New Compounds

New Thio Derivatives of Carcinogenic Arylamines. IV. 4-Acetamido-3-methylthiodiphenyl

T. LLOYD FLETCHER, CAROL-ANN COLE, HSI-LUNG PAN, AND Moses J. Namkung

Chemistry Research Laboratory of the Department of Surgery, University of Washington, School of Medicine, Seattle, Washington, 98105

Received February 6, 1970

In earlier papers in this series, ^{1b} we described the synthesis of some new thiofluorenes related to the metabolism of the carcinogen 2-acetamidofluorene. Since we have just received word that the compound named in the title is identical with the compound isolated from a reaction of methionine and 4-acetamidodiphenyl N-sulfate² (carried out to elucidate the path of carcinogenesis of N-hydroxy-4-acetamidodiphenyl), we wish to report our synthesis.

Experimental Section^a

4-Amino-3-bromodiphenyl.—To a stirred solution of 4-amino-diphenyl (1.69 g, 0.01 mol) in DMSO (8 ml) was added, dropwise, 48% HBr (1.2 ml, 0.01 mol).⁴ The solution was stirred overnight at room temperature, and then heated to $95-100^{\circ}$ for 1 hr, poured into H_2O (100 ml), and basified with NH₄OH. The brown product (1.85 g, 74%) was rollected and recrystallized from EtOH, mp $64-65^{\circ}$ (lit.⁵ mp 66°).

3-Bromo-4-nitrodiphenyl.—A mixture of 4-amino-3-bromodiphenyl (2.49 g), 40% AcO₂H (35 ml), and AcOH (25 ml) was refluxed for 15 min, moded, and then poured into H₂O (500 ml). After the light yellow emulsion was allowed to stand overnight, the yellow solid [1.6 g, a mixture of low-melting (35-40°) product and high-melting (ca. 140°) by-product] was collected and purified by chromatography on alumina (C₆H₆). Fractional crystallization from EtOH allowed separation of the more soluble yellow needles (1.25 g, 45%), mp 41–42° [lit.6 bp 252–254° (7 mm)]. Anal. (C₁₂H₈BrNO₂) C, H, N.

3-Methylthio-4-nitrodiphenyl.—3-Bromo-4-nitrodiphenyl (14 g, 0.05 mol), DMSO (346 ml), and a freshly made solution of NaSCH₃ in abs EtOH (36 ml), containing 1 equiv of the sulfide, were stirred together (CaCl₂ tube) for 48 hr, heated on a steam bath for 0.5 hr, then diluted with water containing a few milliliters of HCl. The yellow precipitate was filtered off, washed (H₂O), and dried giving 12.1 g (96%), mp 88-98°. Chromatography on

- (1) (a) Supported in part by a grant (CA-01744) from the National Cancer Institute, National Institutes of Health, and in part by Research Career Development Award 5-K3-CA-14.991 (T. L. F.); (b) H.-L. Pan, M. J. Namkung, and T. L. Fletcher, J. Med. Chem., 11, 1236 (1968).
- (2) We thank Dr. J. A. Miller and Dr. E. C. Miller, McArdle Laboratory for Cancer Research, University of Wisconsin, for sending us this information from a paper by J. R. Deltaun, E. C. Miller, and J. A. Miller, Cancer Res., in press.
- $_{13})$ All melting points were taken on a Fisher-Johns block and are corrected. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values. Analyses were performed by A. Bernhardt, Elbach fiber Engelskirchen, West Germany, and by Schwarzkopf Laboratories, Woodside, N. Y.
- (4) T. L. Fletcher, M. J. Namkung, and H.-L. Pan, Chem. Ind. (London), 660 (1957).
- (5) J. R. A. Pollock and R. Sievens, Ed., "Dictionary of Organic Compounds," Vol. I, 4th ed. Oxford University Press, New York, N. Y., 1965, p 93.
- (ii) F. H. Case and H. A. Sloviter, J. Amer. Chem. Soc., 59, 2382 (1937).
- (7) T. L. Fletcher, M. J. Namkung, and H.-L. Pan, J. Med. Chem., 10, 936 (1967); a solution containing 0.1 g of NaSCHz/ml was prepared by mixing a solution (337 ml) of NaOH (20.8 g), at $<5^{\circ}$, in abs EtOH with 25 g of MeSH.

alumina (C_6H_6) and recrystallization from EtOH gave shiny yellow plates, mp 99–100°. Anal. $(C_{13}H_{11}NO_2S)$ C, H, N.

4-Amino-3-methylthiodiphenyl.—A mixture of 3-methylthio-4-nitrodiphenyl (4 g), 2,2'-oxydiethanol (50 ml), and 99-100% hydrazine hydrate (62 ml) was refluxed for 1.5 hr. The condenser was removed and boiling continued until the internal temperature reached 205°. Refluxing was then resumed for 2.5 hr. The mixture was cooled and diluted with $\rm H_2O$. The white precipitate (3 g, 86%) was isolated and recrystallized from EtOH- $\rm H_2O$ to give an analytical sample, mp 55.5-56.5°. Anal. ($\rm C_{13}H_{13}-NS$) C, H, N.

4-Acetamido-3-methylthiodiphenyl.—4-Amino-3-methylthiodiphenyl (1 g) dissolved in C_6H_6 (5 ml) was mixed with Ae_2O (0.5 ml), boiled gently for 3 min, and evaporated to dryness to yield a white product (1.2 g, 100%). Recrystallization from EtOH gave an analytical sample, mp 120.5-121.5°. Anal. ($C_{15}H_{15}NOS$) C, H, N, S.

New Benzimidazoles

William R. Sullivan

Research Division, Hoffmann-La Roche Inc., Nutley, New Jersey 07110

Received November 24, 1969

Since a variety of pharmacological and chemotherapeutic activities have been reported for benzimidazole derivatives, a number of previously unreported compounds containing the benzimidazole nucleus were prepared for biological screening. The substances and associated data are listed in Tables I and II. The methods of preparation are adaptations of known procedures.

Experimental Section²

Method A.—Equimolar amounts of the appropriate 2-methylbenzimidazole and aromatic aldehyde³ were dissolved in Ac₂O and the solution refluxed for 24 hr during 3 working days. The Ar₂O was decomposed with ice—H₂O and the solution neutralized with NH₄OH. In the case of 2, the acetoxy intermediate could not be isolated in a pure state so it was saponified with NaOH to the free phenol which was purified as the hydrochloride. Compound 3 was prepared by NaOH hydrolysis of 5 and 4 was obtained by heating 7 with pyridine HCl; yields are based on the starting materials 5 and 7.

Method B.—Equimolar amounts (usually about 0.03 mol or approximately 5 g) of the appropriate 2-methylbenzimidazole and aromatic aldehyde were mixed in a large test tube and heated in a wax bath at 200° for 2 hr during which the H₂O which formed distilled out of the reaction mixture. The residual mass

- (1) Illustrative examples include (a) cholesterol-lowering: M. L. Blark, G. Rodney, and D. B. Capps, Biochem. Pharmacol., 17, 1803 (1968); (b) analgetic: A. Hunger, J. Kebrle, A. Rossi, and K. Hoffmann, Experientia, 13, 400 (1957); (c) antifungal: S. Herrling, H. Sous, W. Krüpe, G. Osterloh, and H. Muckter, Arzneim.-Forech., 9, 489 (1959); (d) antiviral: I. Tamm, H. J. Eggers, R. Bablanian, A. F. Wagner, and K. Folkers, Nature, 223, 785 (1969); (e) anthelmiutic: H. D. Brown, A. R. Matzuk, I. R. Ilves, L. H. Peterson, S. A. Harris, L. H. Sarett, J. R. Egerton, J. J. Yakstis, W. C. Campbell, and A. C. Cuckler, J. Amer. Chem. Soc., 33, 1764 (1961).
- (2) Melting points are corrected. With the exceptions noted in the tables, analytical results were within $\pm 0.4\%$ of the theoretical values.
- (3) Except for 4-(2-dimethylaminoethoxy)benzaldehyde, which was prepared by the procedure of M. W. Goldberg, and S. Teitel, U. S. Patem 2,879,293 (1959), the starting aldehydes were obtained from commercial sources.

TABLE I 2-Vinylbenzimidazoles

	R	X	y N	Iethod	Recrystn solvent	Mp, °C	Yield,	Formula	Analyses
1	C ₆ II ₅	Н	CH ₂ —		EtOH	179–180	75	$C_{22}H_{18}N_2$	N
2 3	m-HOC ₆ H ₄ p-HOC ₆ H ₄	H H	Н	A A	H ₂ O(HCl) EtOH	$286-288 \mathrm{dec}^a$ $310-312 \mathrm{dec}$	45 93	$C_{15}H_{12}N_{2}O\cdot HCl\\ C_{15}H_{12}N_{2}O\cdot HCl$	C, H, N C, H, Cl ^b
4	ОН	H	Н	A	H ₂ O	275–276 dec	87	$\mathrm{C}_{15}\mathrm{H}_{12}\mathrm{N}_{2}\mathrm{O}_{2}\!\cdot\!\mathrm{HCl}$	C, H, Clc
5	$p\text{-}\mathrm{C_6H_4OCOCH_3}$	Н	Н	A	EtOH	231-232	30	$C_{17}H_{14}N_2O_2$	N
6	OCH ₂ CH ₂ N(CH ₂) ₂	H	II	Λ	EtOH	183,5–184,5	11	C19H21N3O	C, H
7	CI OCOCH ³	И	11	A	DMP-H ₂ O	237–238	34	C ₁₈ H ₂₆ N ₂ O ₃	C, H
8 d	-CI	H	Н	A	EtOH	258.5-260	82	$\mathrm{C}_{15}\mathrm{H}_{10}\mathrm{Cl}_2\mathrm{N}_2$	N
9e	-CI	Н	CH ₃		EtOH	168–169	84	$C_{16}H_{12}Cl_2N_2$	С, Н
10	-CI	NO_2	Н	A	AmOH	281–282	55	$\mathrm{C}_{15}\mathrm{H}_{9}\mathrm{Cl}_{2}\mathrm{N}_{3}\mathrm{O}_{2}$	N
11	-Cl	Cl	Н	В	Xylene	145–149	71	$\mathrm{C}_{15}\mathrm{H}_{9}\mathrm{C}\mathrm{l}_{3}\mathrm{N}_{2}$	Cl
12		Н	Н	В	EtOH	219-220	52	$C_{15}H_{10}Cl_2N_2$	N. Cl
13	CI CI CI CI,	NO2	Н	В	MeOCH₂CH₂OH	261-262	65	C15H9Cl2N3O2	Cl
14	CI	Cl	Н	В	EtOH-H ₂ O	219.5–220.5 dec	71	$C_{15}H_9Cl_3N_2$	Cl
15	$m = \operatorname{Br} C_6 H_4$	Н	Н	В	MeOCH2CH2OH	232-233	80	$C_{15}H_{11}BrN_2$	C, H, N, Br
16	\perp_{s}	н	Н	В	EtOH	$242243~\mathrm{dec}^f$	44	$C_{13}H_{10}N_2S$	C, H, N
17		NO_2	Н	В	MeOCH2CH2OH	287–291 dec	50	$C_{13}H_9N_3O_2S\cdot HCl$	Cl. N. S ^g
18		Cl	Н	В	Toluene	201.5-202.5	54	$C_{18}H_{9}ClN_{2}S$	S, Cl
19 ^ħ	J _S B₁·	Н	Н		EtOH	245.5–247.5 dec	70	C ₁₈ H ₉ BrN ₂ S·HBr	\mathbf{s}
20^{i}	$I_{\rm S}$	Cl	Н		MeOCH2CH2OH	298–299 dec	58	$C_{13}H_8BrClN_2S\cdot HBr$	s

^a HCl salt. Base mp 193-194° from xylene (C, H, N). ^b HCl salt. H: calcd, 4.80; found, 5.40, 5.35. Cl: calcd, 13.00; found 13.49, 13.58. HCl salt. H: calcd, 4.54; found, 5.13, 5.40. Previously prepared by Dr. W. Wenner. Methiodide mp 287-288° dec (C, H, N, I). / Mp 234-235° was reported by Kalle A.-G., German Patent 1,105,713; Chem. Abstr., 56, 8215 (1962). Cl: calcd, 11.52; found, 10.85. * HBr salt. Base mp 185-187.5° from EtOH-H₂O (Br, N, S). * HBr salt.

was then extracted 3 times with 200-ml portions of boiling H₂O₂ at which time it usually solidified, to remove unreacted starting materials. The residue was then crystallized from an organic

N-Alkylation (1 and 9).—2-Styrylbenzimidazole⁴ and 10% M excesses of KOH and PhCH₂Cl were dissolved in EtOH and the solution refluxed for 2.5 hr. The precipitated KCl was

filtered and the filtrate diluted with H2O, and cooled, during which process 1 separated. Compound 9 was prepared from 8 by refluxing 1 hr with excess MeI in EtOH in the presence of NaOH; the product separated from the hot reaction mixture. Quaternization of 9 was accomplished by refluxing in Me₂CO with an excess of MeI; the product separated as the reaction ${\bf progressed.}$

Bromination (19 and 20).—The Br-free precursors (16, 18) were dissolved in glacial HOAc and an equimolar solution of

⁽⁴⁾ R. Weidenhagen, Ber., 69, 2263 (1936).

		iii							
	R° DH	\mathbb{R}^{h}	Method	Recrystn solvent	Mp_{c} $^{\circ}C$	Yiehl.	Formula	Analyses	
21	Olf	H		H ₂ O	253-254°	84	$C_{13}H_{10}N_{2}O_{2}\cdot HCl$	X. CI	
22	-CCH_CH_N(CH)	11	\mathbf{c}	50% E1OH	184185 ⁷	311	Ca711raNaO+2C411gO6	C, II, N	
23	OCH_CH_N(CH_);	NO2	C	EiOH	212~214	57	C17H41N4O3	C, 11	
2-1		Cl	C	ЕтОН	240.5-241.5	56	$C_{12}\Pi_{7}C\Pi_{1}N_{2}$	Cl	
25		Cl	C	Xylene	226, 5-227 5	28	CuH7CIN ₂ S	C1, 8	

" HCl salt: Cl calcd, 13.49; found 12.86. * Tartaric acid salt.

Br₂ in CCl₄ was added slowly with stirring at room temperature. The hydrobromide of the brominated product separated from the reaction mixture. The location of the Br substituent was verified by nmr spectroscopy.

Method C.—Equimolar amounts of the o-phenylenediamine and aromatic aldehyde were heated in PhNO₂ in a distillation apparatus until the distillate came over clear (H₂O no longer forming, usually about 30 min). The residual distilland was cooled, and the product was collected and recrystallized.

Compound 21 was prepared by refluxing a solution of 4-(2-benzimidazolyl)guaiacol⁴ in pyridine HCl for 45 min, then pouring over ice and collecting the product. It was recrystallized from $\rm H_2O$ containing small amounts of NaHSO₃ and HCl.

Acknowledgments.—The author thanks Drs. A. Steyermark and F. Scheidl for microanalyses, Mr. S. Traiman for ir spectra and Dr. T. Williams for nmr spectra and interpretation.

Antitumor Activities of Some Schiff Bases

ERNEST M. HODNETT AND PAUL D. MOONEY

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074

Received January 14, 1970

Schiff bases are known to slow the growth of some animal tumors.¹ More compounds of this type have now been prepared and have been screened by the Cancer Chemotherapy National Service Center. None of these compounds showed activity against lymphoid leukemia L1210 in the mouse, but some slowed the growth of intramuscular Walker sarcoma in the rat² as shown in Table I.

Table 1
Schiff Bases Prepared
R*CH=NR*

		lmramuscular Widker sarcuma of the rat ^a				
\mathbb{R}^{1}	\mathbf{R}^{2}	Dose, ong kg	7' Cd.	\mathbf{R} eć		
C ₆ H ₄ -2-OH	$\prec_{\rm s}^{\rm N}$	4()t)	0.83	r.		
	C ₆ H ₄ -4-()]]	41)1)	1.03	d		
\(\int\)	C ₆ H ₃ -2-OH- 5-NO ₂	4t)t)	0.94	,		
OH	C_0H_0	4(11)	0.89	f		
ООО	C ₆ H ₄ -2-OH	4()()	0.78	J		
OH	C ₆ H ₄ -4-()H	41)1)	0.58	Ĵ		

The screening data were supplied through the kindness of Dv. Harry B. Wood, Jr., of the Cancer Chemotherapy National Service Center, National Institutes of Health, Bethesda, Md. Assays were performed according to CCNSC specifications as reported in ref 2. ** Effectiveness against intramuscular Walker sarcoma of the rat is measured by weights of tumors of treated rats (T) compared to the tumors of control rats (C); the value of T/C must be 0.53 or less for significant activity. ** Mp 77-78**. Anal. (C₁₀H₉N₂OS) C, H, N. ** G. N. Walker and M. A. Klett, J. Med. Chem., **9**, 624 (1966). ** Mp 195-196**. Anal. (C₁₂H₉N₃-O₃) C, H, N. ** J. A. Savich, V. V. Zelentsov, and I. Spitsynm, Vestnik Moskov Univ. Ser. Mat. Mekh., Astron., Fiz., Khim., 11, 233 (1956); Chem. Abst., **53**, 1264h (1959).

Acknowledgments.—Grateful acknowledgment is made of the valuable assistance of Joyce Wan, Darwin Darr, and the staff of the Research Foundation of Oklahoma State University in the preparation of these compounds and of this report.

E. M. Hodnett and W. Willie, Proc. Okla. Acad. Sci., 46, 107 (1966).
 "Protocols for Screening Chemical Agents and Natural Products against Animal Tumors and Other Biological Systems." Cancer Chemotherapy National Service Center (CCNSC), Cancer Chemother. Rept., 25, 1 (1962), and as modified (Jan 1966).