HOAc, the solution was cooled to 10°, and 2.5 ml of 4 N HBr-HOAc was added. The mixture was allowed to stand for 20 min at 10–15°. Excess HBr was removed *in vacuo* and the product was pptd by addition of 100 ml of dry Et₂O. The crude product was filtered, washed with Et₂O, and crystallized from MeOH-Et₂O; yield 250 mg (60%), mp 184–5°, $[\alpha]^{23}D + 45.3^{\circ}$ (c, 1 in MeOH). Anal. (C₁₀H₁₃BrN₂O₂) C, H, N, Br.

N-Benzyloxycarbonyl-2-[4-chlorobutyl]-D-cycloserine.—To a solution of 1.2 g (5 mmoles) of N-benzyloxycarbonyl-D-cycloserine in 20 ml of CHCl₃ was added 1.41 ml of Et₃N (10 mmoles) and 1.96 g (10 mmoles) of 1-bromo-4-chlorobutane. After stirring overnight at room temp the mixture was evapd to dryness. The residue was dissolved in EtOAc and washed successively with 5% K₂CO₃ solution and H₂O, then dried, and evapd. The residue was crystallized from Et₂O giving 1 g (60%); mp 74-75°, $[\alpha]^{32}$ D +38.3° (c, 2 in MeOH). Anal. (C₁₅H₁₉ClN₂O₄) C, H, N, Cl.

.N-Benzyloxycarbonyl-2-benzhydryl-D-cycloserine was prepared in 75% yield by the procedure described above; mp 118– 19°, $[\alpha]^{23}D$ +50.1° (c, 2 in MeOH). Anal. (C₂₃H₂₂N₂O₄) C, H, N.

Nitroheterocyclic Antimicrobial Agents. II. 5-Nitro-1,3,4-thiadiazole-2-carboxaldehyde Derivatives

Goro Asato, Gerald Berkelhammer, and Edward L. Moon

Chemical Research and Development Laboratorics, Agricultural Division, American Cyanamid Company, Princeton, New Jersey

Received March 26, 1970

We recently reported the synthesis of 2-amino- $5-(1-methyl-5-nitro-2-imidazolyl)-1,3,4-thiadiazole,^1$ a broad-spectrum antimicrobial agent. Preparation of this compound and related nitroimidazoles arose from a program based on the replacement of the nitrofuryl microbial activity. This report deals with the second group of nitroheterocyclic compounds we examined, namely derivatives of 5-nitro-1,3,4-thiadiazole-2-carboxaldehyde.

Chemistry.—Initially, 2-methyl-5-nitro-1,3,4-thiadiazole (1) was selected as the primary precursor, and it was prepared from 2-amino-5-methyl-1,3,4-thiadiazole by diazotization and reaction of the diazonium salt with NO_2^- in the presence of Cu. Compound 1, being unstable under the reaction conditions, did not condense with pyridinecarboxaldehyde in the presence of ZnCl₂, Ac₂O, or piperidine. It could be oxidized with SeO₂ in the absence of solvent to afford *ca*. 5% of **2**; however, this method was impractical for our purposes and an alternate route was developed.

The *p*-nitrobenzylidene derivative **3** was prepared and was ozonized in MeOH to afford **4**, which was hydrolyzed with acid to the aminoaldehyde **5**. The thiadiazolecarboxaldehyde **5** was separated from *p*nitrobenzaldehyde by acid extraction and converted into **2** by diazotization and displacement with NO₂⁻ in the presence of Cu. The crude nitroaldehyde was used without purification and overall yields of 6-34%(based on aminoaldehyde **5**) of azomethine derivatives **6–8** were obtained. Ferric ammonium sulfate oxidative cyclization of **8** afforded **9**.

moiety of antimicrobially active nitrofurans by isosteric nitroheteroaromatic groups. The first series investigated, derivatives of nitrothiazolecarboxaldehydes,² exhibited *in vitro* antibacterial and antifungal activity, and several members showed *in vivo* antiCompound 5 was difficult to purify, and microanalyses were unsatisfactory. However, ir and nmr [Me₂-CO- d_6 ; τ 1.83 (s, 2 H, NH₂), -0.04 (s, 1 H, CHO)] supported its structure. The aldehyde 4 was also separable from *p*-nitrobenzaldehyde but it contained some starting material (2-acetamido-5-methylthiadiazole), which persisted as a contaminant even after repeated recrystallizations, and thus the microanalysis

⁽¹⁾ G. Berkelhammer and G. Asato, Science, 162, 1146 (1968).

⁽²⁾ G. Asato, G. Berkelliammer, and E. L. Moun. J. Med. Chem., 12, 374 (1969).

was unsatisfactory. Nonetheless, the structure assigned to 4 was unequivocally supported by ir, nmr, and mass spectral data.

Biological Results.—The nitroaldehyde derivatives **6-9** were assayed *in vitro* against selected microorganisms, as reported earlier.² Only **7** exhibited fairly good growth inhibitory effect (161–250 μ g/ml) against Gram-positive and Gram-negative bacteria, while **9** showed interesting broad-spectrum antifungal activity (15–125 μ g/ml) (Tables I, II). None of these compounds was active $i\hbar vivo$ when administered orally against Salmonella gallinarum in chicks or Staphyloceccus aureus (Smith) or Escherichia coli in mice.

71	'Λ	BLE	ł
-			

In Fileo ANT) BACTERIAL ACTIVITY^{4,b}

	Compounds			
Microorganistos	6	7	8	9
Bacillus ceccas ATCC 10702	2.0	125		250°
B. snbtilis ATCC 6633	125	125		250°
B. thuringiensis		250		
Microcoecus	250°	62		
Staphylococcus anreas ATCC 6538		250		
Streptococcus agalactiae		125		
Streptococcus faecalis ATCC 8043		250		
Aerobacler accogenes	250°	125		
Alcaligenes faccalis ATCC 8750	125	125	250°	250°
Bordctella bronchiseptica	250	62	250°	250°
Eschevichia coli 2	250°	125		
Pasteurella multocida RC 315	125	16	250	250
Salmonella cholecaesuis-var.				
kanzendorf	250°	125		
S. dablia	250°	125		
S. gallinarum 605	250	125		
S. typhimicrium	250°	125	250°	250°
S. typhosa ATCC 6539	250	125	250°	250^{o}

^a Agar dilution tests, minimum inhibitory conen, μ g/ml. ^b Where no value is given the compound was inactive at highest test level, 250 μ g/ml. ^c Slight activity at this conen.

TABLE H

In Vibo Antipungai, Activity^{6,b}

	Componiids			
Organisms	6	7	8	9
Candida albicansBergen Strain, E-3	250			125
C. myocderma—ATCC 9888	250			62
Saccharomyces corevisiacATCC 4100				62
Mucor ramannianns-M-143				62
Fusarium episphacria-F-105	250			31
Hormodendrum cladosporoides—Z-516				62
Trichophyton mentagrophytes-E-11	62	250	250	15
Microsporum gypseum-E-28	31		250	31
Penicillium digitatumP-308B	250			62
Memnoniella cchinataZ-583	250			125
Chactomiam globosum-H-71, QM 6694	31		125	125
Aspergillus famigatus—8-246				125

^{4,6} See corresponding footnotes in Table I.

Experimental Section³

2-Methyl-5-nitro-1,3,4-thiadiazole (1).—A solution of 2.78 g (0.024 mole) of 2-amino-5-methylthiadiazole in 17.5 ml of 48-50% HBF₄ was stirred at 0° and 1.67 g (0.024 mole) of NaNO₂ was added over a period of 30 min. After 20 min of additional stirring,

the mixture was added dropwise to a vigorously stirred suspension of 4.9 g of Cu powder and 24.7 g of NaNO₂ in 50 ml of H₂O at 25°. The mixture foamed and became dark green. After an additional 30 min of stirring, the mixture was filtered, the filter cake was washed well with H₂O, and the combined filtrate and wash solution was extracted (C₆H₆, 3 × 150 ml). The combined extracts were dried (MgSO₄) and evaporated to dryness *in vacuo* to afford 1.75 g of yellow syrup which crystallized on standing. This material melted at 54–55° and exhibited a strong 1700-cm⁻³ band which could be removed by recrystallization from 50°₁₆ aq Me₂CO; mp 65–66° for the analytical sample. Anal. (C₈H₄N₃-O₂S) C, H, N, S.

2-Acetamido-5-(*p*-nitrostyryl)-1,3,4-thiadiazole (3).— A mixture of 157 g (1 mole) of 2-acetamido-5-methylthiadiazole and 151 g (1 mole) of *p*-nitrobenzaldehyde in 1500 ml of hot Ac₂0 was heated at reflux temperature for 17 hr and cooled and the yellow product collected. The product was washed throughly with Me₂CO and dried *in vacuo* to afford 198.7 g (69%), mp >310°, mrr (DMSO-d₈, CH₄CO), 2.30 (broad m, aryl H), 1.75 and 1.90 (db, J = 19 Hz, -11C==CH-). The malytical sample was recrystallized from DMF-Me₂CO. Anal. (Cr₂H₄₀N₄O₅S) C, 11, N, S.

 $\textbf{2-Amino-1,3,4-thiadiazole-2-carboxaldehyde} (5) \in \mathbb{A} \ \text{suspense}$ sion of 50 g (0.17 mole) of 3 in 500 ml of 93% aq Met)II at 0° was stirred and O_3 (0.081 mole/hr in t), generated from a Welsbach Corp. ozonator) was introduced through a capillary tube for 3 hr. The reaction mixture was purged with N₂ for 30 min and the mixture was reduced with 100 g of NaI in 500 ml of $\rm H_{2}O$ and 100 ml of HOAc below 25°. After 35 min of additional stirring, the I₂ was titrated with saturated Na₂S₂D₃ solution. The mixture was extracted twice with EtOAc (24, and 14.), the extracts were dried (MgSQ₄), and the EtOAc removed in vacuo. The residue was heated on a steam bath for 90 min with 100 ml of HUAc and 100 ml of concentrated IICl and the mixture was evaporated in vacuo to give a dark sludge. To this was added 400 ml of 10^{+}_{-6} HCl and 1 l, of EtOAc. The aq layer was removed after shaking and further extracted with 300 ml of EtOAc to remove the last traces of p-nitrobenzaldehyde. The aq layer was neutralized with solid NaHCO₃ and it was extracted with EtDAc (5 \times 600 ml). These extracts were dried (MgSO₄) and evaporated to dryness in vacuo to yield 14.4 g (65%) of aminoaldehyde 5, mp 155~ 157°. A sample rerystallized from Me₂CO-hexane melted at 166-168° dev. Anal. (C₃H₄N₃OS) H, N, S; C: calcil, 27.91; found, 30.01.

A sample of 2-acetamido-1,3,4-thiadiazole-5-carboxaldehyde (4) was obtained in the following manner: the reduced mixture from the ozonolysis was evaporated to dryness, the *p*-nitrobenzaldehyde was removed by washing with Et₂O and the inorganic solids were washed away with H₂O to leave about a 39% yield of 4. An analytical sample, mp 231° dec, was obtained from MeOH recrystallizations. Anol. (C₃H₂N₃SO₂) H, N, S; C: calcd, 35.09; found, 35.74.

The mmr spectrum of another sample of recrystallized 4 (F₃CCO₂H) showed bands at $\tau = 0.2$ (s, 1 H, CHO), 7.38 (s, 3 H, CH₃CO), 6.92 (s, CH₃) and 7.42 (s, CH₃CO). The latter two peaks could be intensified with added 2-acetamido-5-methyl-1,3,4-thiadiazole and the presence of the latter compound was confirmed by the mass spectral analysis which gave m_c/c 171 and 157 as two parent peaks.

5-Nitro-1,3,4-thiadiazole-2-carboxaldehyde (2).--A solution of 4.0 g (0.031 mole) of 2-amino-1,3,4-thiadiazole-2-carboxaldehyde (5) in 8 ml of 48-50% HBF₄ and 20 ml of H₂O was added slowly (ca. 75 min) to a vigorously stirred mixture of 2 g of Cu powder and 8.0 g of NaNO₂ in 40 ml of H₂O at 25°. During the addition bright yellow solids were deposited in the reaction mixture. After stirring an additional 2 hr, the mixture was filtered and the filtrate extracted with CHCl₃ (2 × 150 ml). The aq layer was then acidified to pH 2 and extracted with Et₂O (4 × 200 ml). The combined extract was dried (MgSO₄) and evaporated to dryness *in vacuo* to afford 1.8 g of brown symp, which was used impurified in subsequent reactions with derivatizing reagents. The ir spectrum of the symp exhibited bands at 3400 (m), 1700 (w), and 1165–1195 (broad) cm⁻¹, which suggested the aldehyde readily formed a hemihydrate.

The aldehyde 2 was also obtained by mixing 1.45 g (10 mmoles) of 2-methyl-5-nitrothiadiazole with 1.10 g (5 mmoles) of pulverized SeO₂ and heating on a hot plate. At *ca.* 110° an exothermic reaction was observed and the temperature rose to 170°. This mixture was cooled and extracted with 30 ml of CH₂Cl₂. The extract was filtered and evaporated to dryness to give a yellow-orange

⁽³⁾ Melting points were determined on a Thomas-Hoover apparatus and are uncorrected. Ir spectra were taken on a Perkin-Ehner Model 137 spectrophotometer; hur spectra were taken on a Varian A-60 instronom (MedSi). Microanalyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn. Where analyses are indicated only by symbols of the elements, analytical results obtained for the elements were within $\pm 0.4\%$ of the theoretical values.

liquid, which was further dissolved in Et_2O and filtered to remove an insoluble material. Removal of Et_2O from the filtrate afforded 0.65 g of liquid [ν max (neat) 1700 (broad), 1565, and 1355 cm⁻¹].

5-Nitro-2-thiadiazole Derivatives.—Standard techniques or methods² were used for the preparation of the compounds described below and the yields are based on the amount of 5 used.

3-{ [(5-Nitro-1,3,4-thiadiazol-2-yl)methylene]amino}-2-oxazolidinone (6) was obtained in 6-15% yield and recrystallized from Me₂CO-EtOH as yellow crystals, mp 250-255°. Anal. (C₆H₅N₅-O₄S) C, H, N, S.

1-{ [(5-Nitro-1,3,4-thiadiazol-2-yl)methylene] amino} -2-imidazolidinone (7) was obtained in 13–23% yield and recrystallized from 50% aq EtOH as yellow crystals, mp 230–233°; nmr (DMSO-d₆): τ 2.1 (s, 1 H, CH=N), 2.3 (s, 1 H, NH), 5.8–6.7 (m, 4 H, CH₂CH₂). Anal. (C₆H₆N₆O₃S) C, H, N, S. 5-Nitro-1,3,4-thiadiazole-2-carboxaldehyde thiosemicarbazone

5-Nitro-1,3,4-thiadiazole-2-carboxaldenyde thiosemicarbazone (8) was obtained in 22% yield as a red solid; no snitable sol-

vent for recrystallization was found, mp $> 290^{\circ}$. Anal. (C₄H₄-N₈O₂S₂) C, N, S, H: calcd 1.73; found 2.70.

2-Amino-5-(5-nitro-1,3,4-thiadiazol-2-yl)-1,3,4-thiadiazole (9). —The method reported previously² was used; 46% yield from 8, recrystallized from EtOH-DMF, yellow crystals, mp 240° dec. *Anal.* (C₄H₂N₆O₂S₂) C, H, N, S.

Acknowledgment.—We wish to thank Dr. T. L. Chang (Stamford Laboratories, American Cyanamid Co.) for the mass spectral data and interpretation, Dr. G. A. Kemp and staff for *in vitro* and *in vivo* antibacterial assays, Mr. A. C. Dornbush and staff (Lederle Laboratories) for the *in vitro* antifungal assays, and Mr. G. S. Redin and staff (Lederle Laboratories) for their *in vivo* antibacterial assays.

New Compounds

Some Indole Derivatives¹

FRANK D. POPP

Department of Chemistry, Clarkson College of Technology, Potsdam, New York 13676

Received February 2, 1970

In connection with other work in progress in this laboratory it was necessary to prepare the compounds described in Tables I and II for screening purposes,

^a Recrystallized from EtOH unless otherwise noted. ^b Analyses indicated within 0.3%. ^c All compounds exhibited expected spectra. ^d Calcd: C, 76.43. Found: C, 75.72. ^e Yield (93%) based on recovered steroid. ^f Calcd: C, 76.45. Found: C, 75.70. ^e Not recrystallized. ^k Yield (94%) based on recovered steroid. ⁱ Reaction time increased to 5 hr. ⁱ Iteaction product is $C_{17}H_{14}N_4O_8 \cdot C_2H_3OH$, (mp 111-112°, analyses: C, H); the product was heated to 130° to give the product in the Table. ^k A. Alemany, M. Bernabe, C. Elorriaga, E. F. Alvarez, M. Lora-Tamayo, and O. Nieto [Bull. Soc. Chim. Fr., 2486 (1966)] report mp 193°.

by condensing indole-3-acetic acid hydrazide with carbonyl compounds and by condensing isatin, indole-3-carboxaldehyde, and 1-benzylindole-3-carboxalde-

^a Recrystallized from EtOH unless otherwise noted. ^b Analyses indicated within 0.3%. ^c All compounds exhibited expected spectra. ^d Not recrystallized. ^e Calcd: C, 52.47. Found: C, 51.99. ^f M. P. Cava, R. O. Little, and D. R. Napier [J. Amer. Chem. Soc., **80**, 2257 (1958)] report mp 190-200°. ^e Calcd: C, 74.72. Found: C, 74.11. ^b Calcd: C, 64.28. Found: C, 63.78. ⁱ Calcd: C, 62.87. Found: C, 62.18. ⁱ Triturated with hot EtOH-EtOAc. ^k From EtOAc. ^l Inactive (T/C = 83 - 102%) at 400 mg/kg against L-1210 lymphoid leukemia.

hyde with various amines. Reaction of indole-3-acetic acid hydrazide with succinic anhydride² gave I while

reaction of 3-aminocarbazole with 4-[bis(2-chloroethyl)amino]-o-tolualdehyde gave the expected imine.³

(2) F. W. Short and L. M. Long, J. Heterocycl. Chem., 6, 707 (1969).
(3) F. D. Popp, J. Med. Chem., 7, 210 (1964).

⁽¹⁾ This work was supported by a research grant (CA 10345) from the National Cancer Institute, U. S. Public Health Service.