Biological Activity

The estrogenic and antientrogenc ativition of thes compounds were asweradon the basis of stimulation it the growth of the aterus of immature femate rats. The teat eompound were given by mate cither atome or in combination witicestradind (0.002 mg kg per day athministered subutameotsty. On the the date the
ateri were exciand, bhoted dry, obd weighed. 'Itae amtifertility :ctivity was determinel by adminis-
 rato for ci dirv- beginaing the mornang after a provern insemanation. 'Fla rats were mutopsied 3 dats after

 ities.

Synthesis and Antiarrhythmic Activity of Naphthylalkylamines

Abstract

Our finding' that some α-naphthytulk wamines, especially $\quad 1,5$-dimorphotino- 3 -(α-naphthyl)pentane, possens marked antiarrhythnic activity led us to extend this investigation to 83 chemically rehated compounds. The new naphthytalkylamines had the genemal structures I--IV, in which 12 was at ather or amindalky group; R_{1} was a primary anino on anninomethy group; NAA was atertary aminu group) $n=24$.

I

II

IV

Naphthrlatkytamines with $\mathrm{h}_{1}=\mathrm{NH}_{2}$ were prepared from the corresponding :mides by the Hofnathe reaction. Reduction of the related nitriles with exeese LAH in E't.O afforded naphthrlatlybmines with $\mathrm{R}_{1}=$ $\mathrm{CH}_{2} \mathrm{NH}_{2}$, reaction time and uxcese $\mathrm{L} A \mathrm{H}$ demending on the steric hindrance of the nitriles.

Pharmacology.-All of the substunces listed in Table II were submitted to the in vilto antiarthythmie
 thyl)pentane ar reference standards. Many of them causidembly reduced the mamerl mate of stimutation of electrically driven isolated guinea pig auricles but did loot inhibit the amplitude of contractioms. These results are included in Table II in terms of relative potener, which was c:alculated from EDD E_{30} values :
fureviously deseribede and expressed in mation to the antiarturthnic activity of quinidine, which has bech assigned the potency of 1.0 .

Due to the momising results in vito all of the abose compound were tested subeutameonsly in rats for the aetion on arthethmias induced by CaCla. The prese-
 exeegt that 120 mg kg of CaCl_{2} wis infused. Rofcrelee standards and expresion of results were as in citio. Of all the terted substances. onty $51,64,82$,

Table I
Intermfidate Nitriliss

Compl	R	Rı		Structure	Y'ield, $\%{ }^{\circ}$	$\begin{aligned} & \mathrm{Bp}(\mathrm{~mm}) \\ & \text { or } \mathrm{mp} .{ }^{\circ} \mathrm{C} \end{aligned}$	Formula ${ }^{\text {b }}$
1	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	II	53.9	145-150 (0.2)	$\mathrm{C}_{19} \mathrm{H}_{44} \mathrm{~N}_{2}$
2	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	CN	$\left(\mathrm{CH}_{3}\right)_{2} \mathbf{N}\left(\mathrm{CH}_{4}\right)_{2}$	II	62.8	177-180 (0.2)	$\mathrm{C}_{50} \mathrm{H}_{26} \mathrm{~N}_{2}$
3	$i-\mathrm{C}_{4} \mathrm{H}_{4}$	CN	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	II	82.3	147-150 (0.4)	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$
4	sec- $\mathrm{C}_{4} \mathrm{H}_{4}$,	CN	$\mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$	II	78	167-169 (0.2)	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2}$
-	$\mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$	CN	$\mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{N}\left(\mathrm{CH}_{4}\right)_{2}$	II	77.6	190-195 (0.6)	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3}$
6	$\operatorname{suc}-\mathrm{C}_{4} \mathrm{H}_{3}$	CN	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{5}\right)_{2}$	II	74	170-175 (0.5)	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}$,
7	$\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{4}\right)_{2}$	CN	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	II	84.6	174-178 (0.1)	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3}$
8	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	$\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	II	68.6	167-170 (0.3)	$\mathrm{C}_{23} \mathrm{H}_{2 \Sigma} \mathrm{~N}_{2}$
9	$s e c-\mathrm{C}_{4} \mathrm{H}_{3}$	CN	$\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	II	51.6	168-170 (0.1)	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2}$
10	$\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	CN	$\left(i-\mathrm{C}_{0} \mathrm{H}_{-}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	II	70	200-205 (0.6)	$\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{3}$
11	CH_{3}	CN	c	II	3 j .3	180-182 (0.5)	$\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2}$
12	$\mathrm{C}_{2} \mathrm{H}_{5}$	CN	c	II	$77 . \overline{7}$	18, - 188 (0.7)	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$
13	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	c	II	748	190-191 (0.75)	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2}$
14	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	c	II	77.1	85-87	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2}$
$1{ }^{5}$	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	CN	c	II	69.5	$19 \overline{-}-200$ (0.15)	$\mathrm{C}_{22} \mathrm{H}_{48} \mathrm{~N}_{2}$
16	$i-\mathrm{C}_{4} \mathrm{H}_{4}$	CN	c	II	69.3	180-183 (0.2)	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2}$
17	$\sec -\mathrm{C}_{4} \mathrm{H}_{4}$	CN	${ }^{\text {c }}$	II	89	187-190 (0.5)	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2}$
18	c	CN	c	II	78.8	215-220 (0.15)	$\mathrm{C}_{24} \mathrm{H}_{51} \mathrm{~N}_{3}$
19	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	d	II	66.2	179-182 (0.05)	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2}$
20	$n-\mathrm{C}_{4} \mathrm{H}_{4}$	CN	d	II	79.2	190-195 (0.2)	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2}$
21	$i-\mathrm{C}_{4} \mathrm{H}_{4}$	CN	d	II	$63 . \overline{5}$	205-209 (0.8)	$\mathrm{C}_{2} \mathrm{H}_{30} \mathrm{~N}_{2}$
22	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	e	II	43.7	109-111	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
23	$n-\mathrm{C}_{4} \mathrm{H}_{0}$	CN	e	II	39	200-20-5 (0.2)	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$
24	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	CN	e	II	52.4	190-195 (0.2)	$\mathrm{C}_{22} \mathrm{H}_{88} \mathrm{~N}_{4} \mathrm{O}$
25	CH_{0}	CN	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}$	II	48.7	155-157 (0.2)	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}$
26	$\mathrm{sec}-\mathrm{C}_{4} \mathrm{H}_{3}$	CN	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{\text {。 }}$	II	79	164-167 (0.4)	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2}$
27	$\mathrm{sec}-\mathrm{C}_{4} \mathrm{H}_{9}$	CN	f	II	54.3	96-99	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2}$
28	sec- $\mathrm{C}_{4} \mathrm{H}_{9}$	CN	g	II	44.4	123-124	$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{2}$
29	$\sec -\mathrm{C}_{4} \mathrm{H}_{4}$	CN	h	II	i) 8	90-92	$\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}$
30	$\mathrm{sec}-\mathrm{C}_{4} \mathrm{H}_{9}$	CN	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}$	II	29	16.5-170 (0.25)	$\mathrm{C}_{22} \mathrm{H}_{70} \mathrm{~N}_{2}$
31	$i-\mathrm{C}_{3} \mathrm{H}_{-}$	CN	i	II	80	182-185 (0.25)	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}$
32	sec- $\mathrm{C}_{4} \mathrm{H}_{9}$	CN	\imath	II	75.7	187-190 (0.1)	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2}$
33	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	j	II	71.7	207-210 (0.5)	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2}$
34	sec- $\mathrm{C}_{4} \mathrm{H}_{3}$	CN	j	II	61.7	196-200 (0.2)	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2}$
35	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	k	II	55	200-202 (0.25)	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$
36	$s e c-\mathrm{C}_{4} \mathrm{H}_{9}$	CN	k	II	70	205-210 (0.1)	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$
37	$\sec -\mathrm{C}_{4} \mathrm{H}_{9}$	CN	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	III	75.3	150-155 (0.09)	$\mathrm{C}_{50} \mathrm{H}_{26} \mathrm{~N}_{2}$
38	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	e	III	66	192-195 (0.15)	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
39	$s e c-\mathrm{C}_{4} \mathrm{H}_{9}$	CN	e	III	$74 . \overline{5}$	193-196 (0.1)	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$
40	sec- $\mathrm{C}_{4} \mathrm{H}_{8}$	CN	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	IV	41.5	62-63	$\mathrm{C}_{4} \mathrm{H}_{28} \mathrm{~N}_{2}$
41	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CN	d	IV	41	96-98	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2}$
42	sec- $\mathrm{C}_{4} \mathrm{H}_{9}$	CN	d	IV	66	102-103	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2}$

${ }^{a}$ Purified product. ${ }^{b}$ All compounds were analyzed for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and the analytical results were within $\pm 0.4 \%$ of the theoretical values. ${ }^{c} 2$-(1-Pyrrolidinyl)ethyl. ${ }^{d} 2$-Piperidinoethyl. ${ }^{\circ} 2$-Morpholinoethyl. ${ }^{\prime} 3$-(1-Pyrrolidinyl)propyl. a 3-Piperidinopropyl. ${ }^{h} 3$-Morpholinopropyl. ${ }^{i} 4$-(1-Pyrrolidinyl)butyI. ${ }^{j} 4$-PiperidinobutyI. ${ }^{k} 4$-Morpholinobutyl.

84, and 120 had confirmed activity in vivo; the relative potencies (quinidine $=1.0$) were $1.6,0.7,1.5,3.4$, and 0.8 , respectively; the potency of 1,5 -dimorpholino- 3 (α-naphthyl) pentane was 1.2 . However, an examination of the regression lines (Figure 1) revealed that the new compounds had a range of active doses narrower than both the reference standards.
On the basis of previous ${ }^{1}$ and present results the conclusion may be drawn that, among the naphthylalkylamines so far investigated for antiarrhythmic activity, $\quad 1,5$-dimorpholino-3-(α-naphthyl)pentane is still to be considered as the most interesting one.

Experimental Section ${ }^{3}$

Intermediates.-Many of the nitriles were prepared as pre-

[^0] were taken on a Buchi capillary melting point apparatus.
viously described. ${ }^{4-8}$ The new nitriles (Table I) were obtained similarly. Except for the following componnd, all the amides were prepared as previously reported. ${ }^{8-10}$
α-(2-Dimethylaminoethyl)-1-naphthylacetamide.-A solntion of α-(2-dimethylaminoethyl)-1-naphthylacetonitrile ($10 \mathrm{~g}, 0.042$ mol) and $\mathrm{KOH}(7 \mathrm{~g}, 0.125 \mathrm{~mol})$ in $95 \% \mathrm{EtOH}(40 \mathrm{ml})$ was refluxed for 3 hr with stirring, cooled, and poured into $\mathrm{H}_{2} \mathrm{O}$. The separated pasty product was extracted $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent yielded a

[^1]THBした II

（＇01912．）	R	R ：	\ddots^{\prime}			$\begin{aligned} & 1, w_{i}, \\ & 0,1,1 ; \end{aligned}$ ＂Mッ＂。 $1: r$		Yione.		Fumma＇	$\begin{aligned} & 1: \cdot \cdot+i \\ & 1 \times n \end{aligned}$
45	（ IH_{3}	NH．		I	A			（iti	11512010．1）	$\left(\mathrm{C}_{12} \mathrm{II}_{10} \mathrm{~N}^{-}\right.$	11.1
44	$\left.(C H)_{3}\right)^{-1}\left(C I_{4}\right)_{2}$	VIH_{4}		1	1			（i）	1：30－1\％（1）2\％		（1）：
4.1	CII	CHMNI．		I	13	29	\because	？！	11211：10．1）		，
46	$i_{-} \mathrm{C}_{3} \mathrm{IH}_{7}$	CHENH．		1	13	20	\because	¢	1：30－132（ 0.2 ）	$\left(10 \mathrm{H}_{1} \mathrm{~N}\right.$	11.1
47	$n-\mathrm{C}, \mathrm{H}_{4}$	CHENH：		I	13	10	4	\because	1：30 1：32 10.2 ：	$\left({ }_{14} \mathrm{H}_{2} \mathrm{H}_{2}\right.$－	，
4	$\left(\mathrm{CH}_{3}\right)^{\mathrm{N}}\left(\mathrm{CH} \mathrm{I}_{2}\right):$	CHoNil		I	13	111	\because	1i	147 18010．3：	（ $1.4 \mathrm{H}_{2} \mathrm{~N}$ ）	11.1
49	$\left(\mathrm{H}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{N}\left(\mathrm{CH} \mathrm{H}_{2}\right)_{2}\right.$	CHENH．		I	13	141	\because	（i）	141－142（0）：3）	（ ${ }_{1}$	．
5）	（C）HEN（CH\％	CHENH：		I	13	10	\because	6		（ $1,110{ }_{3}$	＇
－1	$1!$	（ $\mathrm{H}_{\text {N }} \mathrm{NH}_{2}$		I	13	21	\because	7 i		$\left(\mathrm{C}, 1 \mathrm{H}_{24} \mathrm{~N}\right.$ ）	$1:$
－1	\cdots	CH：NH2		I	13	＋11	，	－3：	180（1）：${ }^{\text {c }}$		
－i．		CH：NH：		1	13	10	\because	－i	17017ン： 4 ）	（ ${ }_{1} \mathrm{H}_{1} \mathrm{I}_{4} \mathrm{~N}$	0 ：
－ 4	$i-\mathrm{CH}_{5}$	NH：		II	1			4	13，10，（0．2		＇
－．	$i-\mathrm{CH}^{\mathrm{H}} \mathrm{H}_{-}$	NH．	$1 /$	II	1			$\because 19$		（ ${ }_{1} \mathrm{H}_{3}$ ， N	1.
ifi	$i-\mathrm{C}_{3} \mathrm{I}_{7}$	$\mathrm{NH}^{\text {c }}$	（ CH N CH_{2} ）	II	－			4.5	140141： 1	$\left({ }^{\circ} \mathrm{H}\right.$	，
． 7	$i-\mathrm{C}_{1} \mathrm{I}_{-}$	NH．	i	II	t			－$\%$		（ $\mathrm{H}_{2} \mathrm{~N}$	${ }^{1}$
－s	CH_{3}	CHENH	$\left(\mathrm{CH}_{3} \mathrm{n}^{\mathrm{N}}\left(\mathrm{CH} \mathrm{H}_{4}\right)^{\text {a }}\right.$	I1	13	17	4	－i	14；0）	$\left({ }_{6} \mathrm{H}_{4} \mathrm{~N}\right.$	11.4
59	$\mathrm{C}_{2} \mathrm{I}_{5}$	CH2NH．		II	B	1：\％	\because	（i－		$\left(\therefore 110{ }^{\text {c }}\right.$	${ }^{11}$.
（6）	${ }^{-} \mathrm{C}_{4} \mathrm{H}_{5}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$		II	13	1）	\because	13			${ }^{1}$
（i）	${ }_{-} \mathrm{Ch}_{4} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{CH}_{2}$		11	13	21	t	7	1\％5－139（0）．1）		i） 7
（i2）	${ }^{-} \mathrm{C}_{4} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	（CH3）N（CH：	II	13	4	\because	7.3	165－16920．1）	（ ${ }_{2}$ ） $1 \mathrm{I}_{6} \mathrm{~N}$	＇
（9；）	$i-\mathrm{C}_{4} \mathrm{H}_{5}$	（HENH．		11	13	20	\because	8.	1．7－1．5： 10.0	（ $\mathrm{m}_{6} \mathrm{H}_{\mathrm{m}} \mathrm{N}$	i
（1）	str－C4 ${ }_{4}$	CII：NH2	（CHUn N（C．H）	II	I	！．	I	Sil	16x 170：0．t？	（ ${ }^{2} \mathrm{H} \mathrm{l}_{3} \mathrm{~N}^{-}$	$11+$
（i．）	（ CH_{3} ） N （CHE！	$\mathrm{CH}_{2} \mathrm{NH}_{4}$	（CHI）N（CHE）	II	13	（i）	\square	（is）	160 1（i）： 1.1 ：	$\left({ }_{2,1} \mathrm{IH}_{4} \mathrm{~N}_{\mathrm{i}}\right.$	＂
＇ti	$i-\mathrm{C}_{4} \mathrm{I}_{-}$	CHENIE		II	I3	$\underline{19}$	t	\cdots	17＋176（0） 4	（\％H\％N．	，
（i）		CH2NH．		II	13	29）	4	－1	17（i－17）（1）．7）	（\％）	，
（is）	$\mathrm{C}_{1} \mathrm{H}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) \mathrm{N}\left(\mathrm{ClH} \mathrm{H}_{2}{ }_{2}\right.$	CH2NH2	CHo（H）N（CHE）	11	13	10	－1	－	16：3）164 10．1）		\％
（6）	$i-\mathrm{C}_{2} \mathrm{H}_{-}$	CHENH2	（C， $\mathrm{H}_{2} \mathrm{~N}$ ）（CH2）	11	13	11.	＋	Ci^{-}		（ ${ }^{\prime} 11 \mathrm{~m} \mathrm{~N}^{-}$	＇
70	$\therefore \mathrm{n}-\mathrm{C}_{4} \mathrm{H}$	CH2NH：	（C2H：NMCH：	11	13	15	い	\cdots	16x－170， 10.2		＇
71	$\left(\mathrm{C}_{4} \mathrm{H}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{4}\right)_{2}$	CH2NH2	（CHH）N（CH2）	II	I	111	：；	\cdots	1：0）102： 11.1	（ $4_{4} \mathrm{II} \times$	＇
7	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CH2 NH_{2}		II	I	1.1	${ }^{6}$	－1	1nt 1N0．1．1．	（ ${ }_{6} \mathrm{H}_{4} \mathrm{~N}$ ，	．
7%	$i-\mathrm{Cl}_{3} \mathrm{I}$ ；	CH：NH：	（i－C力H， $\mathrm{N}_{2} \mathrm{COH}$	II	13	10	6	（5）	180 15゙2（0）1）	Con ${ }^{\text {a }}$	
74		CHNH．		II	13	30	1	1 H	176－175．0．t		，
7.1		CHNII	（i－CH，－N（CHE）	II	13	11）	：	N10	15t－150．5	$\left({ }^{(1)} \mathrm{H}_{5} \mathrm{~N}\right.$	：
76	（ H_{3}	（H2NH2	！	I］	13	i1）	\because	76	16x－171：0．1）	（1） H^{-}	－
77	（ 1 H	CH2NH2	4	11	13	110	\because	4i	171）－151：0．0：	（ 111 N	17
75	${ }^{1}-\mathrm{C}_{3} \mathrm{IH}_{7}$	CH2NH：	！	11	13	－1	\because	71	190－1920．	（ 1110 ）	－
7）	$\mathrm{i}^{\mathrm{C}} \mathrm{H}_{7}$	CHENH．	！／	II	13	\cdots	＇	\square		（ $\because 11000$	11.3
（\％）	$n-\mathrm{C}_{4} \mathrm{IF}_{4}$	（illenli	！	11	I3	4	：	\cdots	185－－1！00（1）．4．	（mIIN．	，
s1	$i-\mathrm{C}_{1} \mathrm{H}_{4}$	CHETH2	！／	II	I3	10	\cdots	Ts	182－184i0．4	（ $\mathrm{CH}^{\mathrm{H}} \mathrm{N}$	3.8
8	$\mathrm{sr}_{6} \mathrm{CO} \mathrm{CH}_{4} \mathrm{H}_{4}$	CHENH．	！／	II	I3	411	＋	7.	11）4－119610．：3	（anm	1）． 7
S：	！	CH2NHE	4	II	B	11）	：	7	－16－15（0．3）	（ $\mathrm{c}_{4} \mathrm{H}$ ， N_{3}	．
x ${ }^{4}$	（ $\mathrm{II}_{\text {\％}}$	（ 1 H NH．	．	II	I3	1.10	3	$\overline{i s}$	170－17： 10.1	くックロ	1）． 4
8.	（ SO_{5}	（ $\mathrm{H}_{2} \mathrm{NH}_{2}$	，	11	B	10	\because	$\therefore 1$	17217.10 .23	（ 110 ll	1：
N6	$n-\mathrm{C}, \mathrm{H}_{5}$	（HENH：	．	11	13	$\because 1$	\because	－	170）－17： 19.1		1） i
47	${ }_{\text {－}} \mathrm{Ca}$	（ 1 NH2	$1 /$	11	I3	41	3	7）	$17 \because 17.510 .11$	（ 11.	$1: 3$
s	＂－C4．${ }_{4}$	CHEME	$1 /$	II	I	1	\because	$\therefore 1$	1！2 1！－40．	（ $\because \mathrm{H}$	－
S！	$i-\mathrm{C}_{1} \mathrm{H}_{6}$	（\％NH．	$1 /$	II	13	10	t	\cdots	130 13 19 210	$\left({ }_{2 i} \mathrm{H}_{3} \mathrm{~N}_{3}\right.$	1：$:$
10）		（ $\mathrm{Hz}_{\text {N－}}$	d	II	I3	30	\because	（is			1：$:$
！11	$1 /$	（ $\mathrm{HeN}_{\text {N }}$	$1 /$	II	I	1.7	\because	－！	－20）－2，（6）1）	（ ${ }^{\text {\％}} \mathrm{H}$ N	．
12	CH_{3}	CH2 ${ }^{-1}$	，	II	B	1.5	；	7	17．5176 0.1 ）	$\left({ }_{1}, \mathrm{H}_{2} \mathrm{Na}_{1} 1\right.$	＇
！！：	C H_{H}	（H2NE	，	II	13	1.5	：	74			1）：
（1）		（ $\mathrm{H}_{\text {－}}$－ H_{4}	，	II	I 3	20	\because	－s	100－19（1）．		r
！ 1	$\mathrm{i}^{-} \mathrm{C}_{3} \mathrm{H}_{5}$	（ HeNl_{2}	1	［I	I	11.5	4	71			（）．${ }^{\text {9 }}$
9）${ }^{\text {i }}$	n－ $\mathrm{C}_{4} \mathrm{H}$	CH2NH2	\％	11	B	10	4	（i）	21）！ 1010.4	（\％ $\mathrm{H}_{\text {Hes }} \mathrm{N}$（）	＇
（1） 7	$i-\mathrm{C}_{4} \mathrm{H}_{4}$	CH2NH2	＇	11	B	1.7	：	7	119－200（0， 5	（ ${ }^{2} \mathrm{H} \mathrm{H}_{6} \mathrm{~N}_{6} 6$ ）	$\underline{9} 0$
！） n		CHENH．	${ }^{\prime}$	II	13	10	（i	$7 \bar{i}$		（ ${ }_{2} \mathrm{H}_{2} \mathrm{~N}$（ 0	$0 \therefore \%$
！！！	\cdots	CH2NH2	${ }^{\prime}$	II	I3	1×0	t	$4: 3$	－30）－3：3010		${ }^{\prime}$
100	CH_{3}	（HINH2	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}$	11	I3	111	－1	81	1．50）－1．11（1）．1）	（ $1,110 \mathrm{~N}$ ，	${ }^{\prime}$
101	－ $\mathrm{C}_{3} \mathrm{IF}_{7}$	（ $\mathrm{H}_{\text {N }}$ NH2	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}$	II	13	10	\because	（i）		（2） m	11． 1.
102	${ }_{31}-\mathrm{C}_{4} \mathrm{H}_{4}$	（ $\mathrm{HE}^{\text {N }} \mathrm{H}_{2}$	$\left(\mathrm{CH}_{3}\right)_{\mathrm{N}} \mathrm{NCH}$	11	13	1．：	4	7	1（i\％－16i）（1） 2 ）	（6， $11 \mathrm{~N}_{2}$	（）． 4
10：i	（CDF） $\mathrm{N}(\mathrm{CH})_{3}$	CHNHE	（ $\left.\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right.$	II	1.1	10	4	（if）		（ $\mathrm{H}^{\mathrm{H}} \mathrm{N}$ N	r
104	－ $\mathrm{C}^{\prime} \mathrm{II}_{-}$	（ $\mathrm{HeNH}_{\text {N }}$	h	II	13	30	T	sis		（ $\mathrm{CH}^{\text {Hene }}$	\cdot
10.5	suc－C4 ${ }_{4}$	CHNH2	h	II	13	（6）	4	－t	1？：\％－130（1）4）	（ ${ }_{20} \mathrm{H}_{24} \mathrm{~N}=$	${ }^{\prime}$

Table II (Continued)

Compd	R	R1	NCH_{-1}	Structure	Method	Reac - condi Tine, br	ction tionsLAH: nitrile, mol ratio	Yield, $\%{ }^{a}$	$\begin{gathered} \mathrm{Bp}(\mathrm{~mm}), \\ { }^{\circ} \mathrm{C} \end{gathered}$	Formula ${ }^{\text {b }}$	$\begin{gathered} \text { Rel } \\ \text { po- } \\ \text { tency } \end{gathered}$
106	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	f	II	B	40	3	77	186-188(0.2)	$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{3}$	c
107	$s \mathrm{sc}-\mathrm{C}_{4} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	f	II	B	40	9	73	193-19.) (0.2)	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2}$	c
108	$i-\mathrm{C}_{3} \mathrm{H}-$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	i	II	B	20	4	71	198-200 (0.1)	$\mathrm{C}_{2!} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}$	c
109	$s c^{-}-\mathrm{C}_{4} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	i	II	B	30	-	87	190-192 (0.2)	$\mathrm{C}_{4} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{l}$	c
110	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{r} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}$	II	B	10	2	71	150-158 (0.1)	$\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{~N}=$	1.0
111	$s / c-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{CH}_{2} \mathrm{NH}_{\text {, }}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}$	II	B	15	4	86	170-172 (0.1)	$\mathrm{C}_{2:} \mathrm{H}_{34} \mathrm{~N}_{2}$	0.7
112	$i_{i-\mathrm{C}_{3} \mathrm{H}_{7}}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	j	II	B	40	3	71	19.)-196 (0.1)	$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2}$	c
113	s'c- $\mathrm{C}_{4} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{NH}_{4}$	j	II	B	40	3	75	184-186 (0.1)	$\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{~N}_{2}$	c
114	$i-\mathrm{C}_{5} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	k	II	B	40	3	80	189-191 (0.2)	$\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{~N}_{2}$	c
115	$s^{\prime} \mathrm{C}-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	k	II	B	40	3	7i)	195-197 (0.2)	$\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}^{-}$	c
116	i. $\mathrm{C}_{3} \mathrm{H}_{7}$	CHONH_{2}	l	II	B	40	-	78	220-223 (0.4)	$\mathrm{C}_{23} \mathrm{H}_{3+} \mathrm{N}_{2}()$	c
117	$\mathrm{scc}-\mathrm{C}_{4} \mathrm{IH}_{5}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	1	II	B	1.5	3	92	210-212 (0.3)	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}$	c
118	$i-\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)^{\prime} \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$	III	B	1i)	4	- 6	$154-156$ (0.1)	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{4}$	1.8
119	$s\left(c-\mathrm{C}_{4} \mathrm{H}_{4}\right.$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	III	B	4	$\overline{5}$	70	162-164 (0.2)	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}$	2.3
120	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{NH}_{3}$	e	III	B	4	5	64	20-5-206 (0.2)	$\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}$	1.6
121	$s\left(c-\mathrm{C}_{4} \mathrm{H}_{9}\right.$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	e	III	B	4	5	77	207-208 (0.1)	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$	2.0
122	$i-\mathrm{C}_{3} \mathrm{H}_{i}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	I ${ }^{-}$	B	3	2	69	1.54-150́ (0.1)	$\mathrm{C}_{2}, \mathrm{H}_{3} \mathrm{~N}_{2}$	0.7
123	$s^{\prime} \mathrm{c}-\mathrm{C}_{4} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	IV	B	$1{ }^{1}$	2	83	162-164 (0.1)	$\mathrm{C}_{21} \mathrm{H}_{3 \Sigma} \mathrm{~N}_{2}$	c
124	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	d	IV	B	15	2	87	184-183 (0.1)	$\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{~N}_{2}$	0.9
125	$s^{\prime} \mathrm{C}-\mathrm{C}_{4} \mathrm{H}_{4}$	$\mathrm{CH}_{1} \mathrm{NH}_{2}$	d	I^{-}	B	15	4	76	202-204 (0.5)	$\mathrm{C}_{4} \mathrm{H}_{36} \mathrm{~N}_{5}$	c
$1, \bar{o}-\mathrm{D}$ imorpholinu-3-(α-naphthyl)pentaneQuinidine											1.8
											1.0

${ }^{a}$ Distilled product. bAll compounds were analyzed for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and the analytical resnlts were within $\pm 0.4 c_{c}^{\circ}$ of the theuretical values. ${ }^{c}$ Inactive or cardiotoxic compound. ${ }^{d} 2$-Piperidinoethyl. ${ }^{2} 2$-Morpholinoethyl. ${ }^{f} 3$-Piperidinopropyl. ${ }^{\circ} 2$-(1 -Pyrrolidinyl)-

residue which, on trituration with $1: 1 \mathrm{Et}_{2} \mathrm{O}$-petroleum ether (bp $40-70^{\circ}$) gave a colorless solid ($6.9 \mathrm{~g}, 64 \%$), mp $79-81^{\circ}$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Naphthylalkylamines with $\mathrm{R}_{1}=\mathrm{NH}_{21}$ or $\mathrm{CH}_{2} \mathrm{NH}_{2}$ are Iisted in Table II, and their preparation is illnstrated by the following methods.

Method A. 1-Dimethylamino-3-amino-3-(α-naphthyl)-4methylpentane (54).- α-Isopropyl- α-('2-dimethylaminoethyl) 1-naphthylacetamide ($17.0 \mathrm{~g}, 0.0 \overline{9} 9 \mathrm{~mol}$) was added with stirring to a solntion of Na ($2.7 \mathrm{~g}, 1.17 \mathrm{~g}$-atom) in anhydrous MeOH (100 ml), and then $\mathrm{Br}_{2}(9.38 \mathrm{~g}, 0.059 \mathrm{~mol}$) was rapidly dropped into the solution. After 6 hr stirring at room temperature, the mixture was allowed to stand overnight, and the solvent was removed nnder reduced pressire. The residue was dissolved in Et. O , washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solution was evapurated to dryness. The new residue was dissolved in $9 \overline{5} \%$ EtOH (130 ml), $50 \% \mathrm{KOH}(130 \mathrm{ml})$ was added to it , and the mixture was refluxed for 6 hr , poured into cold $\mathrm{H}_{2} \mathrm{O}$, and extracted (Et.O). The extract was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$,
the solvent was evaporated, and the residue was distilled to give a viscols and colorless oil, bp $137-139^{\circ}(0.2 \mathrm{~mm})$.

Method B. N-[3-Aininomethyl-3-(α-naphthyl)heptyl|piperidine ($\mathbf{8 8}$).-A solution of $\alpha-n$-butyl- α-(${ }^{2}$ - piperidinuethyl)-l-naphthylacetonitrile ($50 \mathrm{~g}, 0.1 \overline{\mathrm{j}} \mathrm{mol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml}$) was dropped at room temperature for 2 hr into a stirred shspension of LAH ($11.35 \mathrm{~g}, 0.3 \mathrm{~mol}$) in dry EtiO (900 ml). The mixture was refluxed for 4 hr with stirring, cooled, and cantionsly decomposed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. The organie layer was separated, washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated and the residue was distilled to give a viscons and colorless nil, bp $192-194^{\circ}(0.5 \mathrm{~mm})$.

Acknowledgments.-The authors wish to thank Dr. R. Perego for performing the microanalyses, Mr. G. Bietti and Mr. E. Bellora for assistance in preparing the compounds, and Mr. G. Bertuzzi and Mr. P. Duranti for carrying out the antiarrhthmic tests.

[^0]: (3) Boiling points are uncorrected. Melting points are corrected and

[^1]: (4) S. Casadio, G. Pala, and T. Bruzzese, Farmaco Ed. Sci., 17, 871 (1962).
 (5) S. Casadio, G. Pala, E. Crescenzi, T. Bruzzese, E. Marazzi-UGerti, and G. Coppi, J. Med. Chem., 8, 589 (1965).
 (6) G. Pala, S. Casadio, T. Bruzzese, E. Crescenzi, and E. MarazziLberti, ibid., 8, 698 (1965).
 (7) G. Pala, S. Casadio, T. Bruzzese, and G. Coppi, ibid., 9, 786 (1966).
 (8) S. Casadio, T. Bruzzese, G. Pala, G. Coppi, and C. Turba, ibid.. 9, 707 (1966).
 (9) S. Casadio, G. Pala, T. Bruzzese, E. Crescenzi, E. Marazzi-Uberti, and G. Coppi, ibid., 8, 594 (1965).
 (10) M. Julia and M. Baillargé, Bull. Soc. Chim. Fr., 928 (1957).

