Table II
4-Methylaminobenzaldwhydes

\quadYield $\%$	
$3-\mathrm{Br}$	61
$3-\mathrm{I}$	44
$3, \overline{5}-\mathrm{Br}_{2}$	60
$3,5-\mathrm{Cl}_{2}$	12

$\mathrm{Mp}_{1}{ }^{\circ} \mathrm{C}^{a}$
$75.0-76.0^{d}$
$81.0-82.0^{e}$
$73.0-73.5$
$85.0-85.6$

Crystil solvent t^{b}	Formula c
I, IE	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$
IE	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{INO}$
I	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{NO}$
I, IE	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}$

${ }^{a}$ Determined with Mel-Temp melting point apparatus, ${ }^{b} \mathrm{I}$, mixed isomeric branched hexanes; IE, $i-\mathrm{Pr}_{2} \mathrm{O}$. ${ }^{c}$ All compounds were analyzed for C and H by Galbraith Laboratories except where indicated otherwise; analytical results were within $\pm 0.3 \%$ of the theoretical values. $\quad d$ Reaction mixture was stirred 10 min and poured into 1300 ml of $\mathrm{H}_{2} \mathrm{O}$; a few g of NaHSO_{3} in $\mathrm{H}_{2} \mathrm{O}$ were added, the mixture was filtered and washed repeatedly with $\mathrm{H}_{2} \mathrm{O}$. e Isooctane extractions treated with sodium thiosulfate and concentrated to obtain additional material. f Not analyzed.
was prepared by reacting $t-\mathrm{BuOCl}$ with 4-dimethylaminobenzaldehyde. ${ }^{7}$ 2-Chloro- and 3-bromo-4-dimethylaminobenzaldehyde were prepared by the halogenation of 4 -dimethylaminobenzaldehyde according to the method of Brady and Truskowski, ${ }^{8}$ but using an equivalent amount of NaOAc in the reaction. The 3-chloro-, 3-bromo-, 3,5-dichloro-, and 3,5-dibromo-4methylaminobenzaldehydes were prepared similarly. In making the 3 -chloro compound most of the AcOH was evaporated under vacuum, and the remaining material poured into 2 l. of $\mathrm{H}_{2} \mathrm{O}$ and neutralized with NaHCO_{3}. The resulting oil and/or ppt was dissolved in $\mathrm{C}_{6} \mathrm{H}_{6}$ and chromatographed on silica gel. During elution with $\mathrm{C}_{8} \mathrm{H}_{6}$ the 3,5 -dichloro compound passed through first, and then the 3 -chloro derivative. The 3,5 -dichloro compound, however, was obtained principally using 2 equiv of Cl_{2} /equiv of aldehyde and stirring the reaction mixture for 2 hr . 3-Todo4 -methylaminobenzaldehyde was prepared by adding 24.2 g of ICl dropwise with stirring to $20 \mathrm{~g}(0.148 \mathrm{~mol})$ of 4 -methylaminobenzaldehyde in 70 ml of AcOH at $12-25^{\circ}$. After standing 3 hr the mixture was hydrolyzed over ice and neutralized with NaOH and NaHCO_{3}. 4-Amino-3,5-dichlorobenzaldehyde was obtained by adding dropwise a solution of Cl_{2} in AcOH to a dilute AcOH solution of the HCl salt of 4-aminobenzaldehyde. The product was obtained according to the method of van de Bunt. ${ }^{*}$ 4-Amino-3,5-dibromobenzaldehyde was prepared from 3-bromo-4-dimethylaminobenzaldehyde perbromide hydrochloride. ${ }^{10,11}$

1-(3-Chloro-4-dimethylaminobenzylidene)-3-(α-hydroxy-3-chloro-4-dimethylaminobenzyl)indene [isolated and analyzed as the dipicrate (Anal. $\left(\mathrm{C}_{49} \mathrm{H}_{43} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{15}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl} ; \mathrm{H}$: calcd, 3.49; found, 4.04)] and 1-(3,5-dibromo-4-methylaminobenzylidene)-3(α-hydroxy-3,5-dibromo-4-methylaminobenzyl)indene (Anal. (C_{25} $\mathrm{H}_{20} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}$) C, H) were obtained as by-products in the preparation of 1-(3-chloro-4-dimethylaminobenzylidene)indene and 1-(3,5-dibromo-4-methylaminobenzylidene)indene, respectively.
(7) D. Ginsburg, J. Amer. Chem. Soc., 73, 703 (1951).
(8) D. L. Brady and R. Truskowski, J. Chem. Soc., 2434 (1923).
(9) C. van de Bunt, Rec. Trav. Chim. Pays-Bas, 48, 121-146 (1929).
(10) C. T. Bahner, et al., J. Org. Chem., 25, 2053 (1960).
(11) J. J. Blanksma, Chem. Zentralbl., 1, (1910).

Synthesis and Alkylation of Tetrahydrocyclopentapyrazolols

Richard P. Wilulams, Victor J. Baler, and S. R. Safir
Organic Chemical Research Section, Lederle Laboratories, A Division of American Cyanamid Company, Pearl River, New York 10965

Received February 6, 1970
Antipyrine (1) has long been recognized as an anal-getic-antipyretic agent;' phenylbutazone (2) has be-
come a widely used analgetic-antiinflammatory drug; ${ }^{1}$ and benzydamine (3) has received notice as a potentially useful analgetic-antiinflammatory agent in man. ${ }^{1,2}$ Although in many ways dissimilar, certain structural features common to $\mathbf{1 , 2}$, and $\mathbf{3}$ may be

recognized. Each compound possesses an oxygenbearing pyrazole heterocycle which supports an aryl or alkyl N substituent and a C substituent. The tetrahydrocyclopentapyrazolones 4, 5, and 6, synthesized by Mannich in 1929, ${ }^{3.4}$ combine these structural units in a different manner. We undertook to repeat this work, and to prepare a brief series of analogs for examination in an antiinflammatory screening program.

4, $\mathrm{R}=\mathrm{X}=\mathrm{H}$
5, $\mathrm{R}=\mathrm{H} ; \mathrm{X}=\mathrm{Br}$
6, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{H}$
7, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} ; \mathrm{X}=\mathrm{H}$
8, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{X}=\mathrm{Br}$
9, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{X}=\mathrm{F}$

10, $\mathrm{R}=\mathrm{X}=\mathrm{H}$
11, $\mathrm{R}=\mathrm{H} ; \mathrm{X}=\mathrm{Br}$
12, $\mathrm{R}=\mathrm{H} ; \mathrm{X}=\mathrm{F}$
$13, \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{H}$
14, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{X}=\mathrm{F}$

15, $\mathrm{R}=\mathrm{H} ; \mathrm{X}=\mathrm{H}$
16, R $=\mathrm{H} ; \mathrm{X}=\mathrm{Br}$
17, $\mathrm{R}=\mathrm{H} ; \mathrm{X}=\mathrm{F}$
18, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{H}$
19, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \mathrm{X}=\mathrm{H}$
20, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{X}=\mathrm{Br}$
21, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{X}=\mathrm{F}$

[^0]As reported by Mannich, reaction of ethyl cyelo-pentanone--2-carboxylate with phenylhydrazine and p-bromophenylhydrazine, and subsequent exctization af the: erude phenyllydrazones at high temperature under strongly basic conditions, provided erystathine products whose empiricat formulas were consistent with the proposed structures 4 and 5.3 .4 The solid wate ir spectra, however, fail to display CO bands helaw 6.15μ, and strongly H bonded tautomeric cyelopentaperazolol structures $\mathbf{1 0}$ and $\mathbf{1 1}$ are therefore preferred to 4 and 5 . In dilute CHCl_{3} solution, $(0$ athsorption at $\overline{\mathrm{i}} .57 \mu$ is exhibited by $\mathbf{1 0}$ and 11, which must therefore exist as the unconjugated keta tautomers 15 and 16. The conjugated forms 4 and 5 are exchuded by the absence of absorption at (6.0μ (see below). A simitar reaction with p-fluorophenylhydrazine gave the fluoro analog, which exists in the solict state as 12 and in solution as $17 .{ }^{\text {F }}$

Alkylation of 10 with Mel or allyl chloride in the presence of XaOM , or of $\mathbf{1 1}$ with benzyl bromide and base, gave, in each case, mixtures of two isomeric prochucts with CO bands at $5.82-\overline{3} .8{ }^{-1} \mu$ and $5.98-6.04 \mu$. Whytation of the cyclopentapyrazolol 10 with methyt p-toluenesulfonate gave a third isomer $\mathbf{1 3}$ which failed to display (() absorption. Under basic conditions.

tridentate anions 22 may be formed by the cyelopentapyrazolols $\mathbf{1 0}$ and 11, and alkylation of these anions can yield $\underset{\sim}{ }, \mathrm{C}$, or O substituted products. In this series, the C-alkyl structures $\mathbf{1 8}, \mathbf{1 9}$, and 20 correspond to the product: with 5.84μ bands, the N-alkyl compounds 6,7 , and 8 to those with 6.0μ bands, and the O-alkyl derivative 13 to that with no CO absorption.

[^1]

b. $\mathrm{k}=1 \mathrm{l}$
r. $\mathrm{H}=\mathrm{Cl}$

In the case of the (substituted products, phacement af the remaining double bond hetween X and hridgehead (was indicated by their mon suectar which fail to show the viny proton reanancus mained for uther alternatives such as $\mathbf{2 3}$. Reaction of $\mathbf{1 2}$ with benzy bromide exave the three posibte isoncric moduct- 9
 (6. 20μ).

In the alkytation of $\mathbf{1 0}$ with Mer, the possihility that the 0 - Me e compound 13 might serve as an intermediate in the formation of 6 and 18 was examined in greater detail. First it was shown that treatment of 13 with exeess NaI or NaOMEe effected no chathge. Witd reaction of $\mathbf{1 3}$ with XeI gave a quatematy salt 24. which decomposed upon boiting in MeOH to the N-Me eompound $6 ; 11018$ was formed. Compound 13. therefore camot be a preeursor ta 18 in the alkytation of $\mathbf{1 0}$. Since the reaction of $\mathbf{1 0}$ with MeI leads to a misture of 6 and 18 in which 18 predominates, the major course of reaction cannol involve 13 . The intermediacy of $\mathbf{1 3}$ in that portion of the reaction which produces 6, however. has not been excluded.

Orat administration of the cyclopentapyrazoles at $2-00 \mathrm{mg}$ kg failed to inhibit significantly the earmagenin imbued rat paw edemat when assayed hy the methed of Winter, mal. ${ }^{2}$

Experimental Section ${ }^{8}$

2,4,5,6-Tetrahydro-2-phenylcyclopentapyrazol-3-ol (10)... . modification of the pucedure of Mannich ${ }^{3}$ was employed. A solutiom of $7.8 \mathrm{~g}(0.0 .5 \mathrm{~mol})$ of ethyl cylopentanone-2-carboxylate, $\therefore .4 \mathrm{~g}(0.0 . ; \mathrm{mol})$ of phenvlhydrazine, and 100 ml of EtOH was heated under reflux for $2 \overline{4} \mathrm{hr}$, and then concentrated to a yellow oil. The ail was dissolved in 100 ml of $\mathrm{MeOH},-5.7 \mathrm{~g}(0.1 \mathrm{~mol})$ af NaOMe was added, and the solvent was distilled nutil armblat remaned. The solid was heated at 160° muder N_{2} for $2 \mathrm{~h}_{\mathrm{h}}$, and then dissolved in Ho. The whtion was reated with charobal and acidified with HCl ; $1: \mathrm{n}$ (cristals, $8.0 \mathrm{~g}\left(80^{\circ}\right.$)) mp 18.7187°, precipitated. Three recrystallizations ibtoHi gave colonles-
 11, N : ir, no CO band helew 6.15μ.

2-(p-Bromophenyl)-2,4,5,6-tetrahydrocyclopentapyrazol-3-ol (11),-.The procedure used for the preparation of 10 was emploved. From $1 . \overline{\mathrm{g}} \mathrm{f} \mathrm{g}$ (0.01 mol) of ethyl cyclopentanone-zcarbosylate and p-bomophenylhydrazine was otaned 1.9 g (406, of light tan crystals, mp $20^{2} 2.204^{\circ}$ (from Me() $\mathrm{H} ;$ lit. ${ }^{3}$ m ,
 €.1.7 μ

2-(p-Fluorophenyl)-2,4,5,6-tetrahydrocyclopentapyrazol-3-ol 12). The procedure nsed for the preparation of 10 was enployed. From 15.0 \& $(0.1$ mol) of ethyl oydopenamme- carkoxylate and p-finowphenylhydrazine was obtained 11.7 . 2 (49C) of (an crystals, mp $186 \cdots 187^{\circ}$ (ftom EtOH). 1 mul. ($\%$ $1 \mathrm{I}_{1} \mathrm{~F}^{\prime} \mathrm{F}_{2}(\mathrm{O})$ (. H, F, N : in, no CO band below 6.15μ.

Alkylation of 2,4,5,6-Tetrahydro-2-phenylcyclopentapyrazol-3ol (10). A. With MeI.-A solntion of 20 g (0.1 moll of 10 . $142 \mathrm{~g}(1 \mathrm{~mol})$ of $\mathrm{Me}, 5.6 \mathrm{~g}(0.1 \mathrm{~mol})$ of NaOVe, and 350 ml n AeOH was heated mader reflux for 15 hr. The sulvent was di-tilled, and the residne was taken up in toro. The minnme waextructed with Et, O, and the EtaO whtion was dried algso and concentrated to I2 of of bown ail which was chromanographed on silica gel.

[^2]Elution of the column with $\mathrm{Et}_{2} \mathrm{O}$ gave $6.1 \mathrm{~g}(28 \%)$ of orange crystals, mp 64-66 ${ }^{\circ}$ Recrystallization (cyclohexane) gave light \tan crystals of 3a,4,5,6-tetrahydro-3a-methyl-2-phenylcylco-pentapyrazol- $3(2 \mathrm{H})$-one ($\mathbf{1 8}$), mp 68-69 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}$, H, N; ir, $5.85 \mu(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \tau 8.62\left(\mathrm{~s}, 3, \mathrm{CCH}_{3}\right)$, 8.44-7.16 ($\mathrm{m}, 6, \mathrm{CH}_{2}$), and 3.00-205 (5 , phenyl).

Elution of the column with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(4: 1)$ gave 2.8 g (13%) of tan crystals, mp 123-127 ${ }^{\circ}$. Recrystallization (EtOH) gave colorless crystals of $1,4, \overline{\mathrm{u}}, 6$-tetrahydro-1-methyl-2-phenylcyclo-pentapyrazol-3($2 H$)-one (6), mp $127-128^{\circ}$ (lit. ${ }^{3} \mathrm{mp} 128^{\circ}$). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$; ir, $6.01 \mu(\mathrm{C}=\mathrm{O})$.
B. With Methyl p-Toluenesulfonate.-A solution of 2.0 g $(0.01 \mathrm{~mol})$ of $10,20 \mathrm{ml}$ of DMF, $0.44 \mathrm{~g}(0.01 \mathrm{~mol})$ of 5.5 CNaH dispersion, and $1.86 \mathrm{~g}(0.01 \mathrm{~mol})$ of methyl p-toluenesulfonate was heated at 120° with stirring for 2 hr . The solntion was cooled, diluted with 100 ml of $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. $\mathrm{The}_{\mathrm{Et}}^{2} \mathrm{O}$ solution was dried $\left(\mathrm{XgSO}_{4}\right)$ and concentrated to a brown oil which was chromatographed on silica gel. Eluted with cyclo-hexane- $\mathrm{Et}_{2} \mathrm{O}(9: 1)$ was $0.9 \mathrm{~g}(42 \%)$ of an oil. Short-path distillation at $111^{\circ}(0.2 \mathrm{~mm})$ gave $2,4, \overline{4}, 6$-tetrahydro-3-methoxy-2phenylcyclopentapyrazole (13) as a pale yellow. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{14}-\right.$ $\left.\mathrm{N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} ; \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \tau 6.04\left(s, 3, \mathrm{OCH}_{3}\right)$; ir (liq film), 110 CO band below 6.15μ.
C. With Allyl Chloride.-A solntion of $4.0 \mathrm{~g}(0.02 \mathrm{~mol})$ of $\mathbf{1 0}$, $1.53 \mathrm{~g}(0.02 \mathrm{~mol})$ of allyl chloride, $1.08 \mathrm{~g}(0.02 \mathrm{~mol})$ of NaOMe , and 50 ml of EtOH was heated under reflux with stirring for 18 hr , and then concentrated to dryness. The residue was taken up in $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ solntion was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a yellow oil which was chromatographed on alumina.

Elution of the column with $\mathrm{C}_{6} \mathrm{H}_{6}$ gave $1.5 \mathrm{~g}(31 \%)$ of a yellow oil. Evaporative distillation at $110^{\circ}(0.0 \overline{\mathrm{a}} \mathrm{mm})$ gave $3 \mathrm{a}-\mathrm{ally} \mathrm{l}$ 3a,4, $\mathrm{i}, 6$-tetrahydro-2-phenylcylopentapyrazol-3(2H)-one (19) as a colorless oil. Anal. ($\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N} \mathrm{~N} \mathrm{O}$) C, H, N; ir (liq film) 5.82μ ($\mathrm{C}=\mathrm{O}$).

Elution of the column with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$ gave $1.0 \mathrm{~g}(21 \%)$ of brown crystals, mp 92-93 ${ }^{\circ}$. Recrystallization (cyclohexane) gave tan crystals of 1 -allyl-1,4,5,6-tetrahy dro-2-phenylcyclo-pentapyrazol-3($2 H$)-one (7), mp 93-94 ${ }^{\circ}$. Anal. ($\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$) C, H, N; ir, $6.04 \mu(\mathrm{C}=\mathrm{O})$.

Benzylation of 2-(p-Bromophenyl)-2,4,5,6-tetrahydrocyclopen-tapyrazol-3-ol (11).-A solution of $2.8 \mathrm{~g}(0.01 \mathrm{~mol})$ of $11,1.7 \mathrm{~g}$ (0.01 mol) of $\mathrm{PhCH}_{2} \mathrm{Br}, 0.54 \mathrm{~g}(0.01 \mathrm{~mol})$ of NaOMe , and 25 ml of EtOH was heated under reflux for 15 hr , and then concentrated to dryness. The residue was taken up in $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ solntion was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated t, a yellow oil which was chromatographed on alumina.

Elution of the column with $\mathrm{C}_{6} \mathrm{H}_{6}$ gave $1.2 \mathrm{~g}(32 \%)$ of colorless crystals, mp $8 \mathbf{5}^{-95^{\circ}}$. Recrystallization (hexane) provided colorless crystals of 3a-benzyl-2-(p-bromophenyl)-3a,4, $\overline{\overline{5}}, 6$-tetrahydro-cyclopentapyrazol-3(2H)-one (20), mp 110-111 ${ }^{\circ}$. Anal. ($\mathrm{C}_{18} \mathrm{H}_{17}$ $\left.\mathrm{Br}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{Br}, \mathrm{N}:$ ir, $\overline{5} .83 \mu(\mathrm{C}=\mathrm{O})$.
Elution of the column with MeOH gave $1.0 \mathrm{~g}(27 \%)$ of tan crystals, mp 113-11: ${ }^{\circ}$. Recrystallization (cyclohexane) gave colorless needles of 1 -benzyl-2-(p-bromophenyl)-1,4,5,6-tetra-hydrocyclopentapyrazol-3($2 H$)-one (8), mp 117-118 ${ }^{\circ}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{Br}, \mathrm{N}$; ir, $5.98 \mu(\mathrm{C}=\mathrm{O})$.
Benzylation of 2-(p-Fluorophenyl)-2,4,5,6-tetrahydrocyclopen-tapyrazol-3-ol (12).-The procedure used for the benzylation of 11 was employed. From $2.2 \mathrm{~g}(0.01 \mathrm{~mol})$ of $12,1.7 \mathrm{~g}(0.01 \mathrm{~mol})$ of benzyl bromide, $0.54 \mathrm{~g}(0.01 \mathrm{~mol})$ of NaOMe, and 25 ml of EtOH was obtained an oil which was chromatographed on alumina.
Elution of the column with hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1) gave $0.09 \mathrm{~g}(3 \%)$ of colorless crystals, mp 75-76 ${ }^{\circ}$. Recrystallization (hexane) provided colorless crystals of 3-benzyloxy-2-(p-fluorophenyl)-2,4,n, 6-tetrahydrocyclopentapyrazule (14), mp 77 . Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{17}\right.$ $\mathrm{FN}_{2} \mathrm{O}$) C, $\mathrm{H}, \mathrm{F}, \mathrm{N}$; ir, no CO band below 6.20μ.
Elution , f the colmm with hexane-E(eO (1:1) provided 0.51 g (17%) of colonless aystals, mp $90-94^{\circ}$. Recrystallization (hexane) gave colorless (rystals of :3a-benzyl-3-(p-fluorophenyl)-:3a,4,5,6-tetralyydroryclopertapyrazol-3(2H)-une (21), mp 98-99. Anal. ($\mathrm{C}_{19} \mathrm{H}_{1}-\mathrm{FN}$) $) \mathrm{C}, \mathrm{H}, \mathrm{F} . \mathrm{N}:$ ir, $-5.86 \mu(\mathrm{C}=\mathrm{O})$.
Elution in the colnm wilh Etio-MeOH 149:1) provided
 (eydohexane) gave whonlew (rystals of l-henzyl-2-(p-flumophenyl) $-1,4, \overline{0}, 6$-tetrahydrocyclopentapyrazol-3($2 H$)-one ($\mathbf{9}$), mp 112°. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{1}-\mathrm{FN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{F}, \mathrm{N}$; ir, 6.00μ.

2,4,5,6-Tetrahydro-3-methoxy-1-methyl-2-phenylcyclopenta-
pyrazolium Iodide (24).-A solution of $4.0 \mathrm{~g}(0.02 \mathrm{~mol})$ of 13 and 6 ml of MeI was allowed to stand at room temperature for 15 hr . The solution was diluted with 200 of $\mathrm{Et}_{2} \mathrm{O}$ and filtered to give $1.4 \overline{\mathrm{~g}} \mathrm{~g}(20 \%)$ of crystals, $\mathrm{mp} 108-110^{\circ}$. Recrystallization ($\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$) gave colorless crystals, mp $109-110^{\circ}$ dec. Anal. ($\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IN}_{2} \mathrm{O}$) C, $\mathrm{H}, \mathrm{I}, \mathrm{N}$.

Pyrolysis of $2,4,5,6$-Tetrahydro-3-methoxy-1-methyl-2-phenylcyclopentapyrazolium Iodide (24).-A solution of 170 mg of 24 and 4 ml of MeOH was heated under reflux for 24 hr . Evaporation of the solvent left 87 mg of $6, \mathrm{mp} 123-125^{\circ}$. Ir and tle examination of the product failed to indicate the presence of 18.

Puromycin Analogs. Aminoacyl Derivatives of 9-(3^{\prime}-Amino- 3^{\prime}-deoxy- β-D-arabinofuranosyl)adenine ${ }^{1}$

Linda V. Fisher, Wililam W. Lef, and Leon Goodman

Life Sciences Division, Stanford Research Institute, Menlo Park, California 94025

Received January 5, 1970
Puromycin (1), an antibiotic with antitumor activity, ${ }^{2}$ has been used as an important biochemical tool in the study of protein synthesis. Many structural analogs of 1 have been prepared in an effort to exploit the biological properties of the antibiotic. These include analogs where other aminoacyl groups replace the p-methoxyphenylalanine moiety of $1,{ }^{3-5}$ compounds where the $p-\mathrm{MeO}$ of 1 is replaced by other substituents, ${ }^{6}$ the derivative where the 3 'aminoribofuranose of 1 is replaced by 3^{\prime}-aminoglucopyranose, ${ }^{7}$ and the $2^{\prime}-0$-Ac derivative ${ }^{8}$ of 1 . In an extension of these investigations, we have prepared a number of aminoacyl derivatives of 9 -(3-amino-3-deoxy- β-D-arabinonofuranosyl)adenine (3), ${ }^{9}$ a 2^{\prime} epimer of 2 . See Table I.

The aminoacyl derivatives $\mathbf{4}$ of $\mathbf{3}$ were prepared by standard methods of peptide synthesis, the method of choice for each compound being dependent on the relative ease of formation and facility of purification from by-products. The choice of solvents was severely restricted by the low solubility of 3 , with D\IF solvent mixtures generally being the most useful. As in the work of Baker, et al., ${ }^{3}$ unblocked $\mathbf{3}$ could be used in these coupling reactions. In contrast, blocking of the OH groups was essential to successful aminoacylation of 1-(3-amino-3-deoxy- β-d-glucopyranosyl)uracil. ${ }^{10}$
The two coupling procedures used were A , the mixed anhydride method using isobutyl chloroformate ${ }^{11}$
(1) This work was performed under the auspices of Chemotherapy. National Cancer Institute, National Institutes of Health, Public Health Service. Contract No. PH-43-64-500. The opinions expressed here are those of the authors and not necessarily those of Chemotherapy.
(2) B. L. Hutchings, Chem. Biol. Purines, CIB.A Found. Symp., 1956,「i7 (195i).
(3) B. R. Baker, J. P. Joseph, and J. H. Williams, J. Amer. Chem. Soc., 77, 1 (1955).
(4) R. H. Symons, R. J. Harris, L. P. Clarke, J. F. Wheldrake, and W. FI. Elliott. Biochem. Biophys. Acta, 179, 248 (1969).
(5) A. O. Hawtrey, S. I. Bielron, and S. H. Eggers, Tetrahedron Lett., 1693 (1967).
(6) A. M. Sinall, H. M. Kissman. J. P. Jose!M, antl M. J. Weiss, J. Med. Ther'm. Chem., 2, 375 (1960).
(i) F. W. Lichenthater and II. H. Aharecha, Adyew, Chem.. 80, 440 (1968).

 man, J. Hitrionvel. Chem., $\mathbf{7}_{1}$ in press.
(10) H. A. Friedinan. K. A. Watanahe, and J. J. Fox, J. Org. Chenl., 32, 3775 (1967).
(11) G. W. Anderson. J. E. Zimmerman, and F. M. Callahan, J. Amer. Chem. Soc., 89, 5012 (1967).

[^0]: (2) M. DeGregorio. "International Symposium on Nonsteroidal Antiinflammatory Drugs. Milan, 1964, ${ }^{1}$ S. Garattini and M. N. G. Dukes, Ed.. Excerpta Medica Foundation, Amsterdam, 1965. pp 422-429
 (3) C. Mannich, Arch. Pharm., 267, 699 (1929).
 (4) C. Mannich. German Patent 464482 (Aug 18. 1928).

[^1]: (5) Analogously, He condensation of ethyl eyclohexanone-2-carloxylate with phenylhydrazine IH. Ruhkopf. Ber.. 70. 939 (1937)I gave a compound which fails. in the solid state, to exhihit a band in the CO region below 6.10μ. and must therefore be 4.5.6.i-tetrahydro-2-phenyl-2 H-indazol-3-ol (a) rather 1han hie keto tantomer b. G. deSitevens. A. Halanandaris. P. Wenk, ant L. Warfman, f. A mer. Chem, Soc, 81, 6292 1959), proposed the dipolar sumeture e for this rompond. In CHCh a exhibits a band at 5.86μ aml must hlerefore exisl as the keto tantomerd. Alkylation of with MeI wivese
 A Nalle. 25, 6t,1 (1936)].

[^2]:

 111, $5+4(1962)$.

 lof Mr. W. Muhumand saff.

