，i4． 400° ．），
 （），11，N．

Acknowledgment＇lhe authore gratofully acknowl－ adge the support of this project by Mc Neil Laborat torics．Inc．，F゙ort Washington，Pa．

Studies of Piperidine Derivatives．I

 Fazl＇mioo Araki，＇Tapsemi＇lisemagari，and Hhoshi Imamura

Paceriend Ducomber S，19tis

Abstract

 potent antimflammatory activity．

＇The spectrum of biological activities of tricycle psedotropic drugs depends to a large extont upon the nature of the ammo group）．We have synthesized and examined the biological properties of some new 4， 4 －disubstituted piperidine derivatives represented by formula 1．Tables I，II，III，and IV display the

1

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{H}, \mathrm{OH}, \mathrm{CONH}, \mathrm{CONC} \mathrm{H}_{2}, \mathrm{Nam}, \\
& \text { CHeNHAc, CN, Ac, OMe, COEL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ur } p-\mathrm{F}_{-}-\mathrm{C}_{6} \mathrm{I}_{4}, \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{3}, \mathrm{NaI}_{4}, \mathrm{CO}_{4} \mathrm{H}_{4} \text {, } \\
& \therefore \text { CIIs } \\
& \mathrm{Y}=\mathrm{CH} \mathrm{CH}, \mathrm{CH}=\mathrm{CH} \text { CMm }
\end{aligned}
$$

resulting phenothiazines，immodiberazls，immostil－ bence，and 9，9－dimethylacridanes，requectively．

These eompomels were avaluated phamacologically with respect to inhibition of locomotor activits，sup－ pression of fighting episodes，coromary vasodilation． and antionflammatory action．Recont reports．more－ over，claim that some of the same or similar tricyclie compombl have comon＇s risodilating ${ }^{-6}$ and anti－ inflammatory actions．${ }^{\top}-14$


```
(Chom, 1lustr. 71, 2.041g (19069).
    (6) K. l. F. Brocahles Stelmall a|m Pbarmacia, Nethorlands Patebt
Ap,lication 6,608,741 (1964); Chem. Abstr., 67, 11438A (1967).
    (i) \rter;can lfutne Prod,cts (Arpo. V*.S. Patent 3,320,245 (1967):
Chem. AGstr., 67, 1001t0 (1907).
    (8) (. W. Searle & (u, L. S. Pateot A,300.246 (1667); Chem. Ahstr.. 67,
```



```
    (9) J. R. Geigy Chem. (orln, (. S. latent 2,965,839 1900); Chem.
Ah.str., 55, l!137g (1961).
```



```
16str.. 69, (%`ロ゙\(14/88).
```



```
68,105230 (1008).
```

The inhibitory effect of each of the tert compomels on locomotor activity was 1 xamined with d，（l－stram mice by the photocell method deseribed by Dews．${ }^{14}$ The rate of inhibiting fighting episodes was determined by giving electric stimuli，according to the technique of Tedeschi，${ }^{13}$ to the test amimals previously treated with the test compound．The effect on the coronary blood flow was assessed by the technique of Yago，${ }^{14}$ using dogs anesthetized with 30 mg ／kg of secoburbital is．＇The antimflammatory effeet was estimated by the？ method of Winter，at al．，${ }^{15}$ using Donryn male rats mevionsly given 1% cambeneen or 1% dextran is a phogistic agent．The LD $\mathrm{D}_{\text {a }}$ valuc was ealculated from the lethality rate in 2 days after the treatment by the Litchficid－Wilcoson method．
＇The results obtained are shown in Table V．Each of compounds $11,12,14,21$ ，and 26 exhibited potent inhibition of locomotor activity and suppression of fighting episoles．Compound 26 showed high toxicity． however．Compound 21 wats one－thirl as active as chlorpromazine in inhibition of fighting activity and 6 times as pentent in suppresing locomotor activit：－ Componnd 22 showed high toxicity．These pheno－ thazine derivatives were reguded as potent（NS depressants．

On the other hand，the compounde of immodibenzyl and immostilbene increased eoromary blood flow．Com－ ponmels 34，40，41，45 and 46 －most of them bilonging to the iminostilbene series exhibited $10-20$ times wrater potenes than premplamine ${ }^{16}$ The immostil－ bene derivatives also inhibited locomotor activity． Compound 46 which posserses mild locomotor supres－ sion may serve as a candidate antianginal drug．Con－ siderable antionflammatory action was found in the phenothiazines and iminostilbenes such as 11，12，43，

[^0]TAble I

a See Experimental Section. ${ }^{b}$ Most of the yields indicated in this and subsequent tables are based on a single run and they do not necessarily reflect the optimum attainable. call compounds were analyzed for $\mathrm{C}, \mathrm{H}, \mathrm{N} .{ }^{d} \mathrm{EtOH} .{ }^{e} \mathrm{EtOH}^{\mathrm{C}} \mathrm{Et} \mathrm{t}_{2} \mathrm{O}$. ${ }^{f} \mathrm{MeOH}$. ${ }^{8} \mathrm{Nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \tau 6.05$, equivalent to 0.5 mole of $\mathrm{MeOH} .{ }^{h} \mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O} .{ }^{i}{ }^{i} \mathrm{NC}_{4} \mathrm{H}_{8}$, pyrrolidino; $\mathrm{NC}_{5} \mathrm{H}_{10}$, piperidino. ${ }^{i}$ Acid maleate. ${ }^{k} 90 \% \mathrm{EtOH} .{ }^{l} \mathrm{Nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ quartet $\tau 5.90,6.01,6.12,6.25$, triplet $8.54,8.65,8.75$, equivalent to 1 mole of EtOH . Karl Fisher titration $\mathrm{H}_{2} \mathrm{O}=1.5 \%$. ${ }^{m} \operatorname{Nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ quartet $\boldsymbol{\tau} 5.89,6.00,6.11,6.24$, triplet $8.52,8.63,8.73$, equivalent to 1 mole of EtOH . Karl Fisher titration $\mathrm{H}_{2} \mathrm{O}=1.6 \%$.

Table II

No.	x	R_{1}	R2	Method ${ }^{\text {a }}$	Recrystn solvent	$\begin{gathered} \text { Yield, }{ }^{b} \\ \% \end{gathered}$	Mp. ${ }^{\circ} \mathrm{C}$	Formula ${ }^{k}$
29	H	$\mathrm{CH}_{2} \mathrm{NHAC}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	A_{3}	c	75	75-80	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{ClN}_{3} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
30	H	OH	$\mathrm{C}_{6} \mathrm{H}_{5}$	A_{3}	d	67	226	$\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}$
31	H	OH	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}(p)$	A_{3}	e	70	128-136	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
32	H	OH	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CFF}_{3}(m)$	A_{3}	c	64	112-114	$\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{MeOH}$
33	H	CONH_{2}	$\mathrm{NC}_{3} \mathrm{H}_{10}{ }^{\text {f }}$	A_{3}	g	81	260	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
34	H	CONH_{2}	NMe ${ }^{\text {a }}$	A_{3}	g	83	265	$\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$
35	H	H	$\mathrm{NC}_{5} \mathrm{H}_{10}{ }^{\text {f }}$	A_{1}	g	78	300	$\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{3}$
36	Cl	CONH_{2}	$\mathrm{NC}_{5} \mathrm{H}_{10}{ }^{\text {f }}$	A_{3}	h	47	259	$\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
37	Cl	CONH_{2}	NMe ${ }^{\text {2 }}$	A_{3}	i	32	145-150	$\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{ClN}_{4} \mathrm{O}_{9}{ }^{\text {i }}$

${ }^{a}$ See Lexperimental Section. ${ }^{b}$ See Table I, footnote b. ${ }^{c}$ MeOH-Et ${ }_{2} \mathrm{O} .{ }^{d}$ AcoEt. ${ }^{e}$ EtOH-Et ${ }_{2} \mathrm{O}$. ${ }^{\prime} \mathrm{NC}_{5} \mathrm{H}_{10}$, piperidino. ${ }^{g} 90 \%$ $\mathrm{MeOH} .{ }^{h} \mathrm{MeOH} .{ }^{i} \mathrm{EtOH},{ }^{i}$ Acid maleate. ${ }^{k}$ See Table I, footnote c.

No.	x	"	R	$12 \cdot$	R	Metbul*	$\begin{gathered} \text { Re- } \\ \text { rusen } \\ \text { whent } \end{gathered}$	Yioml."	Mr, "	Firsirnai، ${ }^{\text {a }}$
S	II	1	11	(N)	$\mathrm{C}_{\mathrm{i}} \mathrm{IL} \mathrm{l}_{1}$	A_{1}	¢	70	209	
31	11	1	11	(i) N 1 l	$\mathrm{C}_{\mathrm{if}} \mathrm{H}_{1}$	A_{1}	$1!$	i3)	260	
40	11	1	H	Ac	$\mathrm{C}_{6} \mathrm{H}_{4}$	λ_{3}	P	(3i)	104	$\left({ }_{30} \mathrm{H}_{33} \mathrm{ClNa}\right.$
41	11	1	11	OMe	$\mathrm{Cr}_{\mathrm{H}} \mathrm{IL}$	λ_{3}	r	. 6	15	$\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{ClN}_{2}\left(0 \cdot 0.5 \mathrm{H}_{4}{ }^{\text {a }}\right.$
42	11	1	11	()1I	($\mathrm{Ha}_{6} \mathrm{O}_{6} \mathrm{H}_{4}$	λ_{1}	i	.!	111!)	
4%	11	1	1 I	()11		A_{4}	!	\because	293)	
44	11	1	11	()Il	$\left({ }_{6} \mathrm{H}_{4} \mathrm{Cl} /{ }^{\prime} p\right.$)	13	$1 /$	is	199	$\left(4, \mathrm{H}_{3,} \mathrm{Cl}_{4} \mathrm{~N}_{3}() \cdot i-\mathrm{Pr}^{6}\right) 11$
4.1	11	1	11	()II	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CF}_{6} ; \mathrm{m}\right)$	A_{1}	4	(\%)	141143	$\mathrm{C}_{2} \mathrm{H}_{30} \mathrm{ClF}_{3} \mathrm{~N}_{3}() \cdot 1 \vdots(0) 11$
46	11	1	11	()11	($\mathrm{B}_{8} \mathrm{H}_{4} \mathrm{Net} p$)	A_{3}	11	6.9	158	
47	11	1	11	()11	(ch_{4} OM Me p !	13	;	\cdots	176-177	$\left({ }_{46} \mathrm{H}_{33} \mathrm{ClŇ}_{2} \mathrm{O}_{2}\right.$
ts	11	1	11	(0)NH:		$A_{:}$	i	-1	23.5	$\mathrm{C}_{2} \mathrm{H}_{3} \times \mathrm{Cl}_{4} \mathrm{~N}_{4}() \cdot+1.5 \mathrm{ll}_{4}()$
ti)	II	1	II	(O)NH.	NXt	A_{3}	1	-1	295	$\mathrm{C}_{4} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$) $\left(\mathrm{O}, 5 \mathrm{TH}_{4} \mathrm{O}\right.$
- 0	(1)	1	H	CN		λ_{4}	/	41	$201 \cdots 20$	
-1	Ol	1	11	OlI		A_{4}	,	4 t	130-140	$\mathrm{Cu}_{4} \mathrm{H}_{3!} \mathrm{Cl}_{4} \mathrm{~N}_{4}()$
\therefore	(1)	1	II	OON IL_{2}	NCaHes	A:	,	$4 \times$	152-15.	$\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{ClN}_{4}()_{94}{ }^{\prime \prime}$
is	(1	1	11	(O)NH:	NXe.	${ }_{\text {i }}$	h	4.1	140-14\%	$\left.\mathrm{C}_{3,1} \mathrm{H}_{34} \mathrm{CDN}_{4} \mathrm{O}\right)^{\prime \prime \prime}$
it	11	1	Me	O11	$\left(\mathrm{C}_{4} \mathrm{IL}_{4} \mathrm{CF}_{3}^{\prime}(1 /)\right.$	A_{i}	i	. 31	2, ${ }^{\text {a }}$	$\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{FF}_{3} \mathrm{~N}_{2}()$
\therefore	11	0	H	()11	$\left({ }_{9} \mathrm{IH}_{4} \mathrm{Cl}_{3}(\right.$ m)	A_{i}	'	131	191	
.if	11	1	Me	NXe		A_{A}	h	\%	229	$\mathrm{C}_{31} \mathrm{I} \mathrm{I}_{3,}, \mathrm{C}_{12} \mathrm{~N}_{3}$

 Meolit. ${ }^{m}$ Acid maleate. "See Table I, fondunte c.

No.	14	12 :	R.	Medmad	$\begin{aligned} & \text { Ramst" } \\ & \text { solyent } \end{aligned}$	Yichl."	M_{1}, " ${ }^{\text {c }}$	Furnera"
i17	11	(N゙	$\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$	A_{1}	1	4.8	1! ! !	
-is	II	1 I		A:	1	3 3	1sis	$\left(\mathrm{C}_{10} \mathrm{H}_{3} \mathrm{ClN}_{3} \mathrm{~S}^{(}\right)$
is	11	${ }^{(1) T}$	$\mathrm{Cr}_{3} \mathrm{H}_{4} \mathrm{CF}_{3}(7 / 4)$	A_{3}	f	:	$20!1$	$\left({ }_{34} \mathrm{H}_{34} \mathrm{ClF}_{3} \mathrm{~N}_{4}() \cdot 11.2 .71_{4}{ }^{(}{ }^{\prime}\right.$
60	11	O)I	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~F}(p)$	A_{1}	b	44	214	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{CiFN}_{3} \mathrm{O}$
13	II	CONH:	$\mathrm{NC}_{2} \mathrm{H}_{5}$	A_{i}	c	16	$2893-263$	$\left.\mathrm{C}_{4} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 1\right) 2 \mathrm{HH}_{4}$
(i)	Me	CONH_{2}	$\mathrm{NC} 5 \mathrm{H}_{10^{\text {a }}}$	A:	'	\%)	187	
(6)	II	CONH:	N入le	A_{1}	'	(3)	25	$\left(\mathrm{C}_{45} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{4}(0) \cdot 0.25 \mathrm{H}_{4}()^{4}\right.$
64	11	1 I	$\mathrm{NCH}_{4} \mathrm{ll}_{5}$	A.	+	\therefore	2011	$\left({ }_{3,1} \mathrm{H}_{4 i} \mathrm{~N}_{3} \mathrm{O}\right),{ }^{\prime}$
(6.)	11	II	$\cdots \mathrm{Nm}$	A.	'i'	4.	$27!1$	

and 45 which were found more potent than phenybutazone. ${ }^{17}$

It was concluded that compounds belonging to the iminodibenzy and iminostilbene groups were very potent in inhibiting inflammation and in increasing the coronary blood flow with some action on CNS, whereas the 9,9-dimethylacridans were somewhat les,
potent than the iminodibenzyls and immostilbenes in these tests. The specific action on the CNS and the remarkable spasmolytic potency of compound 33^{18} was described in detail in an earlier report. ${ }^{19}$
(18) ('arpipramine, 1)efekton ©).
(10) M, Nakanishi. TV. Tsımakari, T. (okada, und Ki. Kasí, drafi" F'ussete. 18, 1435 (1068).

Experimental Section

Melting points were determined in an open capillary tube in a $\mathrm{H}_{2} \mathrm{SO}_{4}$ bath apparatus and are not corrected. Ir and nmr spectra were obtained on Nihon Bunko IRG and C-60 instruments, respectively.

The synthesis of these compounds followed that shown in scheme I.
Soheme I

3
$\mathrm{A}=\left(\mathrm{CH}_{2}\right)_{2},\left(\mathrm{CH}_{2}\right)_{3}, \mathrm{CH}_{2} \mathrm{CHMMCH}_{2}$
$\mathrm{Q}=\mathrm{Br}, \mathrm{Cl}, \mathrm{OMe}$, OTs
$\mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{Me}, \mathrm{OMe}, \mathrm{CF}_{3}, \mathrm{SMe}, \mathrm{SBu}, \mathrm{Ae}$
$\mathrm{Y}=\mathrm{S}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CH}, \mathrm{CMe}_{2}$
$\mathrm{R}_{1}=\mathrm{H}, \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CONC}_{4} \mathrm{H}_{8}$, NMe,
$\mathrm{CH}_{2} \mathrm{NHAc}, \mathrm{CN}, \mathrm{Ac}, \mathrm{OMe}, \mathrm{CO}_{2} \mathrm{Et}$
$\mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5,} p$ - or m - Cl or p-Me or $p-\mathrm{MeO}$ or $\underset{\substack{p-\mathrm{FC}_{6} \mathrm{H}_{4} \\ \mathrm{H}_{12}}}{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5},} \mathrm{NMe}_{2}, \quad \mathrm{NC}_{4} \mathrm{H}_{8}$, $\mathrm{NC}_{5} \mathrm{H}_{10}$

$$
\begin{aligned}
& Z=\mathrm{Cl}, \mathrm{MeC} \\
& \mathrm{X}^{\prime}=\mathrm{Br}, \mathrm{Cl}
\end{aligned}
$$

Method A.-For condensing a 4,4-disubstituted piperidine with a halogen or an aryl and alkyl sulfonyloxyalkyl derivative of $2,{ }^{20-26}$ the following three methods were employed. (1) The components were dissolved in alcohol and heated to $100-$ 170° in a sealed tube. (2) Components were stirred in DMF solution at 100° in the presence of a basic reagent. (3) The components were refluxed in EtOH in the presence of a basic compound.
Method B.-Compound 1 was prepared from 3^{27} and a substituted PhMgBr in THF.
The compounds thus obtained were purified by column chromatography or recrystallization. Some of the compounds showed a tendency to form solvates. Representative procedures to obtain compounds listed in Tables I-IV are given below.

3-Chloro-10-[3-(4- p-chlorophenyl-4-hydroxypiperidino)propyl|phenothiazine Hydrochloride (14). -In 50 ml of EtOH were dissolved 1.8 g of 3 -chloro-10-(3 -chloropropyl)phenothiazine and 2.3 g of 4 - p-chlorophenyl-4-hydroxypiperidine, and the solution was heated in a sealed tube at $120-130^{\circ}$ for 7 hr . After cooling, EtOH was distd off. The oily residue was treated with 100 ml of $\mathrm{H}_{2} \mathrm{O}$, and extracted with 100 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$. After drying, $\mathrm{C}_{6} \mathrm{H}_{6}$ was removed ininder vacuum. The oily residue, after erystallizing as a hydrochloride, yielded 1.7 g (56%) of the product, mp 196°. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{OS}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-[3-(4-Acetylaminomethyl-4-phenylpiperidino)propyl]-5H-10,11-dihydrodibenzo $[b, f]$ azepine Hydrochloride (29),-In 60 ml of abs EtOH were dissolved 2.7 g of $\overline{\mathrm{j}}$-(3 -chloropropyl)-5 H -

[^1]Table V
Pharmacological Evaleatton

Inhibition of figluting behavior ${ }^{a}$	Suppression of locomotor activity ${ }^{b}$	Coronary vasodilatory activity ${ }^{\text {c }}$	Anti- inflam- matory activity ${ }^{d}$	LD_{50} $\mathrm{mg} / \mathrm{kg}$ (ip)
-	-	\pm	\pm	>320
+ +	$+$		+ +	>320
+ + +	+			>320
+ +	+			≥ 320
-	-			>320
+ +	+ + +	$t+$	+ +	so
-	+ +			40
+ +	+ +			60
\pm	\pm	+	\pm	>320
\pm	+	$+$	\pm	>s0
\pm	\pm			120
+	\pm			>80
-	+	$t+$	-	136
-	\pm	+ + +	-	$>x_{0}$
-	-			$>\mathrm{NO}$
+	$t+$			160
\pm	+			60
-	-	\pm	-	>500
-	\pm			>320
$+$	-	$t++$	-	320
$+$	-	+ + +	-	240
+	+	+ +		120
+	+	+ + +	+	60
\pm	$+$	+ + +	+ +	120
\pm	+ +	+ + +	\pm	120
\pm	+	+ +	\pm	60
-	+	\pm	\pm	120
\pm	+ +			SO
\pm	+			160
-	-			320
-	+	+ +		320
-	\pm			≤ 320
-	\pm	\pm	\pm	100
-	\pm	$+$		150
-	+	$+$		120

The potency of each activity is represented under the criterion as below. ${ }^{a}$ As ED_{50} values ($\mathrm{mg} / \mathrm{kg}$ p.o.) $<10 ;+++, 10-40$; ,$++ 41-100 ;+, 101-150 ; \pm,>151 ;-\mathrm{ED}_{30}$ of chloropromazine $=6.3 \mathrm{mg} / \mathrm{kg}$. p.o. ${ }^{6}{ }^{6}$ As ED ${ }_{50}$ values ($\mathrm{mg} / \mathrm{kg}$ i.p.) $\langle\overline{5} ;+++, 5-10 ;++, 11-40 ;+, 41-100 ; \pm,>100 ;-$. $E D_{50}$ of chloropromazine $=1.2 \mathrm{mg} / \mathrm{kg}$ i.p. ${ }^{\circ}$ As ED_{50} values $(\mathrm{mg} / \mathrm{kg}$ i.v. $)<0.5 ;+++, 0.5-1 ;++, 2-10 ;+,>10 ; \pm$. ED_{50} of prenylamine lactate $=3.6 \mathrm{mg} / \mathrm{kg}$ i.v. $\dot{\alpha} \mathrm{As}^{2} \mathrm{ED}_{50}$ values $(\mathrm{mg} / \mathrm{kg}$ p.o. $)<50 ;++, 50-100 ;+, 101-250 ; \pm>250 ;-$. ED_{30} of phenylbutazone $=380 \mathrm{mg} / \mathrm{kg}$ p.o.

10,11-dihydrodibenzo [b.f]azepine and 1.7 g of 4 -acetylamino-methyl-4-phenylpiperidine, followed by the addition of 3.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was heated under reflux on a steam bath for 40 hr . After the reaction was completed, the base was extracted with $\mathrm{C}_{6} \mathrm{H}_{6}$, and the $\mathrm{C}_{6} \mathrm{H}_{6}$ layer was purified by column chromatography (Wako alumina gel 300 mesh, eluant, $\mathrm{C}_{6} \mathrm{H}_{6}$). The oil thus obtained after crystallizing as a hydrochloride and recrystd from $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$, yielded $3.6 \mathrm{~g}(75 \%)$ of the product, $\mathrm{mp} 75-80^{\circ}$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{ClNO} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-[3-(4-Hydroxy-4-m-trifluoromethylphenylpiperidino)-propyl]-5H-dibenzo[b,flazepine Hydrochloride (45).- $\overline{5}$-(3 -Chloropropyl)-ธे H-dibenzo $[b, f]$ azepine $(6 \mathrm{~g})$ and 6.0 g of $4-$ hydroxy- $4-m$-trifluoromethylphenylpiperidine were mixed in 100 ml of DMF. After the addition of 6 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$, the mixture was stirred and heated at 100° in an oil bath for 10 hr . It was filtered hot, and the filtrate was concd inder vacuum. The oily residue was dissolved in 50 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$, and crystallized as a hydrochloride by the addition of $\mathrm{EtOH}-\mathrm{HCl}$. Recrystallization from 95% EtOH yielded $7.9 \mathrm{~g}(63 \%)$ of yellow crystals, mp 141-143 . Anal. ($\left.\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

9,9-Dimethyl-10-[3-(4-carbamoyl-4-piperidinopiperidino)propyl|acridan Dihydrochloride (61).-9,0-Dimethyl-10-(3 -chloro-
propylacridan (19 g) was dissolved in 100 ml of $\mathrm{Et}(0 \mathrm{H}$. After the addition of 14 g of 4 -carbamoyl-4-piperidinopiperidine and 19 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$, the mixture was refluxed on a steam bath for 4 s hr: EtOH was removed under vacmm, the residue was dissolved $\mathrm{in}_{1} \mathrm{C}_{6} \mathrm{H}_{6}$ and treated with EtOH-HCl. The pptd crystalwere collected. Recrystallization from Meori- H_{0} () yielded $16.6 \mathrm{~g}\left(46 \%\right.$) of material, $\mathrm{mp} 263-267^{\circ}$. Anal. ($\mathrm{C}_{2}, \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{4}(\mathrm{O}$.(). $\left.2 \overline{\mathrm{~B}} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-[3-(4-Hydroxy -4- - -methoxyphenylpiperidino)propyl]-5 H dibenzo $[b, f]$ azepine Hydrochloride (47).-A $14 . \check{\mathrm{r}}$-g sample of
$\therefore-3$-(4 -ьxopiperidino propyl)-5 H-dibenzo $(b, f$ azepine was added io a nolution of p - $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ (prepared from 15.5 g of p $\mathrm{MeO})_{6} \mathrm{H}_{4} \mathrm{Br}$ and 3.2 g of Mg in 100 ml of THF) at $10-20^{\circ}$ The mixture was stirred at room temp for 1 hr , and theo refluxed for is he. The resultiag reaction mixture wha decompd wilh 1.50 mil of satd in $\mathrm{NiH}_{4} \mathrm{Cl}$ solution. The THF liver was seple and ented. The residne was dissolved in 50 ml if CHCl_{3} and

Synthesis and Pharmacological Activity of New Basic Carbamates

George Tsatsas, Aspasia Papadakis-Valimakis, ${ }^{\text {a }}$
Laboratory of Pharmactutical Chemistry, Vnioresily of Alhens, Alhens, Greece
W. MI. Benson, and S. A. Fergelson
Stanford Research Instilute, Menlo Park, C'aliformie

Received August 25, 1th:?

Abstract

A series of bicarbamates of N -phenethyldiethanolamine, 2 -diethylamino- and 2 -piperidino-1.3-propanediol, and N-methyldiethanolamine, were synthesized and their nonoxalate soluble salts were evaluated in a primary monse screen. In secondary studies, bis(N-butylcarbamoylethyl)-2,3-dimethoxyphenethylamine maleate (17) showed mild CNS depressant activity while another componim, bis-(A)-phenylearbamoylethyl)-2-n-butoxy3 -methoxyphenethylamine hydrochloride ($\mathbf{5}$), exhibited antidepressant activity. Both decreased blood pressure.

The carbamoyl radical, which constitutes the principal characteristic of the compounds described in the present paper, is responsible for numerous pharmacological properties. Several basic carbamates ${ }^{1 b-3}$ have shown interesting pharmacodynamic activity as local anesthetics. ${ }^{3}$ We have undertaken an exploration of the activity of the bicarbamates of some aminoalcohols, such as N - β-phenethyldiethanolamine, 2-diethylaminoand 2-piperidino-1,3-propanediol, and N-methyldiethanolamine.

Chemistry.-We have synthesized (1) bisphenylurethans of N-phenethyldiethanolamine (I), with or' without substituents on the nucleus, and of N-substituted 2 -amino-1,3-propanediol (II); (2) bisalkyl(Et, $n-\mathrm{Pr}^{\prime}, n-\mathrm{Bu}$) urethans of I and of N-methyldiethanolamine (III); and (3) bicarbamates of I, II, and III unsubstituted on the carbamic N. The bisalkyland bisphenylurethans were prepared by the reaction of the amino alcohols with the corresponding alky l^{4} and phenyl isocyanate. ${ }^{3}$ Bicarbamates unsubstituted on

TVBer: I

12	$\mathrm{R} ;$	Yield,		Formsula	Malwers
COOCH:	OCHil	32^{6}	1.90 (10)	$\mathrm{C}_{2} \mathrm{HIH}_{14} \mathrm{O}_{4}$	(3,11
COOCi I_{5}	OCH,	$6{ }^{-1}$	1.5-15\% 10	$\left({ }_{9}{ }_{2} \mathrm{H}_{16} \mathrm{O}_{4}\right.$	(, 11
COOCTI	$\left(\mathrm{Cl}_{2} \mathrm{H}_{3}\right.$	32^{b}	167 (1s)	$\mathrm{C}_{12} \mathrm{H}_{16}()_{4}$	(${ }^{\text {c }} 11$
$\mathrm{CoOC} \mathrm{C}_{2} \mathrm{H}_{3}$	$\mathrm{OC}_{2} \mathrm{H}_{4}$	50	170-172 (0)	$\left({ }_{13} \mathrm{H}_{15} \mathrm{O}_{4}\right.$	C, 11
COOCH	$\mathrm{O}-n-\mathrm{C}_{3} \mathrm{H}_{5}$	26	171) 16	$\mathrm{C}_{43} \mathrm{H}_{15} \mathrm{O}_{4}$	C, 11
COOCH 5	()-n-C4,	20	166) 18	$\mathrm{C}_{44} \mathrm{He}_{40} \mathrm{O}_{4}$	C, 11
$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{OC}_{2} \mathrm{H}$;	74	170)(18)	${ }^{1}$	
CHeOH	()-n-C: Cl_{5}	(1)	174-180) 13	'	
(T_{2}) H	()-n-C4,	-4	167-169)(14)	i	
$\mathrm{CH}_{2} \mathrm{Cl}$		60	150-152 (19)		($\%$ Il, (1
$\mathrm{CH}_{2} \mathrm{CI}$	()-n-C211;	78	14)-152 (15)	$\left({ }_{12} \mathrm{H}_{17} \mathrm{ClO}_{4}\right.$	C, H, Cl
$\mathrm{CH}_{2} \mathrm{Cl}$	()$-n-\mathrm{C}_{4} \mathrm{H}$,	78	150 (10)	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClO}_{2}$	Cl

a Where analyses are indicated by the symbols of the elements, analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values. ${ }^{b}$ Method B ; yield calculated as to al dehyde. ${ }^{c}$ Method A ; yield calculated as to nitrile. ${ }^{d}$ Phenyhrethan :
 Dinitrobenzoic ester: $\operatorname{mp} 93^{\circ}(\mathrm{EtOH}) ;$ Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(1) (a) l'his paper comprises a porion of a thesis presented lyy PapadakisValirakis at the University of Arhens (1966); (b) A. Sekera, J. Mo, d, Pharm., 5, 1 (1962).
(2) M. Haring, Helv, Chim, Acta, 42, 1916 (1959).
(3) H. Rushig and L. Stein (Hoechst), German Patent 940.947 (1956).
the carbamic N were synthesized from the amino alcohol and carbamoyl chloride. ${ }^{1 \mathrm{~b}, 2,0}$ Other methods, re-

[^2] (11058)

[^0]: （12）P．B．Dews，Brit．I．Phemmeol．，8，fo（1933）．
 （13）R．E．T＇olescisi，1）．II．Tellencl）．A．Mucha，L．（＇ook，P．A．Matio． arrl L．J．Fellows，J．Phomencal．Exp．Ther，125， 28 （1959）．

 7， $9 . .141,363(1963)$ ．
 （16）V－63：3－［9， Hutechst，

[^1]: (20) Société des U'sines Chimiques Rlıone-Poulene, British Patent 819,886 (1959) ; Chem. Abstr., 54, 5711a (1960).
 (21) Société des Usines Climiques Rhone-Poulenc, French Patent 1,166,240 (1958) ; Chem. Abstr., 85, $584 e$ (1961).
 (22) Société des Úsines Chimiques Rhone-Poulenc. French Patent 1,215,600 (1960); Chem. Abstr., 55, 17671g (1961).
 (23) Bociété des Usines Chimíques Rhone-Ponlenc, French Patent 1,215.599 (1960); Chem. Abstr., 55, $14488 d$ (1961).
 (24) J. R. Geigy Chem. Corp., German Patent 1,133,729 (1962); Chem. Ahstr., 68, $10219 a$ (1963).
 (25) J. R. Geigy Chem. Corp., British Patent 908.788 (1962); Chem. Alistr., 59, 10011a (1964).
 (26) J. R. Geigy Chem. Corp., Netherlands Patent Appl., 6.603.826 (1066) ; Chem. Abstr., 66, 55412 (1907).
 (27) K. Stach, M. Thiel, and F. Bickellaupt, Monatsh, Chem, 93, $10 y 0$ (1963).

[^2]: (4) R. Parcell, (f.s. Patent 2.836 .595 (1958); Chem. Abstr., 52, 20215

