				Crystn		
No.	Compd	M_{D} , ^{<i>a</i>} °C	[a]2" 11 ⁶	solvent	Formula	Λ (ady ses ⁵)
		\mathcal{N}	'-Bromoacetyl			
1	p-Glucopyranosylamine	187 - 190	-13.5°	MeOH-Ei ₂ O	$C_8H_{14}N_1O_6Br$	C, H, N
2	p-Galactopyranosylamine	$192 \mathrm{dec}$	$+13^{\circ}$	MeOH Et ₂ O	$C_8H_{14}N_1O_6Br$	C,H,N
:;	1Fncosylamine	175	+ 2.8°	MeOHEt ₂ O	C ₈ H ₁₄ N ₁ O ₅ Br	C,11,N
۰ ۱	α -Lactosylamine	158	$C_{\rm c}$	$\rm H_{2}O-Me_{2}CO$	$\mathrm{C}_{14}\mathrm{H}_{24}\mathrm{N}_{1}\mathrm{O}_{11}\mathrm{Br}$	C, H, N
			V-Vinvlacetvl			
	p-Glucopyranosylamine	175	d	MeOH-Er ₂ O	$C_{10}H_{17}N_1O_6$	$C_{1}H_{1}N$
6	n-Galactopyranosylamine	160	đ	MeOHEt ₂ O	$C_{10}H_{17}N_1O_8$	C,H,N
7	L-Fncopyranosylamine	175	d	MeOH-Et ₂ O	$\mathrm{C}_{10}\mathrm{H}_{17}\mathrm{N}_{2}\mathrm{O}_{5}$	C, H, N
		N-(4-Acetoxyn	uercuri-:)-methoxy	(buiyryl)		
8	n-Glucopyranosylamine	160 dec	- 8°	MeOH-Et ₂ O	$C_{i3}H_{23}N_1O_9Hg$	N^{\prime}
9	D-Galactopyranosylamine	178 - 180	$+12.1^{\circ}$	MeOH	$C_{19}H_{29}N_1O_9Hg$	N/
10	L-Fucopyranosylamine	$195 \mathrm{dec}$	$+ 3.4^{\circ}$	MeOH	C18H25N1O8Hg	N^{j}
4 Determin	ed with a Büchi apparatus, and	d nncorrected.	${}^{b}_{,}C = 1, H_{2}O.$	* Rotation very low.	4 Not determined.	^e Analytical

TABLE 1

values were all within 0.4% of theoretical. / Kjeldahl method.

cosylamines were used as starting materials, obviating the need for blocking groups.

Compounds 1-4 and 8-10 (Table I) were tested as irreversible inhibitors of lactose uptake as previously described.⁵ Both 1 and 2 were inactive at concentrations of up to 10^{-2} *M*. However both 3 and 4 were inhibitors, 4 showing 100% inactivation of transport at 10^{-3} *M*. This finding demonstrates that a specific inactivation had occurred.⁶ On the other hand, compounds 8-10 all gave 100% inactivation at 10^{-4} *M*. This loss of specificity could be due to an extremely rapid mercuration of the essential sulfhydryl by these compounds. Detailed studies of 3 and 4 are in progress.

Experimental Section

The was carried out on silica gel G plates using Me₂CO-MeOII (10:1) as developing solvent; compounds were detected by spraying with coned H₂SO₄ and heating at 120°. The mercurials were examined by paper chromatography using *i*-PrOH-H₂O (4:1) as solvent, and detected with a 0.1% dithizone-CHCl₃ spray.

β-D-Glucopyrauosylamine, β-D-galactopyrauosylamine, and α-lactosylamine were prepared as described.⁷ L-Fucopyrauosylamine (of muknown anomeric configuration) was prepared as described for the glucoanalog. It was crystallized from H₂O*i*-PrOH, and had np 145–150° dec; $[\alpha]^{20}$ D + 3.5° (c = 2, H₂O). Anal. (C₆H₁₈N₁O₄) N.

Bronacetic and vinylacetic anhydrides were prepared by treating the appropriate acid (1 M equiv), in dry CCl₄, with DCI (0.5 M equiv). Dicyclohexyl urea was filtered off and the CCl₄ removed *in vacuo*.

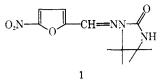
Acylation.—The glycosylamine (2 mmol) suspended in DMF (2 ml) was treated with the appropriate anhydride (2.5 mmol). After 3 hr at 25° , excess Et₂O was added, and the precipitated *N*-acyl derivative filtered and washed well with Et₂O. Compounds 1–7 were found homogenous by the, and were formed in almost quantitative yield.

Mercuration of 5–7.—The *N*-vinylacetylglycosylamine (1 mmol) was refluxed with a solution of Hg(OAc)₂ (1.1 mmol) in MeOH (10 ml) for 60 min. After removal of solvent and ACOH *in vacuo*, the residue was crystallized from MeOH. Paper chromatography showed compounds 8–10 to be homogenous, giving single orange spots with dithizone at R_1 approximately 0.5. Hg²⁺, which gives a violet color with dithizone, was not detectable.

Acknowledgment.—I thank Drs. J. Yariv and A. J. Kalb for testing the compounds and for discussions, also Mrs. S. Rogozinsky and Mr. R. Heller for microanalyses. This work was supported in part by a European Molecular Biology Organization fellowship.

1-Substituted 3-[(5-Nitrofurfurylidene)amino]-2-imidazolidinones

HABRY R. SNYDER, JR., FRANK F. EBETINO,


Chemistry Division,

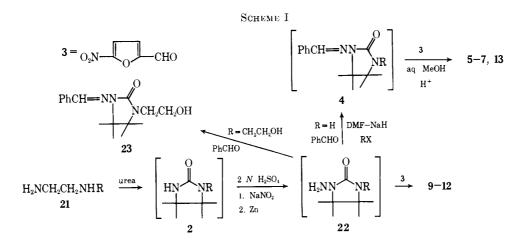
A. J. SIEDLER, AND JON ANDERSEN

Chemotherapy Division, Research and Development Department, The Norwich Pharmacal Company, Norwich, New York – 13815

Received October 29, 1969

The activity of nifuradene¹ (1) led to an investigation of its use as a urinary tract antibacterial agent.² An intensive synthetic program was initiated to produce a series of compounds which were substituted on the imino nitrogen of 1. This paper describes the synthesis and antibacterial activity of these compounds.

Chemistry.—Several pathways were utilized in the preparation of the compounds. The first route started with an appropriately N-substituted ethylenediamine (21) which was heated with urea to form a 1-substituted 2-imidazolidinone (2) (see Scheme I). These ethyleneureas were nitrosated and then reduced with Zn dust in $2 N H_2SO_4$. Condensation of the resulting 3-amino-1-substituted-2-imidazolidinones (22) with 5-nitro-2-furaldehyde (3) yielded 9–12. The second route in-


⁽⁵⁾ J. Yariv, A. J. Kalb, E. Katchalski, R. Goldman, and E. W. Thomas, FEBS Letters, 5, 173 (1969).

⁽⁶⁾ Both N-ehloroacetyl analogs of 3 and 4 were inactive, showing that the biological activity of 3 and 4 lay in their alkylating capacity.

 ⁽⁷⁾ H. S. Isbell and H. L. Frush, J. Org. Chem., 23, 1309 (1958); C. A. Lobry de Bruyn and F. H. van Leent, Rec. Trav. Chim. Progs-Bas. 14, 134 (1895); F. Micheel, R. Frier, E. Plate, and A. Hiller, Ber., 85, 1092 (1952).

⁽¹ CRenafur B, 1-115-nitrofurforylidene)amino]-2-imidazolidinone.

¹²⁾ J. R. O'Connor, H. E. Rossell, J. G. Michels, P. V. Newland, and W. F. Carey. 111rd International Congress of Chemotherapy, July 22-27, 1963. Stottgart, Germany, Paper C-52.

volved the alkylation of 4 (R = H). Thus, when the nitrosation and reduction were carried out on 2 (R = H), the resulting 1-amino-2-imidazolidinone (22, R = H) was condensed with PhCHO to give 4 (R = H). The alkylation of 4 (R = H) was effected in DMF using NaH and the appropriate halide. The crude 4 was hydrolyzed with aqueous methanolic HCl in the presence of 3 to produce 5–7 and 13.

When 22 ($R = CH_2CH_2OH$) was condensed with PhCHO, the resultant benzylideneamino-2-imidazolidinone 23 became the starting material for two reaction sequences. The first involved the chlorination of 23 to give 1-benzylideneamino-3-(2-chloroethyl)-2imidazolidinone (24). Amination of 24 with morpholine followed by acid hydrolysis in the presence of 3yielded the 2-morpholinoethyl hydrochloride 19. In the second sequence, the treatment of 23 with TsCl in pyridine gave 1-benzylidineamino-3-(2-p-toluenesulfonyloxyethyl)-2-imidazolidinone (25). When 25 was refluxed in an EtOH solution of EtONa followed by acid hydrolysis in the presence of 3, the 2-ethoxyethyl compound 14 was obtained. The iodo derivative 16 was prepared by heating 25 in a DMF solution of NaI with subsequent acid hydrolysis and concurrent condensation with 3.

The chlorination of 9 with $SOCl_2$ yielded 15. In a similar manner 10 and 11 were chlorinated to give 17 and 18, respectively. The two remaining compounds, 8 and 20, were prepared from 1 by different routes. When 1 was heated in 5% aqueous HCHO, the hydroxymethyl compound 8 was obtained whereas nitrosation in AcOH gave 20.

Biologic Activity.—Compounds were tested for *in* vitro antibacterial activity by procedures described previously for the determination of minimal inhibitory concentration (MIC).³ The urinary antibacterial activity was determined by serial tube dilution⁴ or cup plate bioassay.⁵ Following peroral dosing of the compound at 10 mg/kg to 4 rats as a suspension in 1%carboxymethylcellulose, the per cent of the dose excreted in rat urine over the 24-hr period was calculated as antibacterial equivalents of parent compound. The antibacterial activity and urinary excretion data are presented in Table I. This series of compounds demonstrated a high order of *in vitro* antibacterial activity against *Escherichia coli*.

Although peroral administration of a number of the compounds in this series resulted in urinary excretion of antibacterial activity, only 8, 9, 10, and 12 were excreted at levels higher than 15% of the administered dose (as antibacterial equivalents). High urine concentration of antibacterial activity often indicates potential usefulness of the compound as a urinary tract antibacterial agent. Based on the high level of excretion of activity in the urine and the *in vitro* antibacterial activity (MIC), 8 and 9 are considered to be the most active as urinary tract agents.

Experimental Section⁶

Materials.—The N-substituted ethylenediamines (21) used in the preparation of 2 were purchased or prepared as indicated: N-(2-hydroxyethyl)ethylenediamine,⁷ N-(2-hydroxypropyl)ethylenediamine,⁸ N-(3-hydroxypropyl)ethylenediamine,⁹ N-(2-hydroxy-3-methoxypropyl)ethylenediamine.¹⁰ For the preparation of 13 the prerequisite halide, 2-methoxyethyl chloride,¹¹ was synthesized by a literature method. All other intermediates were purchased from regular commercial sources.

1-(2-Hydroxyethyl)-3-[(5-nitrofurfurylidene)amino]-2-imidazolidinone (9).—Urea (204 g, 3.3 mol) and 21 ($R = CH_2$ -CH₂OH) (360 g, 3.46 mol) were heated under an air condenser; at 100° NH_3 evolved. The temperature was gradually increased to 230° over 2.75 hr in order to maintain the evolution of NH_{3} . The liquid was cooled to ca. 100° and poured into a large dish where it solidified to a gray solid to give 435 g (101%). The crude 2 ($R = CH_2CH_2OH$) (362 g, 2.78 mol) was dissolved in 2 N H_2SO_4 (7625 ml). The solution was cooled and kept at 5° while $NaNO_2\ (206\ g,\ 3\ mol)$ was added over 15 min. After stirring at $<5^{\circ}$ for 1.25 hr, Zn dnst (420 g, 6.45 g-atoms) was added over 45 min at <20°. The mixture was stirred without cooling for 1 hr and filtered. The filtrate was divided into two portions. To the first portion (1945 ml) was added a solution of 3 (86 g, 0.61 mol) in 95% EtOH (600 ml). The mixture was cooled overnight and filtered. The crude solid material was washed with 50% aq EtOH and dried at $60\,^\circ$ to yield 152 g of ${\bf 9}$ as orange crystals, mp 194-195°.

In a similar manner, **10–12** were prepared from the appropriate N-substituted **21**.

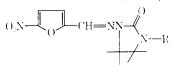
⁽³⁾ R. Freedman and R. E. Chamberlain, Antimicrob. Ag. Chemother., 1967, 502 (1968).

⁽⁴⁾ B. Pitsch, T. Hebert, and W. F. Carey, Antimicrob. Ag. Chemother., 1961, 54 (1962).

⁽⁵⁾ M. F. Paul, H. E. Paul, R. C. Bender, F. Kopko, C. M. Harrington, V. R. Ells, and J. A. Buzard, Antibiot. Chemother. (Washington, D. C.), 10, 287 (1960).

⁽⁶⁾ The melting points were taken in an open capillary tube on a Mel-Temp melting point apparatus and are corrected. The physical constants of all the final products are listed in Table I. The analytical results for C, H, and N of the intermediates were within $\pm 0.4\%$ of the theoretical values.


⁽⁷⁾ Purchased from Matheson Coleman and Bell.


⁽⁸⁾ L. J. Kitchen and C. B. Pollard, J. Org. Chem., 8, 342 (1943).
(9) A. R. Sorrey, C. M. Suter, and J. S. Bock, J. Amer. Chem. Soc., 74, 4102

<sup>(1952).
(10)</sup> H. Flores-Gallardo and C. B. Pollard, J. Org. Chem., 12, 831 (1947).

⁽¹¹⁾ D. E. Ames and R. E. Bowman, J. Chem. Soc., 406 (1950).

Minimal

No.	R	Yield, %	Mp, °C	Formula*	Recrystn solven1"	inhibitory concen- tration, μg/ml ^g	Sc of dose excreted in rat nrine in 24 lu [#]
						Es-27	
1	11					0.4	ō
5	$CH_{\mathfrak{d}}$	76	232 - 234	$C_9H_{10}N_4O_4$	-4	0.4	(j
6	$CH_2CH=CH_2$	53	194 - 195	$C_{11}H_{12}N_4O_4$	1)	0.8	6
7	CH ₂ C=CH	53	196-198	$C_{11}H_{10}N_4O_4$	C	0.4	4
8	CH_2OH	21	>200 (sinters)	$C_{9}H_{10}N_{4}O_{5}$		1) . S	23
9	CH_2CH_2OH	82	199.5 - 201.5	$C_{10}H_{12}N_4O_2$	Ð	3.1	29
10	$CH_2CHOHCH_3$	55	194 - 196	$C_{1(H_{14}N_4O_5)}$	Ð	3.1	21
11	$CH_2CH_2CH_2OH$	97	195 - 197	$C_{11}H_{14}N_4O_5$	F	3.1	G
12	CH ₂ CHOHCH ₂ OCH ₃	65	169-171	$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_4\mathrm{O}_6$	А	3.1	24
13	$CH_2CH_2OCH_3$	54	156 - 157	$C_{11}H_{14}N_4O_5$	D	1.5	6
14	$CH_2CH_2OC_2H_3$	68	139.5 - 141	$C_{12}H_{16}N_4O_5$	в	6.3	8
15	CH_2CH_2Cl	57	195-196	$C_{10}H_HCIN_{\bullet}O_{1^6}$	Н	1.5	3
16	CH ₂ CH ₂ I	25	189-191	$C_{10}H_{11}IN_4O_4$	E	3.1	•••
17	$CH_{2}CHClCH_{3}$	93	164.5 - 166	CmH ₁₅ CIN ₄ O ₄	1	3.1	-1
18	$CH_2CH_2CH_2Cl$	34	163-164	$C_{11}H_{15}CIN_4O_4$	(ì	6.3	З
19	$\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{N}(\mathrm{CH}_{2}\mathrm{CH}_{3})_{2}\mathrm{O}+\mathrm{HCl}$	58	244–248 dec	$\mathrm{C}_{14}\mathrm{H}_{13}\mathrm{N}_{5}\mathrm{O}_{5}(\mathrm{HC})$		3.1	13
2t1	NO	66	231.5–232 dec	$C_8H_7N_5O_5$	А	t), 4	1

* The analytical results of these compounds were within $\pm 0.4\%$ of the theoretical value and were obtained for C, H, and N unless otherwise noted. * Anal. C, H, Cl. * Anal. C, H, I. * A, MeNO₂; B, *i*-PrOH; C, MeOH-MeNO₂; D, 95% EtOH-MeNO₂; E, DMF-H₂O; F, 95% EtOH-MeNO₂-Et₂O; G, MeOH; H, EtOH-MeCN; I, C₆H₆. * Lowest concentration of compound which prevents visible growth following 24-hr incubation at 37°. * The Norwich Pharmacal Company number: Es-2 = Eschecichia coli. * Calculated on the basis of autibacterial equivalents; 10 ng/kg dose.

1-Benzylideneamino-2-imidazolidinone (4, R = H),--A solution of ethylenenrea (2, R = H) (252 g, 2.92 mol) in 2 N H₂SO₄ (8000 ml) was cooled to ca. 5°. NaNO₂ (202 g, 2.92 mol) was added in small portions over a period of 0.5 hr. During the addition the solution was kept at a temperature of $5-6^{\circ}$. The solution was stirred in an ice bath for an additional 3 hr and then Zn dust (440 g, 6.73 g-atoms) was added, in small portions, so that the temperature did not rise above 20°. The addition required 1.5 hr. The mixture was stirred in an ice bath for 1 hr and then ar room temperature overnight. The excess Zn was filtered off and the filtrate was adjusted to a pH of 5 with AcONa (ca. 800 g). To the solution was added PhCHO (280 g. 2.64 mol) dissolved in 95% EtOH (2000 ml). The cloudy mixture was heated on the steam bath for 2 hr and then cooled. The solid was collected, washed with dil HCl, and then thoroughly with H₂O, dried at 60° to yield 4 (R = H) (373 g, 76%) mp 201-204°. Recrystallization of 4 from MeOH (charcoal) gave an analytical sample melting at 200–202°. Anal. ($C_{10}H_1N_3O$) C, H, N.

1-Methyl-3-[(5-nitrofurfurylidene)amino]-2-imidazolidinone (5).--Compound 4 (R = H) (95.0 g, 0.5 mol) was dissolved in DMF (ca. 2500 nd) and the system was swept with dry N_2 . NaH (21.5 g, 0.5 mol), as a 56.6 % dispersion in oil, was added and the mixture was stirred at near reflux temperature for 4 hr. The reaction mixture was cooled to room temperature. A solution of MeI (35 ml) in DMF was added and the reaction mixture was stirred at 40-45° for 4 hr. After standing at room temperature overnight, the DMF was removed under reduced pressure. The residue was treated with H₂O and filtered. The crude solid material was dissolved in H₂O (ca. 500 ml) and MeOH (ca. 100 ml). The solution was acidified (pH ca. 2) with concd HCl and heated on the steam bath for 10 min. A solution of 3 (39.0 g, 0.275 mol) in MeOH was added and the mixture was heated on the steam bath for 2 hr. The reaction mixture was cooled in an ice bath and filtered. The crude solid was washed with H_2O and dried at 65° yield 5 (74.0 g), nip 226-228°.

Similarly 6, 7, and 13 were prepared from 4 (R = H) using the appropriate halide (in most cases the bromide was used) in equinolar amounts. The alkylations were carried out at 70–90°. **1-Benzylideneamino-3-(2-hydroxyethyl)-2-imidazolidinone** (23).—To a solution of 22 (R = CH₂CH₂OH) (5835 ml from the preparation of 9) was added AcONa (450 g) to adjust the pH to 4–6. The cloudy mixture was heated to 40° and treated with PhCHO (212 g, 2 nol) dissolved in 95% EtOH (600 ml). After heating on a steam bath for 1.5 hr, the mixture was cooled and filtered. The white solid was washed with 2 × 200 ml of 25%EtOH and then with H₂O to yield 23 (364 g, 78\%), np 174–176°. An analytical sample was prepared by recrystallization from MeOH (charcoal), mp 178–179°. Anal. (C₁₂H₁₅N₃O₂) C, H, N.

1-Benzylideneamino-3-(2-chloroethyl)-2-imidazolidinone (24),—Compound 23 (340 g, 146 mmol) was added portionwise to SOCl₂ (680 ml), and the mixture was heated on a steam bath for 1 hr. After cooling, the solution was poured into a mixture of C₆H₆ (1700 ml) and Et₂O (1700 ml) and further cooled in the refrigerator. The solid was filtered and washed with Et₂O. The combined filtrates were cooled in the refrigerator to cause the pptn of more solid. The solids were combined and added to ice-H₂O, filtered, and shurried with more cold H₂O. The slurry was adjusted to pH 8 with satd Na₂CO₃ solution and filtered. The solid was washed with H₂O and dried at 60° to yield 24 (338 g, 92%), mp 106–107° One recrystallization from MeOH (charcoal) gave an analytical sample, mp 107–108°. *Anal.* (C₁₂H₁₄CIN₃O) C, H, N.

1-(2-Morpholinoethyl)-3-[(5-nitrofurfurylidene)amino]-2imidazolidinone Hydrochloride (19).—A mixture of 24 (75.0 g. 0.3 mol), morpholine (52.0 g, 0.6 ntol), and C₆H₆ (300 ntl) was heated at reflux temperature for 7 hr. After cooling overnight at room temperature, the solid was filtered, washed with Et₄() and then with H₂O. The crude material was suspended in H₂O (250 ml) and acidified with 10% HCl. The suspension was filtered to remove any insoluble material; the filtrate was diluted with 10% HCl (155 ml). The solution was heated on a steam bath and 3 (42.0 g, 0.3 mol) was added. After heating for au additional 0.5 hr with occasional stirring, the mixture was cooled and extracted 6 times with HCCl₈. The H₂O layer was immediately filtered (before crystallization started) and cooled. The solid was collected and dried at 110° to yield 19 (65.0 g), mp 245–250° dec.

1-Benzylideneamino-3-(2-p-toluenesulfonyloxyethyl)-2-imidazolidinone (25).—Compound 23 (925 g, 3.97 mol) was added to a solution of C5H5N (10,280 ml, dried over KOH pellets) containing recrystallized TsCl (758 g, 3.97 mol). The The readdition required 30 min with the temperature at 0° . action mixture was stored in the refrigerator for 48 hr. The product was collected, washed with H₂O and then with Et₂O, and dried at 60° to yield 955 g, mp 152-155°. The original filtrate was diluted with H_2O (50,000 ml) and cooled for 72 hr. Upon filtration, washing, and drying, an additional 231 g, mp 150-154°, was obtained. The total yield of 25 was 1186 g (77.6%). Recrystallization from MeNO2 gave an analytical sample, mp 153-155°. Anal. $(C_{19}H_{21}N_3O_4S)$ C, H, N.

1-(2-Ethoxyethyl)-3-[(5-nitrofurfurylidene)amino]-2-imidazolidinone (14).—Compound 25 (84.0 g, 0.22 mol) was added in small portions to a solution of abs EtOH (*ca.* 500 ml) and EtONa [prepared by the addition of NaH (10.4 g of 55.6% oil dispersion)]. The mixture was heated at reflux for 3 hr, filtered, and the solvent removed under reduced pressure. The residue was dissolved in aq MeOH and the solution was acidified (pH 1) with concd HCl. After heating the solution on the steam bath for 10 min, a solution of 3 (30.6 g, 0.216 mol) in MeOH was added. The reaction mixture was heated on the steam bath for 2 hr, chilled in an ice bath, and filtered. The product was dried to yield 40.0 g, mp 138-140°.

1-(2-Iodoethyl)-3-[(5-nitrofurfurylidene)amino]-2-imidazolidinone (16).—A mixture of 25 (194 g, 0.5 mol), NaI (75 g, 0.5 mol), and DMF (2500 ml) was heated at 110–140° for 5 hr. The solution was cooled and diluted twofold with ice-H₂O. A brown ppt was collected, washed with H₂O, and dissolved in aq EtOH. The EtOH solution was acidified (pH 1) with concd HCl and heated on the steam bath for 10 min. A solution of 3 (71 g, 0.5 mol) in 95% EtOH was added and the mixture was heated on the steam bath for 1 hr. The reaction mixture was cooled in an ice bath and filtered. The product was dried to yield 45 g of 16, mp 186–188°.

1-(2-Chloroethyl)-3-[(5-nitrofurfurylidene)amino]-2-imidazolidinone (15).—Compound 9 (152 g, 0.57 mol) was added in small portions to $SOCl_2$ (400 mI). The resultant clear solution was heated at reflux for 30 min, cooled in an ice bath, and filtered. The solid was washed with C_6H_6 and the washings were added to the reaction filtrate to give a second crop of crystals. The total yield of 15 was 92.0 g, mp 184-185°.

In a similar manner 10 and 11 were chlorinated to yield 17 and 18, respectively.

1-Hydroxymethyl-3-[(5-nitrofurfurylidene)amino]-2-imidazolidinone (8).—Compound 1 (60.0 g, 0.27 mol) was added to a refluxing solution of 5% aq CH₂O. The mixture was stirred at reflux for 5 min, filtered hot, and then stored in a refrigerator for 2 days. The precipitated orange plates were collected and washed with 1% CH₂O. The material was dried in a desiccator at room temperature to yield 14.4 g of 8, mp 200° (sinters).

1-[(5-Nitrofurfurylidene)amino]-3-nitroso-2-imidazolidinone (20).—A suspension of 1 (112.0 g, 0.5 mol) in glacial AcOH (ca. 800 ml.) was stirred at room temperature while NaNO₂ (100 g) was added in small portions over a period of 1 hr. The bright orange suspension gradually changed to a bright yellow. The mixture was stirred for another 3 hr and filtered. The crude solid was washed with Et₂O and recrystd from MeNO₂ to yield 50.5 g, mp 228-229° dec. A second crop of material was obtained by concentrating the filtrate and cooling to give a total of 88.5 g.

Acknowledgments.—The authors gratefully acknowledge the aid of Mrs. Patricia Curtis, Mr. Frederick Abbott, Mr. Alexander Winterstein, and Mr. Benjamin Stevenson for the preparation of chemical intermediates, and of Mr. Leonard Bird for assistance in the syntheses. Compound 8 was prepared by Mr. Benjamin Stevenson. Mr. Grant Gustin and Mr. Marvin Tefft performed the microanalyses. Microbiologic data were obtained through the assistance of Mr. Patrick Moynihan. Miss Esther Nohle and Mr. Donald Humphrey assisted in obtaining the urinary excretion data.

Antimalarial Sulfilimines and Sulfoximines Related to Diaminodiphenyl

Sulfoxide and Sulfone

KENNETH K. ANDERSEN, JNANABRATA BHATTACHARYYA, AND SUNIL K. MUKHOPADHYAY

Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824

Received January 7, 1970

A series of sulfilimines I and sulfoximines II related in structure to 4,4'-diaminodiphenyl sulfone and sulf-

NSO_2R_3	$\mathrm{NSO}_2\mathrm{R}_3$
R_1SR_2	$R_1 SOR_2$
11,0112	11,50112
I	II

oxide were synthesized and tested for antimalarial activity (Table I). Compound 12 showed some slight activity in mice infected with *Plasmodium berghei*. The testing did not reveal activity in any of the other compounds.

The sulfilimines were prepared from the known sulfides by reaction with various sodium N-chloroarene sulfonamides.¹ Sulfilimines unsubstituted on N appear to be hydrolytically unstable;² no attempt was made to prepare such compounds.

Experimental Section

Sulfilimines (1,2,7,8,10,11,1,3,14,15) were prepared from the sulfides by treatment with the appropriate sodium *N*-chloro-arenesulfonamide.² A typical reaction is given below.

 S_1S -Di-p-acetylaminophenyl-N-benzenesulfonylsulfilimine (2).—Chloramine B (2.67 g, 0.10 mol) in a 2:1 v/v dioxane– H₂O mixture (18 ml) was added all at once to 4,4'-diacetylaminodiphenyl sulfide (3.0 g, 0.10 mol) in a 2:1 v/v dioxane–H₂O (20 ml) mixture. The mixture was heated on a steam bath for 2 hr. The solvents were removed on a rotary evaporator and the residue dissolved in CH₂Cl₂-EtOAc. This solution was extracted with 5% aq NaOH, washed with H₂O, dried (Na₂SO₄), concd, and recrystd from Me₂CO: 3.0 g; 68%; mp 205°.

recrystd from $Me_2CO: 3.0 \text{ g}; 68\%; \text{ mp } 205^\circ.$ Sulfilimines (3,4,5,6,9,12) were prepared by the deacetylation of the corresponding acetylated sulfilimine. A typical reaction procedure is given below.

S,S-Di-p-aminophenyl-N-benzenesulfonylsulfilamine (3).— S,S-Di-p-acetylaminophenyl-N-benzenesulfonylsulfilimine (2) (4.5 g) in 10% EtOH-NaOH (30 ml) was refluxed for 1 hr. The mixture was reduced in volume and poured into ice-water. The solid which pptd was collected by filtration, washed, dried, and recrystd from EtOH: 3.5 g; 94%; mp 197°.

S-Methyl-S-p-acetylaminophenyl-N-benzenesulfonylsulfoximine (16).—S-Methyl S-p-acetylaminophenyl-N-benzenesulfonylsulfilimine (8) (10.0 g, 0.297 mol) was dissolved in dry C_5H_5N (100 ml) and KMnO₄ (3.4 g, 0.22 mol) and H₂O (0.2 ml) was added with stirring. After standing for 6 days at room temperature, the C_5H_5N was removed using a rotary evaporator and the residue treated with aq acidified NaHSO₃. The pptd white solid was collected by filtration and recrystd from EtOH: 7.5 g; 71%; mp 173°.

S-Methyl-S-p-acetylaminophenyl-N-p-acetylaminobenzenesulfonylsulfoximine (17).—S-Methyl-S-p-acetylaminophenylsulfoximine (8.0 g, 0.038 mol) was dissolved in dry THF (400 ml). Na (1.0 g, 0.043 g-atom) was added in small portions to the refluxing solution. When no more Na dissolved, the clear solution was decanted into another flask and p-acetylaminobenzenesulfonyl chloride (7.0 g, 0.030 mol) was added. The mixture was refluxed for 45 min, cooled, and filtered. The filtrate was reduced in volume and poured into H_2O whereupon a solid precipi-

⁽¹⁾ A. Schöberl and A. Wagner in "Methoden der Organischen Chemie,"

<sup>Vol. 9, E. Muller, Ed., Georg Thieme Verlag, Stuttgart, 1955. Chapter 9.
(2) R. Appel and W. Büchner,</sup> *Chem. Ber.*, 95, 849, 855 (1962).