Notes

Chemotherapeutic Nitroheterocycles. 2.^{1a,b} 2-(5-Nitro-2-furyl)pyrimidines with Basic Substituents

R. Albrecht, K. Gutsche, H.-J. Kessler, and E. Schroden¹,

Experimental Research Pharma, Schering AG, Berlin, West Germany

Received February 27, 1970

It was shown in a previous paper^{1a} that 5-substituted 2-(5-nitro-2-furyl)pyrimidines possess a high *in vitro* activity against *Trichomonas vaginalis* and an *in vivo* activity could be demonstrated. A continuous search reaction of 2-(2-furyl)-5-(2-chloroethoxy)pyrimidine (1a) or of the tosylate of 2-(2-furyl)-5-(2-hydroxyethoxy)pyrimidine (1b) with excess secondary amine in EtOH and subsequent nitration of the 2-(2-furyl)-5-(2-aminoethoxy)pyrimidine derivatives (2) with HNO₃- H_2SO_4 according to Scheme I.

The compounds were isolated as free bases; only in the case that no erystalline material could be obtained the HCl or HSO_4 salts were prepared. All synthesized intermediates **2** and nitro compounds **3** are summarized in Table I. The analytical data and physical measurements (uv, ir, nmr, or titrations) are in accordance with the given structures and were determined for all compounds.

						1 / 01/07/1					
		$\sim N_N$	OCH ₂ CH ₂ F	8. 2			O_N [^]			┝──OCH₂CH₂R.	.) •)
Compil	R	Crystn solvent	Mp, °C	Yielı Z	l, Formula	Analysis	Crystu solvent	Mp, °€	Yleb 72		Analysis
R	NMe_2	a	81~83	57	$\mathrm{C}_{12}\mathrm{H}_{15}\mathrm{N}_{3}\mathrm{O}_{2}$	6	ЕЮН	147148	37	$\mathrm{C}_{12}H_{14}\mathrm{N}_4\mathrm{O}_4$	N
b v	NEt ₂ N-(<i>n</i> -Bu) ₂	a i-PrOH	47~49 168~173		$C_{14}H_{*9}N_3O_2$ $C_{18}H_{28}CIN_3O_2^{*}$	C, H, N C, H, CI, N	EtOH <i>i</i> -PrOH~H ₂ O	137141 8385		${ m C_{14}H_{18}N_4O_4}\ { m C_{15}H_{26}N_4O_4}$	С, П, N С, П, N
d	X	Petroleum ether- C ₆ H ₆	9192	83	$C_{14}H_{17}N_3O_2$	С, II, N	EtOH2- me- thoxyetha- nol	165167	54	$\mathrm{C}_{14}\mathrm{H}_{15}\mathrm{N}_4\mathrm{O}_8\mathrm{S}^d$	С, Н, N, S
е	Х	a	91 - 92	66	$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}_{2}$	ь	ElOH	135-136	36	$C_{15}H_{18}N_4O_4$	С, Н, N
ſ	NCH.	a	8384	75	$\mathrm{C}_{16}\mathrm{H}_{21}\mathrm{N}_{3}\mathrm{O}_{2}$	<i>h</i> ,	EtOII	144-145	57	$\mathrm{C}_{16}\mathrm{H}_{\mathrm{t}3}\mathrm{N}_4\mathrm{O}_4$	C, II, N
g	Ń	а	78-79	60	$\mathrm{C}_{16}\mathrm{H}_{21}\mathrm{N}_{3}\mathrm{O}_{2}$	b	ЕtOП	134-136	31	$C_{16}H_{24}N_4O_3S^d$	С, П, N, S
h	×	Petroleum ether- C ₆ H ₅	109112	69	$\mathrm{C}_{18}\mathrm{H}_{23}\mathrm{N}_{3}\mathrm{O}_{2}$	b,	MeOH	252 dec	51	$C_{18}H_{23}ClN_4O_4^\circ$	С, П, N, СІ
i	XO	$\begin{array}{c} \operatorname{Petroleum} \\ \operatorname{ether} \\ C_{6}H_{6} \end{array}$	94–95	75	$C_{14}H_{17}N_{3}O_{3}$	h,	MeOH~H ₂ O	200201	48	$\mathrm{C}_{14}\mathrm{H}_{18}\mathrm{N}_4\mathrm{O}_9\mathrm{S}^d$	С, Н, N, 8
Ĺ	N NCH	$\begin{array}{c} Petroleum\\ ether\\ C_6H_6 \end{array}$	76-80	64	$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{N}_4\mathrm{O}_2$	Ь	EЮН	144145	39	$\mathrm{C}_{\mathrm{(5}}\mathrm{H}_{\mathrm{19}}\mathrm{N}_{\mathrm{b}}\mathrm{O}_{\mathrm{4}}$	С, П, Х
k	N N(CH ₂) ₂ CH ₃	$\begin{array}{c} Petroleum\\ ether-\\ C_6H_6 \end{array}$	7374	53	$C_{17}H_{24}N_4O_2$	b	MeOII	257 dec	22	$C_{17}H_{25}Cl_2N_5O_44$	^е С, Ц, N, СІ

Тавье 1

^{*a*} Crude material, which was used without purification. ^{*b*} These compounds were used without analytical measurements and were characterized by their nitration products $\mathbf{3}$. ^{*c*} Hydrochloride. ^{*d*} Hydrogen sulfate. ^{*e*} Dihydrochloride.

for derivatives with better biological potency led us to the syntheses of derivatives with basically substituted side chains in position 5 of the pyrimidine nucleus. This paper refers to the synthesis and biological evaluation of the new nitrofurylpyrimidines 3.

Chemistry.—The compounds were synthesized by

Biological Results.—The compounds were screened in vitro against Gram-positive and Gram-negative bacteria, fungi, and protozoa. The activity against a selection of microorganisms is shown in Table II. It can be seen that only in a few cases does a pronounced activity occur against Gram-positive and Gram-negative bacteria and in selected cases a slight activity against *Candida albicans*. But the activity against *T. vaginalis* is impressive; all compounds show a better activity than metronidazole which has a MIC of

^{(1) (}a) Paper 1: R. Albrecht, K. Gutsche, H.-J. Kessler, and E. Schroder; J. Med. Chem., **13**, 733 (1970); (b) a preliminary report of part of this work has been presented at the 6th International Congress of Chemotherapy, Tokyo, Aug. 1969; (c) to whom inquiries should be addressed.

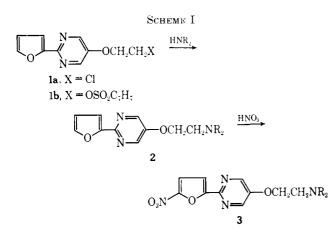


TABLE II

In Vitro Antimicrobial Data (Tube Dilution Test; MIC VALUES IN $\mu g/ml$)

		111150		/		
Compd	S. aureus ^a	$E. \\ coli^b$	P. vulgaris ^c	K. pneu- moniae ^d	C. albicans	T. vaginalis
2a	12	1.6	6.2	3.1	100	0.39
2b	25	6.2		12		0.19
2c						0.78
2d	25	12	25	25		0.19
2e	25	3.1		12	25	0.39
2f		3.1		25		0.19
$^{2}\mathrm{g}$	50	6.2	5()	50		0.78
2h	50	12				0.19
2i	12	1.6	50	25		0.78
21	3.1	1.6	12	6.2	100	0.78
2k	25	12				0.10
Metroni- dazole					- 0	1.6
^a Stanhulococcus		aureus	^b Escheric	chia coli	. c Pro	oteus vul-

Staphylococcus aureus. Escherichia coli. Proteus vul-^d Klebsiella pneumoniae. garis.

1.6 μ g/ml in our test. The most active compound in vitro is 2-(5-nitro-2-furyl)-5-(2-N-n-propylpiperazinoethoxy)pyrimidine dihydrochloride (3k) with an MIC of 0.10 $\mu g/ml$. Some of the compounds were investigated in vivo against a subcutaneous T. vaginalis infection in mice and proved to be active by oral application. Preliminary results indicate that in vivo activity of 2-(5-nitro-2-furyl)-5-(2-pyrrolidinoethoxy)pyrimidine (3d) is comparable to metronidazole.

Experimental Section²

2-(2-Furyl)-5-(2-p-toluenesulfonyloxyethoxy)pyrimidine (1b). 2-(2-Furyl)-5-(2-hydroxyethoxy)pyrimidine (10.3 g, 50 mmol) was dissolved in 100 ml of pyridine, 9.53 g (50 mmol) of p-TsCl was added and the mixture was stirred for 1,5 hr. The solution was poured into H₂O, the insoluble product was filtered and recrystd from PhMe, mp 154-155°; yield 8.6 g (48%). Anal. $(C_{17}H_{6}N_{2}O_{5}S)$ N, S.

2-(2-Furyl)-5-(2-diethylaminoethoxy)pyrimidine (2b).--2-(2-Furyl)-5-(2-chloroethoxy)pyrimidine (7.85 g, 38.3 mmol) and 10.42 g (0.142 mol) of Et₂NH was heated in 80 ml EtOH at 70-80° for 18 hr. The solvent and excess amine were removed by distillation, the residue was mixed with H₂O and extracted with $\mathrm{CH}_2\mathrm{Cl}_2$. The solution was dried ($\mathrm{K}_2\mathrm{CO}_3$) and $\mathrm{CH}_2\mathrm{Cl}_2$ was removed, yielding a crystalline compound, mp 47-49°; yield 5.1 g (51%). Anal. (C₁₄H₁₉N₃O₂) C, H, N. 2-(5-Nitro-2-furyl)-5-(2-diethylaminoethoxy)pyrimidine (3b)—

2-(2-Furyl)-5-(2-diethylaminoethoxy)pyrimidine (5.0 g, 19.1

mmol) was suspended in 25 ml of concd H_2SO_4 and 1.5 ml of HNO₃ (d = 1.48) was added dropwise at 5°. After stirring for 0.5 hr the mixture was poured on ice, the aq solution was made alkaline with aq NH3 and the solid product was filtered, washed with H₂O, and recrystallized from EtOH, mp 137-141°; yield 2.0 g (34%). Anal. (C14H18N4O4) C, H, N.

2-(2-Furyl)-5-(2-di-n-butylaminoethoxy)pyrimidine · HCl.-2-(2-Furyl)-5-(2-p-toluenesulfonyloxyethoxy)pyrimidine (2.08 g, 5.77 mmol) and 2.33 g (18.1 mmol) of n-Bu₂NH in 60 ml of EtOH was refluxed for 20 hr. EtOH and excessive Bu₂NH were removed by distillation, the residue was dissolved in H₂O and the aq solution was extracted with $\rm CH_2Cl_2.$ The solution was dried $\rm (Na_2SO_4)$ and the solvent removed. The residue was dissolved in *i*-PrOH-Et₂O and HCl in Et₂O was added. The solid hydrochloride was filtered off and recrystd from *i*-PrOH, mp 168-173°; yield 0.90 g (44%). Anal. ($C_{18}H_{28}ClN_3O_2$) C, H, Cl, N.

 $\label{eq:linear} \textbf{2-(5-Nitro-2-furyl)-5-(2-di-n-butylaminoethoxy)} pyrimidine$ (3c).--2-(2-Furyl)-5-(2-di-*n*-butylaminoethoxy)pyrimidine · HCl (0.90 g, 2.54 mmol) was suspended in 3 ml of concd H_2SO_4 and 0.255 ml of HNO_3 (d = 1.48) was added at 5°. After stirring for 0.5 hr the mixture was poured onto ice, the resulting aq mixture was neutralized with concd NH₃ and the insoluble material recrystallized from *i*-PrOH-H₂O, mp 83-85°; yield 413 mg (45%). Anal. (C18H26N4O4) C, H, N.

Reassignment of the Absolute Configuration of 3-Acetoxyquinuclidine Methiodide and the Absolute Configuration of **Receptor-Bound Acetylcholine**

B. BELLEAU AND PETER PAULING

Department of Biochemistry, University of Ottawa, Ottawa, Canada, and Department of Chemistry, University College, London, London, England

The resolution and absolute configurations of (+)and (-)-3-acetoxyquinuclidine methiodide have recently been reported.¹ It was noted that only one of the optical enantiomers is a substrate of acetylcholinesterase (AChE) and is a muscarinic agonist.¹ This enantiomer was assigned the (S) configuration by the method of asymmetric sulfoxide synthesis² as applied to (+)-3-quinuclidinol. This assignment led to the conclusion that the bridgehead carbon atom of the biologically active enantiomer occupies a position equivalent to the methyl substituent of (S)-(+)- β methylacetylcholine (I), the enantiomer which is a ubstrate of AChE and possesses muscarinic activity equivalent to that of acetylcholine (ACh).¹ In the meantime, the crystal structures of the α - and β methyl-ACh isomers have been analyzed by Chothia and Pauling,^{3,4} and their conformation was discussed in relation to hydrolysis by AChE.⁵ The results led us to question the configurational assignment of (+)-3-quinuclidinol¹ and after reexamination of the experimental data it is evident that the dextrorotatory enantiomer possesses the (S) rather than the (R) configuration. It follows that the previous analysis of results¹ requires reinterpretation.

According to the rules governing asymmetric sulfoxide synthesis,² alcohols corresponding to stereo-

(1) J. B. Robinson, B. Belleau, and B. Cox, J. Med. Chem., 12, 848 (1969).

(2) M. M. Green, M. Axelrod, and M. Mislow, J. Amer. Chem. Soc., 88, 861 (1966).

(3) C. Chothia and P. Pauling, Chem. Commun., 626 (1969). (4) C. Chothia and P. Pauling, ibid., 746 (1969).

(5) C. Chothia and P. Pauling, Nature, 223, 919 (1969).

⁽²⁾ Melting points are uncorrected and taken on a Tottoli melting point apparatus (Fa. W. Büchi, Switzerland). Where analytical results are indicated only by symbols of the elements or functions, values found for those elements or functions were within $\pm 0.4\%$ of the calculated values,