Experimental Section+

Condensations with Indole-3-acetic Acid Hydrazide.—Equimolar quantities of indole-3-acetic acid hydrazide and the appropriate carbonyl compounds were dissolved in a minimum of EtOH and heated on a steam bath for 30 min. After cooling, and in some cases standing for several days the products described in Table I were obtained by filtration.

Condensations with Amines.—In a similar manner equimolar quantities of isatin, indole-3-carboxaldehyde, or 1-benzylindole-3-carboxaldehyde were allowed to react in EtOH with the appropriate amines to give the compounds in Table II.

Indole-3-acetic Acid Hydrazide and Succinic Anhydride.—A mixture of 1.89 g (0.01 mole) of indole-3-acetic acid hydrazide and 1.00 g (0.01 mole) of succinic anhydride in Me_2CO (5 ml) was refluxed for 15 min and allowed to stand overnight at room temperature. Filtration gave 2.30 g (80%) of I, mp 203–204° from EtOH; ir(KBr): 3400, 3240, 2945, 1700 (broad), 1610 cm $^{\circ}$ 5. Anal. (C₁₄H₁₅N₃O₄): C, H.

Tolualdehyde Mustard and 3-Aminocarbazole.—A mixture of $1.82~\mathrm{g}$ (0.01 mole) of 3-aminocarbazole and $2.60~\mathrm{g}$ (0.01 mole) of 4-[bis-(2-chloroethyl)amino]-o-tolualdehyde was refluxed in EtOH to give $3.22~\mathrm{g}$ (76%) of imine, mp 188° from EtOH. Anal. $(C_{24}H_{23}Cl_2N_3)$: N.

(4) Analyses by Spang Microanalytical Laboratory, Ann Arbor, Mich. All melting points were taken in capillaries and are corrected.

Studies of the Chemistry of Azole Derivatives. XII. Possible Anticonvulsant Thiazolo [3,2-a] benzimidazoles

J. M. Singn

Defence Science Laboratory, Delhi-6, India

Received February 13, 1970

In view of the potent pharmacological activity of a large number of heterocyclic thioureas¹⁻³ additional thioureidothiazolo[3,2-a]benzimidazoles were synthe-

Experimental Section

2-Aminothiazolo[3,2-a] benzimidazol-3-(2H)-one.—A solution of thiazolo[3,2-a] henzimidazol-3(2H)-one⁴ (5 g) in ACOH (20 ml) was slowly added at 0° to a solution of PhN₂Cl with stirring. The mixture was kept for 1 hr at $(0-5^\circ)$ and the product obtained was crystallized from EtOH. The azo compound (5 g) was dissolved in hot EtOH (25 ml). A solution of Na₂S₂O₄ (25 g) in H₂O (50 ml) was added and the mixture was refuxed for 30 min and then cooled. The amino compound obtained was recrystallized from EtOH, yield $57\,^{\circ}C_{\ell}$, mp 185°. Anal. (C_8 H₁N₂S): N.S. Synthesis of Thioureas.—Equimolecular quantities of 2-amino-

Synthesis of Thioureas.—Equimolecular quantities of 2-aminothiazole [3,2-a] benzimidazol-3(2H)-one and an aryl isothiocyanate were refluxed in abs EtOH for 5 hr and cooled. The precipitated thioureas were crystalized (C₄H₂). The hydrochlorides were prepared in Et₂O solution.

Acknowledgment. The author is thankful to Dr. Kartar Singh, Director, Defence Science Laboratory for encouragement and Dr. H. K. Acharya for providing facilities.

4: Pan XI, J. M. Shark, J. Med. Chem., 12, 962 (1969).

A Reinvestigation of the Reaction of Monosodium Urea with Various Substituted Pyrazinecarboxylate Esters

J. William Hanifin, Rosemary Capuzzi, and Elliott Comen

Organic Chemical Research Section, Lederle Laboredovics, A Division of American Cyanamid Company, Pearl River, New York 10965

Received March 30, 1970

We have reinvestigated the reaction of monosodium urea with methyl 3,5-diamino-6-chloropyrazinecarboxylate¹ as well as the 5-methylamino analog and found that a small amount of the desired N-carbamoylpyr-

Table 1 2-Aminothiazolo[3,2-a] benziminazol-3(2H)-onethiourea Hydrochlorides

			Yield,			LD_{50}
No.	R	Formula	$\mathrm{Mpc}^{-z}\mathrm{C}$	9	Activity	(toxicity)
t	Ph	$\mathrm{G_6H_{13}ClN_4S_2}$	220-221	60	÷+	200
2	o-MePh	$\mathrm{C_{17}H_{15}ClN_4S_2}$	195+197	65	++	260
3	$p ext{-}\mathrm{MePh}$	$\mathrm{C_{17}H_{15}ClN_4S_2}$	175~177	59	++	240
-4	n-MePh	$\mathrm{C_{17}H_{15}ClN_4S_2}$	198-200	58	++	280
ō	$o ext{-}\mathrm{BrPh}$	$\mathrm{C_{16}H_{12}ClBrN_4S_2}$	210	60	+++	300
6	$p ext{-}\mathrm{BrPh}$	$\mathrm{C_{16}H_{2}ClBrN_{4}S_{2}}$	165-166	65	+++	280
7	$m ext{-}\mathrm{BrPh}$	$\mathrm{C_{16}H_{12}ClBrN_4S_2}$	189	58	+++	290
s	$o ext{-ClPh}$	$\mathrm{C_{16}H_2Cl_2N_4S_2}$	202-204	62	++++	300
9	p-ClPh	${ m C_{16}H_{12}Cl_2N_4S_2}$	211	59	++++	350
10	m-ClPh	$ m C_{16}H_{12}Cl_{2}N_{4}S_{2}$	215	6.1	+ + + + +	330

sized. These compounds have been tested for anticonvulsant activity (Table I).

azinecarboxamide is produced in each case. The products were isolated by liquid-liquid partition chromatography (llpc) and shown to be the desired compounds by comparison of ir, mass spectrum, tle,

⁽¹⁾ L. Goldman, U. S. Patent 2,617,804, Chem. Abstr., 48, 2124 (1954).

⁽²⁾ T. N. Ghosh and A. R. Chaudhuri, J. Indian Chem. Soc., 28, 268 (1951).

^{(3) 11.} F. Kaut (9a)m and P. Schultz, Arch. Phorm., 273, 22 (1935).

⁽¹⁾ J. William Harófin, Rosemary Capozzi, and Elliote Colem, J. Med. $Ch_{\rm CRG}$ 12, 1102 (1969).

and llpc with an authentic sample. In both cases the reaction mixture consisted mostly of unreacted ester which masked the product in the initial investigation.

Experimental Section

Substituted N-Carbamoylpyrazinecarboxamides.—To 15 ml of dry DMF was added 1.2 g (0.02 mole) of urea. To the stirred solution cooled to -15° was added $1.0 \,\mathrm{g} \,(0.02 \,\mathrm{mole})$ of NaH (50%) in oil). The mixture was left to stir for 2 hr. To the cooled mixture was then added 0.005 mole of the pyrazinecarboxylate ester. The mixture was left to stir for 2 hr, and poured onto 40 g of ice-H₂O (acidified to pH 6 with HOAc). On standing a precipitate formed which was filtered and shown by tlc to contain starting ester and product. The product was isolated by liquidliquid partition chromatography on a Celite column using a heptane-THF-MeOH-H₂O (150:100:10:5) solvent system. The yield of product was about 50 mg (4%) in both cases.

Acknowledgments.—We thank Mr. C. Pidacks and staff for the liquid-liquid partition chromatography.

N-Aryl-N-aroylamino Acid Derivatives

A. Larizza, G. Lettieri, and R. Viterbo

Research Laboratories, Richardson-Merrell S.p.A., Naples, Italy

Received January 26, 1970

We have synthesized N-aryl-N-aroylamino acid derivatives of the general formula I. Recently, compounds of this type have been disclosed. but only compounds

$$\begin{array}{c|c} R & \longrightarrow & N-CHCOR_4 \\ \hline & & & \\ CO & R_4 \\ \hline & & \\ R_1 & \longrightarrow & R_2 \\ \hline & & \\ I & & \\ \end{array}$$

and analgetic activities were found in compounds 3. 4. and 5.

Experimental Section²

Ethyl Esters of N-Aryl-N-aroylamino Acids. General Procedure.—A solution of 0.1 mole of the appropriate aroyl chloride³ in 50 ml of dry PhH was added dropwise with stirring to a solution of 0.1 mole of the ethyl ester of the appropriate N-arylamino acid and 0.1 mole of NEt₃ in 200 ml of dry PhH. The reaction mixture was set aside at room temperature overnight and then filtered in order to remove the formed NEt₃·HCl. The filtrate was shaken with 0.5 N HCl, then with satd aq NaHCO3, and, finally, with H₂O to neutral pH. The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Generally, a gummy residue was obtained, which was directly converted into the acid derivative by hydrolysis (see below). In some cases, the ethyl esters were isolated and characterized (Table

N-Aryl-N-aroylamino Acids (I, $R_4 = OH$). General Procedure. -EtOH (30-50 ml) was added to a mixture of 0.05 mole of the Et ester of the appropriate N-aryl-N-arovlamino acid in 150 ml of 0.5 N NaOH until a clear solution resulted. This solution was refluxed for 4 hr, shaken with Et₂O, and made acid by addition of 4 N HCl. The oily precipitate was extracted with Et₂O or EtOAc. The organic solution was washed (H2O) and dried (Na₂SO₄). The residue obtained after evaporation of the

R	R_{t}	R_2	R_3	R ₄	Mp, °C	Formola	Analyses"
11	H	H	$\mathbf{Pl}_{\mathbf{l}}$	OH	183-184	$\mathrm{C}_{21}\mathrm{H}_{17}\mathrm{NO}_s$	C, H, N
$\mathrm{CH_3O}^{h}$	H	H	Ħ	OH	125 - 126	$\mathrm{C_{16}H_{15}NO_{4}}$	C, H, N
H^g	H	4-Cl	H	OH	153-154	$\mathrm{C}_{19}\mathrm{H}_{12}\mathrm{ClNO}_{5}$	C, H, N, Cl
Cl	H	4-Cl	Н	OH	161-163	${ m C_{15}H_{11}Cl_2NO_3}$	C, H, N, Cl
Cl^{σ}	H	H	H	OH	140-142	$\mathrm{C}_{15}\mathrm{H}_{12}\mathrm{ClNO}_3$	C, H, N, Cl
${ m H}$	H	2-Cl	H	OH	124 - 126	$C_{15}H_{12}CINO_{9}$	C, H, N, Cl
$\mathrm{C_2H_5}()$	H	2-OH	H	OH	137 - 138	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{NO}_{5}$	C, H, N
$\mathrm{C_2H_5O}$	H	H	H	OH	92-93	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{NO}_4$	C, H, N
Cld	H	2-Cl	Η	OH	137 - 138	$\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{Cl}_{2}\mathrm{NO}_{3}$	C, H, N, Cl
$\mathrm{CH_{3}O}$	2-Cl	4-Cl	H	OH	172 - 174	$\mathrm{C}_{16}\mathrm{H}_{13}\mathrm{Cl}_{2}\mathrm{NO}_{4}$	C, H, N, Cl
$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{6}\mathrm{O}^{r}$	H	4-Cl	Η	OH	115-116	$\mathrm{C}_{22}\mathrm{H}_{26}\mathrm{ClNO}_{4}$	C, H, N, Cl
$\mathrm{C_2H_5O}^f$	\mathbf{H}	H	CH_3	OH	128-129	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{NO}_4$	C, H, N
H	H	2-Cl	Н	$\mathrm{OC_2H_5}$	87-88	$\mathrm{C}_{17}\mathrm{H}_{16}\mathrm{ClNO}_{3}$	C, H, N, Cl
CH3()	H	2-Cl	H	$\mathrm{OC_2H_5}$	97 - 98	$\mathrm{C_{18}H_{18}ClNO_{4}}$	C, H, N, Cl
H	4-Cl	$3-\mathrm{H}_2\mathrm{NSO}_2$	H	$\mathrm{OC_2H_5}$	113-115	$\mathrm{C_{17}H_{17}ClN_2O_5S}$	C, H, N, Cl, S
$\mathrm{C_2H_5}()$	4-Cl	$3\text{-H}_2\mathbf{NSO}_2$	H	$\mathrm{OC_2H_5}$	101-103	$\mathrm{C_{19}H_{21}ClN_2O_6S}$	C, H, N, Cl, S
CH ₃ ()	4-Cl	$3-\mathrm{H}_2\mathrm{NSO}_2$	H	OC_2H_5	123 - 124	${ m C_{18}H_{19}ClN_{2}O_{6}S}$	C, H, N, Cl, S
CH ₃ O	Н	4-Cl	H	$\mathrm{NH}(\mathrm{CH_2})_{9}\mathrm{CH_3}$	97 - 98	$\mathrm{C}_{19}\mathrm{H}_{21}\mathrm{ClN}_{2}\mathrm{O}_{3}$	C, H, N, Cl
$\mathrm{C_2H_5O}$	H	4-Cl	\mathbf{H}	$ m NH(CH_2)_2CH_3$	90–92	$\mathrm{C}_{20}\mathrm{H}_{23}\mathrm{ClN}_2\mathrm{O}_3$	C, H, N, Cl

^a The analytical results obtained for the indicated elements are within $\pm 0.3\%$ of the theoretical values. ^b Compound 1. ^c Compound 2. d Compound 4. Compound 5. Compound 3. This is compound 28 in Table II of D. Evans, A S. L. Mackintosh, and S. S. Szinai, J. Med. Chem., 12, 1006 (1969). They report mp 154-156°.

not yet described are now reported (Table I). Considerable choleretic activity was found in compounds 1, 2, and 3. Moreover, meaningful diuretic

⁽¹⁾ Netherlands Application 6805246; SOGESPAR S.A. (1968).

⁽²⁾ Melting points were determined in open capillary tubes and are uncorrected.

⁽³⁾ In the preparation of N-p-ethoxyphenyl-N-salicyloylglycine o-acetoxybenzoylchloride was used.