ml of distillate was removed over 3 hr. Work-up afforded a residue which appeared to contain V but which gave 4 spots on the and appeared to be far less pure by nmr than was the V prepared as in A.

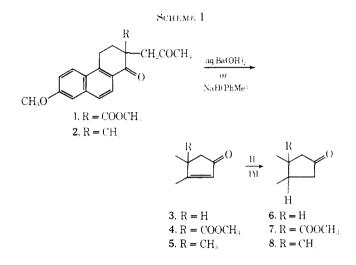
14α,17α-Etheno-16α-carbomethoxyandrost-4-en-17-ol-3-one Acetate (VI).—A mixture of 418 mg of crude V, 1 ml of methyl acrylate, and 5 mg of hydroquinone was sealed in a glass tube under reduced pressure, and then heated to 120° for 116 hr. The mixture was then evapd to dryness under reduced pressure. The residue was warmed in Me₂CO containing 1 drop of aq HCl for 10 min and then again taken to dryness. The residue was chromatographed over 50 g of acid-washed abumina. Elution with C₆H₆-EtOAc mixtures afforded material which crystallized from Et₂O-hexane to afford VI, in a yield of 160 mg (34%) as white needles: mp 183-185°c; ν^{Nujed} 1745 (sh) 1730 (broad) and 1675 cm⁻¹. The nmr had 3-H⁺ singlets at δ 1.00 (C-18-H's), 1.17 (C-19-H's), 2.11 (acetate), and 3.65 (OMe), and a 1-H⁺ multiplet at 5.8 and 1-H⁺ doublets at 6.11 and 6.34 (J = 6 Hz). Anal. (C₂₃H₃₂O₅) C,H.

14α,17α-Etheno-16α-carbomethoxy-5α-androstan-17-ol-3-one Acetate (VII).--A solution of 100 mg of VI in 25 ml of MeOH was hydrogenated over 10 mg of 10% Pd-C at 3.6 kg cm² for 19 hr at room temperature. Standard work-up yielded VII, which crystallized from Et.O-hexane, in a yield of 98.5 mg, as small needles: mp 182.5-184° c; $\nu^{\rm Naiol}$ 1740, 1720, 1710 (sh) cm⁻¹. The nmr spectrum had a 6-H⁺ singlet at δ 0.99, 3-H⁺ singlets at 2.10 and 3.62, a 1-H⁺ doublet at 6.17 and 6.32 (J =5.47 Hz for both). Anal. (C₂₅H₃₄O₅) C,11.

14α,17α-Etheno-15,16-di(trifluoromethyl)androsta-4,15dien-17-ol-3-one Acetate (VIII). A mixture of 2.90 g of V, 5 mg of hydroquinone, and an excess of hexafinorobutyne-2 was kept at 120° for 132 hr in a steel bomb fitted with a glass liner. The reaction was worked up essentially as described for VI to afford VIII in a yield of 1.00 g ($28^{1/2}$), as needles from Me₂COhexane: mp 246.5–248°, p^{8300} 1750, 1678 cm⁻¹. The umr showed strong singlets at δ 1.23 (18 and 19-H's), 2,13 (acetate), a multiplet at 5.77 and doublets at 6.73 and 7.03 (J = 6 Hz). Anal. ($C_{25}H_{26}O_3F_6$) C,H.

14α.17α-Etheno-15,16-di(trifluoromethyl)androsta-4,15dien-17-ol-3-one (IX).—A mixture of 190 mg of VIII, 45 gm of KOH, 15 ml of MeOH, and 1 ml of H₂O was stirred at room temp for 24 hr. A standard work-up gave IX as rods from CH₂-Cl₂-hexane, in a yield of 160 mg; mp 262.5-264.5°; $\nu^{8 \text{ dial}}$ 3370, 1655 cm⁻¹. The mmr has singlets at δ 1.21 (C-18 and C-19-IVs), a multiplet at 5.77 (C-r hydrogen) and doublets (J = 4 Hz) at 6.64 and 6.71. Anal. (C₂₁H₂₅O₂F₆) C,H.

Acknowledgment.—We are indebted to the Koninklijke Nederlandsche Gist-en Spiritusfabriek N. V. (Delft) for a most generous supply of I. We wish to thank Miss Carole A. Hayden for most able technical assistance.


Analogs of Steroid Hormones. IV. 16-Keto Steroid Derivatives^{1,2}

R. E. JUDAY AND BONNIE BUKWA³

Department of Chemistry, University of Montana, Missoula, Montana 59801

Received February 2, 1970

As part of a program concerned with the preparation of steroid analogs having hormone antagonist activity, some 16-keto steroids have been prepared and bioassayed. We were particularly interested in using synthetic methods previously developed² to prepare compounds having groups other than Me substituted at C-13. 16-Keto steroids have previously been synthesized by Wilds and coworkers⁴ from suitably substituted 2-acetonyl-1-phenanthrones. We used this approach but followed the new scheme² for preparing the acetonylphenanthrones and the annelation reactions (Scheme I).

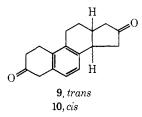
In contrast to the results obtained from the benz[e]indene analog, hydrogenation of **3** gave both isomers of **6**. As the bulk of R increased from Me to carbomethoxy, the *trans* isomer became predominant. The stereochemistry of the reduction is thus probably determined by the orientation of the adsorbed substrate on the catalyst.^{2,5,6}

The configuration of 7(trans) was confirmed by converting 7 into 8(trans) using the method previously outlined.² The *cis* and *trans* isomers of **6**, **7**, and **8** can be distinguished by differences in both their ir and uv spectra. The ν C==O band frequencies of the presumed *trans* isomers were higher by 3-4 cm⁻¹ as had been previously observed for the benz[*e*]indene derivatives.² Wilds had noted that the uv maxima of 8(trans) showed a bathochromic shift of about 2 m μ over those of 8(cis). This also proved true for the presumed *trans* isomers of **6** and **7**.⁷

Reduction of the ethylene ketal derivatives of **6** with Na-n-C₄H₃OH followed by hydrolysis of the enol ether produced **9** and **10** which were tested⁸ for androgen, antiandrogen, and antigonadotropic activity. In addition, **3**, **6**(*trans*), **6**(*cis*). and **7**(*trans*) were tested for estrogen, antiestrogen, and antogonadotropic activ-

(5) A. L. Wilds, J. A. Johnson, and R. E. Sutton, *ibid.*, **72**, 5524 (1950).
(6) R. P. Linstead, W. E. Doering, S. B. Davis, P. Levine, and R. R. Whetstone, *ibid.*, **64**, 1985 (1942).

(7) This phenomenon is probably caused by the higher energy of the ground state of the more strained trans isomers compared with the *cis.* Since the excited states possess more single bond character, there is less difference between them resulting in a smaller gap between the two states for the *trans* isomers. The isomers of **6** show a hypsochronic shift of 2 mµ compared with the corresponding isomers of **7** and **8**, indicating that the chromophore of all these compounds is the methoxynaphthalene moiety. The maxima of the uv spectrum of 2-methoxynaphthalene shift compared with **6**(*cis*). See H. H. Jaffe and Milton Orehin. "Theory and Applications of Ultraviolet Spectroscopy." John Wiley & Sons, Inc., New York, N. Y., 1962, p. 203.


 (8) R. E. Juday, L. Cubbage, J. Mazur, and B. Bukwa, J. Med. Chem., 11, 872 (1968).

⁽¹⁾ Supported, in part, by Grant CA-05057, National Cancer Institute, National Institutes of Health.

⁽²⁾ For paper III, see R. E. Juday, B. Bukwa, K. Kaiser, and G. Webb, J. Med. Chem., 13, 314 (1970).

⁽³⁾ Present address: Notre Dame University, Nelson, B. C., Canada.

^{(4) (}a) A. L. Wilds and T. L. Johnson, J. Amer. Chem. Soc., 70, 1186 (1948);
(b) A. L. Wilds and W. J. Close, *ibid.*, 69, 3079 (1947);
(c) A. L. Wilds, L. W. Beck, and T. L. Johnson, *ibid.*, 68, 2161 (1946);
(d) A. L. Wilds and L. W. Beck, *ibid.*, 66, 1688 (1944).

ity. None of the compounds tested showed significant biological activity.

Experimental Section⁹

Methyl 2-Acetonyl-1,2,3,4-tetrahydro-7-methoxy-1-oxo-2phenanthrenecarboxylate (1).—Hydration of 12 in AcOH, HCOOH, and H₂O catalyzed by Hg²⁺² produced 1 in a yield of 95%, mp 160–162°. Anal. ($C_{20}H_{20}O_6$) C, H.

2-Acetonyl-3,4-dihydro-7-methoxy-2-methyl-1(2H)-phenanthrone (2).—Alkylation of 11 (8.2 g) with propargyl bromide in Diglyme using NaH as catalyst, followed by hydration of the alkyne,² produced 13 (6.5 g, 66%), mp 79–81° (80–83°).^{4b} Anal. ($C_{19}H_{20}O_3$) C, H.

3-Methoxygona-1,3,5(10),6,8,14-hexaen-16-one (3).—A mixture of 1 (12.0 g), Ba(OH)₂·8H₂O (45.0 g) in 120 ml H₂O and 120 ml of methoxyethanol was refluxed for 4 hr. Recrystallization of the crude product from methoxyethanol gave 8.5 g (91%) of 3, mp 177–179°. Anal. (C₁₈H₁₆O₂) C, H.

Methyl 3-Methoxy-16-oxoestra-1,3,5(10),6,8,14-hexaen-18oate (4).—The annelation reaction was carried out in refluxing PhMe, containing a small amount of N-methylpyrrolidone, using NaH as the base.² Starting with 1 (2.0 g) and NaH (0.4 g) and recrystallizing the crude product from C_6H_6 , a yield of 1.1 g (57%) of 4 was obtained, mp 178–180°. Anal. ($C_{20}H_{18}O_4$) C, H.

3-Methoxy-13-methylgona-1,3,5(10),6,8,14-hexaen-16-one (5).—Starting with 2 (6.4 g) and using the procedure outlined for 3, a yield of 4.8 g (80%) of 5 was obtained, mp 203-206° ($205-206^{\circ}$).²⁰

3-Methoxy-14 β -gona-1,3,5(10),6,8-pentaen-16-one (cis Isomer) and 3-Methoxygona-1,3,5(10),6,8-pentaen-16-one (trans Isomer) (6).—Hydrogenation of 3 in PhMe-DMA Csolution, using a Pd-C catalyst dried in refluxing PhMe produced a mixture of 6(cis and trans) separated by fractional crystallization from Me₂CO to produce 6(trans): mp 155–157°; λ_{max}^{alc} 231, 268 mµ; ν C=O 1739 cm⁻¹; 6(cis), mp 138–140°; λ_{max}^{alc} 229, 265 mµ; ν C=O 1734 cm⁻¹. Anal. (C₁₈H₁₈O₂) C, H.

cis- and trans-Methyl 3-Methoxy-16-oxoestra-1,3,5(10),6,8pentaen-18-oate (7).—Hydrogenation of 4 by the method outlined for 3 produced a mixture of isomers containing about 90% of the trans and 10% of the cis isomer. Fractional crystallization (Me₂CO) produced 7(trans), mp 176–178°; $\lambda_{max}^{ale} 233, 269 \text{ m}\mu$; $\nu C=O$ (ketone) 1732 cm⁻¹, and 7(cis), mp 126–129°; $\lambda_{max}^{ale} 231$, 267 m μ ; $\nu C=O$ (ketone) 1730 cm⁻¹. Anal. (C₂₀H₂₀O₄) C, H.

Conversion of 7(trans) into 8(trans). A. trans-Methyl 16,16ethylenedioxy - 3 - methoxyestra - 1,3,5(10),6,8 - pentaen - 18 - oate (13).—A solution of 7 (6.3 g) and excess $(CH_2OH)_2$ in C_6H_6 and Diglyme, with MeSO₃H as catalyst, was refluxed using a Dean– Stark trap until evolution of H₂O ceased. The product was recovered and recrystallized from C_6H_6 to give 3.8 g (82%) of 13, mp 99–101°. Anal. $(C_{22}H_{24}O_6)$ C, H.

B. 16,16-Ethylenedioxy-13-hydroxymethyl-3-methoxygona-1,3,5(10),6,8-pentaene (14).—Reduction of 13 by LAH in THF produced 14 in 79% yields, mp 212° dec. Anal. ($C_{21}H_{24}O_4$) C, H.

C. 16,16-Ethylenedioxy-13-hydroxymethyl-3-methoxyestra-3,5(10),6,8-pentaene Methanesulfonate (15).—Treatment of 14 with MeSO₂Cl in C_5H_5N produced 15 in 97% yields, mp 172– 173°. Anal. ($C_{22}H_{26}O_6S$) C, H.

D. 8(trans) from 15.—Refluxing 15 with KI in DMAC, followed by hydrolysis of the ketal and hydrogenolysis of the iodide

using the procedure previously outlined² converted 15 into 8(trans) showing the original configuration of 7 was trans.

3-Methoxy-13-methylgona-1,3,5(10),6,8-pentaen-16-one (8). —Hydrogenation of 5 over Pd(C) followed by fractional crystallization of the crude product (Me₂CO) to give 8, mp 162–165° (169.5–171°)^{4b} identical with that obtained from 16. Anal. (C₁₉H₂₀O₂) C, H.

Gona-5(10),6,8-triene-3,16-dione (9).—A solution of 16 (3.3 g) in 45 ml of *n*-BuOH was refluxed with Na (2.5 g) until all Na had reacted. The mixture was then hydrolyzed and the crude product allowed to stand 60 min in a mixture of AcOH, 15 ml of HCOOH, and 5 ml of H₂O. Addition of H₂O followed by recrystallization of the crude product from Me₂CO gave a yield of 1.7 g (63%), mp 134–137°. Anal. ($C_{17}H_{18}O_2$) C, H.

14 β -Gona-5(10),6,8-triene-3,16-dione (10).—The procedure used to prepare 9 was followed. Starting with 17 (3.7 g), a yield of 1.9 g (63%) of 10 was obtained, mp 126–131°. Anal. (C₁₇H₁₈O₂) C, H.

3.4-Dihydro-7-methoxy-2-methyl-1(2*H*)-**phenanthrone** (11).— 3.4-Dihydro-7-methoxy-1(2*H*)-phenanthrone was converted into 11 using the procedure previously outlined for the benz[e]indene analogs.² The overall yield of product was 83%, mp 104–106° (108°).¹⁰

Methyl 1,2,3,4-Tetrahydro-7-methoxy-1-oxo-2-(2-propynyl)-2-phenanthrenecarboxylate (12).—3,4-Dihydro-7-methoxy-1(2H)-phenanthrone was converted into 12 by successive condensations with Me_2CO_3 and propargyl bromide in DMAC using NaH as catalyst, as previously outlined.² The overall yield of product was 88%, mp 115–118°. Anal. ($C_{20}H_{16}O_4$) C, H.

16,16-Ethylenedioxy-3-methoxygona-1,3,5(10),6,8-pentaene (16).—The procedure used to prepare 13 was followed, 16 being obtained in a yield of 90%, mp 130-132°. Anal. $(C_{20}H_{22}O_3)$ C, H.

16,16-Ethylenedioxy-3-methoxy-14 β -gona-1,3,5(10),6,8-pentaene (17).—The procedure used to prepare 13 was followed, 17 being obtained in a yield of 92%, mp 135–138°. Anal. (C₂₀H₂₂O₃).

(10) G. Haberland and E. Blanke, Ber., 70, 169 (1937).

Potential Specific Inhibitors of the Lactose Transport System of Escherichia coli

E. W. Thomas¹

Biophysics Department, Weizmann Institute, Rehovoth, Israel

Received February 13, 1970

The membrane component of the lactose transport system of *Escherichia coli*, known as lactose permease,² contains an SH group which is essential for its activity.³ Several galactosides protect this SH group from attack by SH reagents,³ implying a close spatial relationship between the galactoside binding site and the SH group. The galactosides described here were designed as specific and irreversible inhibitors⁴ of the permease—the D-galactose moiety enabling specific binding, while the *N*-bromoacetyl or *N*-(4-acetoxymercuri-3-methoxybutyryl) function could then react with the essential SH group. Analogs containing other carbohydrate moieties were prepared in order to test for specificity of inhibition. The unsubstituted gly-

⁽⁹⁾ All melting points are corrected. Ir spectra were obtained on a Beckman IR7 spectrophotometer. Where analyses are indicated only by symbols of the element, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values. Nmr spectra were obtained on a Varian HA60 spectrophotometer. Spectral results agreed with the suggested structures routine.

⁽¹⁾ Present address: Department of Radiotherapeutics, Cambridge University, Cambridge, England.

⁽²⁾ G. N. Cohen and J. Monod, Bact. Rev., 21, 169 (1957).

⁽³⁾ C. F. Fox and E. P. Kennedy, Proc. Nat. Acad. Sci. U. S., 60, 725 (1968).

⁽⁴⁾ B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors," John Wiley & Sons, New York, N. Y., 1967.