at present a better case for radical effect, but also for other molecular configurations containing $\mathrm{C}-\mathrm{H}$ bonds adjacent to functions having high radical stabilizing ability;

Recently, further evidence for the toxophoric chatacter of the benzylic H in chloramphenicol comes from an elegant study by liutter and Garrett. ${ }^{4 n}$ The α-deutero analog of chloramphenicol was synthesized in Kutter's laboratory, and then its antibacterial activity tested by the microbial kinetic method ${ }^{\circ}$ in Garrett's laboratory. An isotope effect of 1.4 was found; that is, the 15 atalog was considerably less active than the parent H-containing drug. This astablishes the involvenment of the $\alpha-\mathrm{H}$ atom in the toxicity of these compounds to $L \therefore$. malis predicted. ${ }^{4}$

Graig and Mc. Mahon have followed up their studies on the microsomal oxidation of α-denteroethybenzene and have shown ${ }^{34}$ that there is all isotope effect in this process of 18. . It is extremely interesting that the size of the isotope effect is comparable in the two similar systems. Even if identical enzymes were inrolved (this is most likely not the case), one would expect a smaller isotope cffect with the more highly activated α position of chloramphenicol. The isotope effect found for chloramphenicol and the comparable effect in the PhEt system strongly support the strue-ture-activity concept ${ }^{4}$ deduced from ey 1 as well as the special character of benzy and ally moietios in medicinal chemistry.

Another large class of compounds containing bentzylic hydrogens is the psychotomimetic amines in which there is presently great interest in structure-activity
(40) Personal cominunication from F. Kutter, br. Karl Thumae Gmbil Company, Biberach, Germany.
correlations. ${ }^{4-44}$ The most active and interesting of these drug's is LSD. This compound has both benzylic hydrogens (those on (C attached to the indole ring) and two allỵie hyedrogens (one on cach side of thr 9.10-double bond). Homolytic abstraction of either type of H should vield quite a stable radical extemsively delocalized orer the extended π-electron system. it has been shown that there is some correlation between electronic effects of substituents and activity in sueh drugs.

With the exception of the chloramphenicol data, none of the data at hand is from sets of congeners ideally designed to isolate and characterize a radical delocalizing role for substituent effects. Taken as a whole, however, it points up the inportance of carefully designing sets of congeners to assay such effects. It seems most likely that sueh effects will be most evident in the high energy-requiring processes of rapidly growing cells: and the high oxygen-consuming processes of the central hervoussystem.

It must be remembered in undertaking such studies that the particular oxidative processes perturbed by benzylic or allylie H abstraction will also be highly dependent on the relative lipophilic character as well as the geometry of a given drug.

Acknowledgment.-- We wish to thank Miss Catherine Chureh for measuring the partition coefficient of ally aleohol.

1+1, X. T. Shulgin, T, Sargent, and C. Naranjo, Nuture (London), 221, 537 (1969).
(42) ('. Chothia ans 12. Yauling. Proc. Nut, Acad. Sci. U.S., 63, 1063 (1969)
43) S. H. Snx̧der anll L:. Richelson, itid., 60, 206 (1968).
(44) S. H. Snyder and C. R. Merril, ibid, 54, 258 (1965),

Notes

The Lse of σ^{+}in Structure-Activity Correlations ${ }^{\text { }}$
Corwin Hassch
Department of Chemistry, Pomona Collegc, Clawmont, Culifornia 91:11

leceroed Mny in $1: \hat{n} O$
The use of substituent constants and computerized regression analysis for correlating chemical structure with biological activity is beginning to yield fascinating results." However, since our knowledge of receptor sites and enzymic mechanisms is so very limited, we are still in the embryonic stages of developing systematic procedures for disentangling substituent effects in structure-activity relationships. In the present

[^0]state of the art one must try all reasonable parameters before making a choice of the "best" regression equation. Of course, in deciding on the "final" equation, ill other knowledge about the system must also be contsidered. As the physical-chemical parameters become more refined, and as our use of them becomes more skillful, greater insight into biomedical reaction mechanisns will certainly ensue. The purpose of this raport is to reconsider studies which we now find can be better defined by a more judicious choice of parameters.

In the correlation ${ }^{3}$ of relative sweetness of compounds of structure I from the work of Blanksma and Hoegen, ${ }^{4}$ of 1 was formulated. Equation 1 is a satisfying result

$$
\begin{array}{clcc}
\log R S=1.610 \pi & n & \imath & s \\
1.831 \sigma+1.720 & 9 & 0.936 & 0.282
\end{array}
$$

and a comparatively simple expression showing that relative sweetness ($R S$) depends on the hydrophobic

[^1]Table I
Data for Reduction of Achtophexones by Rabbir Kldney Reductase

Substituent	σ^{*}	σ^{+a}	$\pi^{\text {b }}$	$E_{8}{ }^{c}$	-		$\\|^{\triangle} \log k 0 \mid$
					O1,sd ${ }^{\text {d }}$	Caled ${ }^{\text {e }}$	
H	0.00	0.00	0.00	1.24	1.068	1.20\%	0.14
$4 . \mathrm{COCH}_{3}$	0.50	0.50	-0.37	$-1.28{ }^{7}$	2. 2.57	2.580	0.02
$4-\mathrm{NO}_{2}$	0.78	0.79	0.24	-1.28	2.944	2.931	0.01
$4-\mathrm{NHCOCH}_{3}$	0.00	-0.60	-0.79	$0.63{ }^{7}$	0.591	0.667	0.08
$3-\mathrm{OCH}_{3}$	0.12	0.05	0.12	1.24	1.631	1.266	0.37
3.50.	0.71	0.67	0.11	1.24	1.96.	2.015)	0.05
$4-\mathrm{CH}_{3}$	-0.17	-0.31	0.52	0.00	1.628	1.210	0.42
$4 .() \mathrm{CH}_{3}$	-0.27	-0.78	-0.04	0.69	0.204	0.431	0.23
$4-\mathrm{CF}$;	0.54	0.61	1.07	-1.16	2.500	2.676	0.18
$3-\mathrm{CH}_{3}$	-0.07	-0.07	0.51	1.24	0.973	1.121	0.15

${ }^{a}$ From Leffler and Grumwald, "Rates and Equilibria of Organic Reactions," Wiley, New York, N. Y., 1963, p 204. ${ }^{b}$ Phenoxyacetic acid valıes from T. Fujita, J. Iwasa, and C. Halısch, J. Amer. Chem. Soc., 86, 5175 (1964). \quad From E. Kutter and C. Hansch, J. Med. Chom., 12, 647 (1969). ${ }^{d}$ From ref 7. e Calculated using eq 5. I Estimated valnes; see text for disclussion.

character of X as well as its electron-releasing ability. Reconsidering the problem and the possibility of a direct resonance interaction between the substituent X and the NO_{2} function suggested that σ^{+}should be a better parameter than σ to correlate such a set of congeners. Equation 2 shows this to be true. Not only is

$$
\begin{array}{llcc}
\log R S=1.434(\pm 0.39) \pi- & n & r & s \\
1.026(\pm 0.41) \sigma^{+}+1.584(\pm 0.30) & 9 & 0.972 & 0.190 \tag{2}
\end{array}
$$

eq 2 a much better correlation than eq 1 (compare values of s), it makes more mechanistic sense in the light of the resonance interaction shown in I. Moreover, the lower coefficient with π in eq 2 is more in line with results from many other systems. ${ }^{2}$ Values of the coefficient of π beyond 1.2 are extremely rare. It has been pointed out ${ }^{3}$ that differences in dipole moment of the various congeners may be responsible for the variation in sweetness. If indeed this is true, structures such as Ib would be most important in determining biological response. The correlation of dipole moments with σ constants is of course well known. ${ }^{6}$

A situation similar to that of the sweet compounds considered above comes from the studies of McMahon and his colleagues. ${ }^{7}$ They have made an extensive study of the enzymic reduction of substituted acetophenones. Here, too, as shown by II, we find the possi-

[^2]bility for direct resonance interaction between substituent X and the reaction center. From their data on the purified form of rabbit kidney reductase in Table I the following equations result.

$\log k_{0}=2.042(\pm 0.98) \sigma+$	n	r	s
$1.173(\pm 0.41)$	10	0.862	0.487
$\log k_{0}=1.514(\pm 0.55) \sigma^{+}+$			
$1.480(\pm 0.29)$	10	0.91	0.390

$1.480(\pm 0.29)$
100.9140 .390

Again considerable improvement is found in the use of σ^{+}instead of σ (the figures in parentheses are the 95% confidence intervals). The small differences between eq 3 and the corresponding equation reported by McMahon, et al., are due to computer rounding errors. Using CNDO/2 method for the calculation of molecular orbital indices, Mc.Mahon, et al., found that LEMO values yielded a linear relation almost as good as eq 3 ($r^{2}=0.72, s=0.504$). The positive slope of eq 4 indicates that electron-releasing functions retard the rate of reduction and that functions such as $4-\mathrm{OCH}_{3}$ and $4-\mathrm{NHCOCH}_{3}$ have particularly bad effects. The more positive the carbonyl carbon atom, the faster the rate of reduction. This, of course, supports the suggestion of Mc $\$ Iahon, et al., that the first step in the reduction is hydride transfer.

A variety of attempts to improve eq 4 by addition of hydrophobic terms (π) were unsuccessful as McMahon's group had also found. However, it was found that the addition of a steric constant for the 4 substituent did significantly improve the correlation as shown in eq 5 . The negative coefficient with the E_{s} term for the 4-

$$
\begin{array}{rlccc}
\log k_{0}=-0.306(\pm 0.21) E_{\mathrm{s}}-4+ & n & r & s \\
1.208(\pm 0.42) \sigma^{+}+1.585(\pm 0.20) & & 10 & 0.970 & 0.251 \tag{0}
\end{array}
$$

substituent indicates that large substituents in this position are effective in increasing the rate of reaction. In comparing eq 5 with eq 4 , we find $F_{1,7}=12.4$, indicating significance at $\alpha \leqq 0.01$. However, eq 5 must be accepted with caution since $E_{\text {s }}$ values for $4-\mathrm{COCH}_{3}$ and $4-N H A c$ are not known and were estimated. The $4-\mathrm{COCH}_{3}$ function was assigned the same value as 4 NO_{2}. E_{s} for $4-\mathrm{NHAc}$ was taken as equivalent to E_{s} for N; that is, it is assumed that this function can rotate to a position of minimum repulsion so that only the steric effect of the nitrogen atom is significant. This same assumption has been used in the calculation of E_{s}
vadues for -OMe (see footnote a Table l). Evidenec for the validity of this assumption comes from a study of the steric effects in hapten-wntibody interactions." In this study: the value of E_{s}° was found to be 0.40 . This is close to that of the calculated value used in Table l. Use of 0.40 actually gives a slightly better fit with ed \bar{j}. It is of particular interest that F_{∞} an estimated for -OMle and -NHAc gives guite satisfactory results in two very different biological systems.

The negative eoefficient with the E_{s} terms means that the rate of reduction is increased by bulky groups in the 4 position. Alechanistically, this is probably best rationalized in terms of hoshland's induced-fit hypothesis." The rigid positioning of the substituent in the 4 position appears to be quite inportant. A small effeet is produced by groups such as -OMe and -NHAe which can adjust to positions of minimum repulsion while large offects are brought about by Cl_{3} and $\mathcal{N} \mathrm{O}_{2}$. lhe use of a polarizability term in ey, in place of $f=-4$ results in a much poorer correlation indicating volume alone is not the determinink factor.


```
11968 ,
```


Metal Chelate Steroid Analog. [7-Amino-3-(1,5-dimethylhexyl)dodecahydro-3a,6-dimethyl-lH-benz[e]indene-6-methylamine]bis(ethylenediamine) cobalt $\left(3+\right.$) Trichloride ${ }^{1}$

I. Giy Dosamem and Pathend C. Fhath

Deparment of Chemistry, Clarkson College of Technology, Potsdam, Nerr York 13676

Receiverl November 24, 196:
Over the last decade. much work has been done concerning the synthesis of steroid analog systems wherein various ling carbon atoms have been replaced with N. (), or S. Some of the aza, oxa, and thia steriods possess biological activity. We wondered if it might be possible to synthesize a molecule which contained a metal chelate ring within a reasonable facsimile of a steroid ring srstem. Scheme I shows the reaction employed to prepare the requisite ligand. 7 -amino--;)(1, $\overline{5}$-dimethylhexyl) dodecahydro-3a, 6 -dimethyl- $1 H$ benz[e] jindene-6-methylamine (II).

Compound II was prepared in 86% vield by reaction of A-nor-2, 3 -secocholestant-2, 3-dioic acid (1) ${ }^{2}$ in CHCl_{3} mixed with concentrated $\mathrm{H}_{4} \mathrm{SO}_{4}$ and NaN_{3}. The ir spectrum was in agreement with structure $I I$ in all respects. All elemental analyses of bis derivatives, α naphthylurea, benzensulfonamide, p-chlorobenzamide, prepared from II by standard procedures ${ }^{3}$ were within experimental error ($\pm 0.3 \%$) and the ir spectra of the derivatives were consistent with the expected structures. The dihydrochloride of $\mathrm{II}(\mathrm{II} a)$ was prepared by precipitation from $\mathrm{C}_{6} \mathrm{H}_{6}$ with dry HCl . Compomid II was added to rix-dichlorobisethylentedianinecobalt (3+)

[^3]
$\mathrm{ell}=\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)_{\mathrm{N}} \mathrm{NH}_{4}$
chloride in AleOH to yield 96% of golden crystalline [7-amino-3-(1,i)- dimethylhexyl)dodecahydro-3a,6-di-methyl-1 H-benz [e]indene- 6 -methylamine]bis (ethylenediamine) cobalt $(3+$) trichloride (III). The ir spectrum was consistent with the assigned structure. Ir maxima reported to be characteristic of CoN bonds were present. ${ }^{4}$ Finally, III, which is empletely water soluble, gave a 4 particle depression of the freezing point in aqueous solutions and was diamagnetic. Thus, all the data confirm the structures assigned for 11 and III.

The preparation of other metal chelate steroid anabos is underway and the complete conformational characterization of II and III by X-ray diffraction methods will soon be initiated. It is interesting to note that models of III show that the normal shape of the " A " ring is not completely distorted, and the two external rings present due to the bidentate ethylenediamine ligands might be said to be structurally somewhat similar to compounds such as the ethylene ketal of cholestanone.

Biological Activity. - The capacity of the test compound to interfere with the incorporation of labeled acetate and/or mevalonate into cholesterol by rat liver homogenate was determined in vitro by the method of Dvornik, et al. ${ }^{j}$ Any t.est compound producing 40% inhibition of cholesterol synthesis at $1 \times 10^{--4} M$ is considered active and a lead worth further work. IIl was biologically active as a hepatic cholesterogenesis, inhibitor displaving is\% inhibition of cholesterol sunthesis. Il also was put through the same screens as III, but III was more active than II. II showed only

[^4]
[^0]: (1) This work was shlporten hy Grant © $\therefore 11110$ from the Nationat Institutes of Healtl).
 (2) (a) C. Hanscl, Accowit. Chem, Hex., 2, 252 (1909); (1, C. Hanch, J. Org. Chem., 35, 620 (1970).

[^1]: (3) L゙. W. Deutech and (. Hansch, Nuture (Lomlon), 211, Eis (1966).
 (4) J. J. Blanksina and l). Hoegen، Red. Trav. Chim. l'ays-Bus, 65, 3:3 (1946).

[^2]: (b) J. W. McFardand, unpublished results.
 (6) M. Charton, J. Org. Chem., 30, 552 (1965).
 (f) R. B. Herman, H. W. Culp, R. E. McMalion, and M. M. Marsh. J. Med. Chem. 12, 749 (1969).

[^3]: (b) Taken in part from the thesis submitted by Patricia T:. Flath in partial fulfilment of the requirements for the M, S. degree
 2) A. Windaus and (C. Therig. Ber.. 47, 238 : (1914).

[^4]: i4, K. P. Bertin, l. Nakagawa, S. Misushima, 'T'. J. Lane, and J. V. (Qnag. hinn!. J. Aner. (\%em, Suc, 80، 525 (1958).

