1-(2-Chloro-5-nitrophenoxy)-2-(4-fluorosulfonylphenoxy)ethane (29a) (Method B).—To 1.68 g (6.0 number) of 25a were added 1.06 g (6.0 number) of 26, 0.83 g (6.0 number) of K₂CO₃, and 6 ml of DMF. The suspension was stirred at 95–100° for 22 hr, then processed as described in method A. The residual solid was recrystallized from E(OH; yield 682 mg (30%)) of light yellow crystals, mp 126-127° (the in C₆H₆). *Abual.* (C₁₄H₁₁Cl-FNO₆S) C, H, N.

For additional compounds prepared by this method see Table 111.

 α -(2-Chloro-4-nitrophenoxy)- α ^c-(p-fluorosulfonylphenoxy)- μ xylene (27g) (Method C),---A stirred mixture of 1.61 g (4.5 numoles) of 23g, 0.79 g (4.5 mmoles) of 26, and 0.62 g (4.5 mmoles) of K₂CO₃ in 5 ml of DMF was kept at room temperature for 24 hr. Addition to 100 ml of H₂O caused the product to separate as a gummy oil which gradually solidified. The product was collected on a filter and washed with H₂O. Recrystallization once from *i*-PrOH and then twice from CHCl₃-MeOH yielded 1.15 g (57°) of white crystals, mp 128-129° (the in C₆H₆). Aual. (C₂₀H₁₅CHFNO₆S) C₁ H, N.

For additional compounds prepared by this method see Table 111.

p-Chlorophenyl p-[4-(2-Chloro-4-nitrophenoxy)butoxy]benzenesulfonate (32) (Method D).— A mix(mc of 505 mg (1.25 mmoles) of 27c and 205 mg (1.36 mmoles) of Na p-chlorophenoxide in 2 ml of DMF was stirred at room temperature for 4 hr and then added to 50 ml of H₂O. The initially gummy precipitate solidified rapidly upon standing. The crude produc) was collected on a filter and washed with $\Pi_2 O$. Recrystallization from MeOE(OII H₂O with aid of charcoal yielded 452 mg (70%) of nearly white crystals, mp 133–134° (the in C_6H_6). Anol. $(C_{22}\Pi_{1,2}$ - $Cl_2NO_2St|C_c|H_c|N_c$

trans-1,4-Bis(bromomethyl)cyclohexane (22h), In a 3-necked tlask equipped with mechanical stirrer, condenser with drying tube, and addition funnel was placed 136 g (500 number) of PBra. The reaction yessel was cooled in ice as a solution of 72.1 g (500 mutoles) of trous-1,4-cyclohexmedimethanol in 40 ml of pyridine and 40 nd of CHCl₃ was added dropwise with stirring to the PBr_k over a period of $\frac{2}{2}$ hr. The mixture was then stirred at 55-60° for an additional 18 hr, then filtered twice to remove precipitated pyridine salts which were washed with Collo. Additional C₆H₆ was added to the filtrate to bring the 1qtal volume to 500 ml. The C_6H_6 solution was washed successively with 750 ml of 5% HCl, 750 ml of 5% NaOH, and 44. of H₂O. After being dried (MgSO₄), the solution was spin-evaporated in cacaa giving a residual oil which solidified upon cooling and standing. Recrystallization (rom McOII gave 80.5 g (60°) of colorless crystals, mp 53/55° (flc in petroleum ether), lit.¹¹ mp 55^{*}.

Acknowledgment — The technical assistance of Diane Shea, Janet Wood, and Julie Leseman with the enzyme assays is acknowledged.

Irreversible Enzyme Inhibitors. CLXXVII.^{1,2} Active-Site-Directed Irreversible Inhibitors of Dihydrofolate Reductase Derived From 4,6-Diamino-1,2-dihydro-2,2-dimethyl-1-(phenylalkylphenyl)-s-triazines. II³

B. R. Baker and Nicolaas M. J. Vermeulen⁴

Department of Chemistry, University of California at South Bachara, South Barbara, California - 93106

Received July 10, 1970

Twenty-eight analogs of the title compound bearing a terminal SO₂F group were investigated as irreversible inhibitors of dihydrofolate reductase from Walker 256 rat tumor, L1210 monse lenkemia, monse liver, and several normal rat tissnes. Only 4 of the irreversible inhibitors showed tissne specificity in the rat by giving good inactivation of the Walker 256 enzyme and poor inactivation of the crude rat liver enzyme, namely, the 1-phenyl-s-triazines with the following substituents on Ph: $p-(CH_2)_4C_6H_4SO_2F-p$ (5), 3-Cl-4- $(CH_2)_2C_6H_3-4-Cl-2-SO_2F$ (8), $p-(CH_2)_4OC_6H_4SO_2F-p$ (13), and $p-(CH_2)_6C_6H_4SO_2F-p$ (14); this tissne-specificity of inactivation was due to the rapid hydrolysis of the SO_2F group to SO_3H by a liver "sulfouyl fluoridase." Similarly the rissne specificity in enzyme inactivation of L1210 vs. monse liver with 6 compounds (4-7, 11, 14) was due to the action of the "sulfonyl fluoridase." In contrast 6 other tissne specific irreversible inhibitors of L1210 dihydrofolic reductase owed their specificity to differences in the structure of the enzyme from L1210 and monse liver; these were $2n-(CH_2)_4C_6H_4SO_2F-m$ (3), 3-Cl-4- $(CH_2)_2C_6H_3-4-Cl-2-SO_2F$ (8), 3-Cl-4- $(CH_2)_4C_6H_4-3-SO_2F$ (17), 3-Cl-4- $(CH_2)_4C_6H_3-3-SO_2F$ (18), 3-Cl-4- $(CH_2)_4C_6H_3-3-SO_2F$ (28).

It was demonstrated in a previous paper in this series³ that 1 and 2 were excellent active-site-directed irreversible inhibitors⁵ of the dihydrofolate reductase

⁽¹⁾ This work was generously supported by Grant CA-08695 from the National Cancer Institute, U. S. Public Health Service.

(2) For the previous paper of this series see B. R. Baker and W. T. Ashton, J. Med. Chem., 13, 1149 (1970).

(3) For the previous paper on this subject see B. R. Baker, E. E. Janson, and N. M. J. Vermeulen, *ibid.*, **12**, 898 (1969), paper CLX of this series.
(4) N. M. J. V. wishes to thank the Council of Scientific and Industrial

(4) N. M. J. V. wishes to thank the Council of Scientific and Industrial Research, Republic of South Africa, for a tuition fellowship.

(5) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme-Inbibitors," Wiley, New York, N. Y., 1967.

from L1210 mouse leukemia and Walker 256 rat tumor. Furthermore, **1** and **2** showed good cell wall transportpresumably by passive diffusion—since the compounds had $\text{ED}_{50} \ 2 \ \times \ 10^{-10} \ M$ and $9 \ \times \ 10^{-10} \ M$, respectively. against L1210 in cell culture. However, 1 and 2showed little tissue specificity since they could also inactivate the crude enzyme prepared from mouse or rat liver; even so, 1 was highly effective in viva against Walker 256 ascites in the rat.⁶ Although **3** was as good a reversible inhibitor of L1210 dihydrofolate reductase as 1, this simple structural change made 3 far less effective than 1 against L1210 cell culture,³ indicating that diffusion through the cell wall was sensitive to structural change. More recently we have observed⁷ that the tissue specificity for irreversible inhibition of dihydrofolate reductase is due to a "sulfonyl fluoridase" in

⁽⁶⁾ B. R. Baker, N. M. J. Vermeulen, W. T. Ashton, and A. J. Ryan, J. Med Chem., 13, 1130 (1970), paper CLXXIII of this series.

⁽⁷⁾ B. R. Baker and N. M. J. Vermeulen, *ibid.*, **13**, 1143 (1970), paper 1'LXXV of this series.

normal tissue that can rapidly convert the SO_2F group to SO_3H ; this "fluoridase" is apparently absent in Walker 256 and L1210 cells. We therefore embarked on design and synthesis of analogs of 1 and 2 in a search for more tissue-specific irreversible inhibitors that still would show good cell wall transport;^{3,8,9} these inhibitors were measured for inactivation of both crude and purified dihydrofolate reductase in order to determine whether the specificity was due to a structural difference in the enzyme or due to rapid hydrolysis of the SO_2F group by the "sulfonyl fluoridase." The results are the subject of this paper.

Biological Results.—The compounds in Table I can be divided into 4 subclasses, namely, analogs of the 4phenylbutyl series (5, 12–14), analogs of the 3-chloro-4phenylbutyl series (2, 15–22), analogs of the 3-chloro-4phenethyl series (4, 6–11), and analogs of the *m*phenylbutyl series (1, 23–28).

The parent *p*-phenylbutylphenyl-s-triazine with a terminal SO₂F group on the para position (5) was previously shown to be a good active-site-directed irreversible inhibitor of the dihydrofolate reductase from L1210 mouse leukemia³ and a fair inhibitor of this enzyme from Walker 256 rat tumor,⁶ it was also active *in vivo.*⁶ Tissue specificity was shown with crude enzyme from mouse liver³ and several rat tissues,⁶ this poor inhibition of the enzyme from normal tissues was shown to be due to rapid hydrolysis of the SO₂F group of 5 to SO₃H.⁷ Introduction of 2-Cl (12) on the benzenesulfonyl fluoride moiety resulted in loss of tissue specificity, *i.e.*, 12 was an excellent irreversible inhibitor of the crude enzyme from both tumor and liver.

When the bridge was changed from Bu (5) to BuO (13) in order to increase the conformational flexibility of the terminal phenyl group, irreversible inhibition of the Walker 256 enzyme was not changed; however, the effectiveness of 13 as an irreversible inhibitor on the L1210 enzyme was considerably impaired. Good tissue specificity was seen with 13 between Walker 256 and rat liver or intestine; in the case of the rat liver enzyme the specificity was due to the action of the "fluoridase" as shown by the good inactivation of purified rat liver dihydrofolate reductase. The conformational flexibility of 13 compared with 5 apparently aided transport through the L1210 cell wall since 13 was 200-times as effective as 5 against L1210 cell culture by comparison of ED_{50}/I_{50} ratios.⁹ When the bridge of **5** was increased from Bu to Hex (14), little change in irreversible inhibition, specificity, or inhibition of L1210 cell culture occurred.

The parent 3-chloro-4-phenylbutylphenyl-s-triazine (2) showed excellent irreversible inhibition of the dihydrofolate reductase from both L1210 and Walker 256, but tissue specificity was poor to fair. Insertion of a 2-Cl group (15) on the benzenesulfonyl moiety of 2 led to decreased selectivity between mouse tissues, but little apparent change in specificity between rat tissues. A 3-Cl group (16) was detrimental to irreversible inhibition of the enzyme from the two tumors.

When the SO₂F moiety of **2** was moved to the 3 position, the resultant **17** still showed strong inactivation of the enzyme from Walker 256, rat liver, and L1210, and

35% inactivation of the crude mouse liver enzyme. With purified mouse liver enzyme, the inactivation was about the same, 23%; thus 17 is not attacked by the "sulfonyl fluoridase" and 17 still shows a difference between inactivation of the L1210 and purified mouse liver enzyme—indicating that the enzymes from these two tissues are structurally different. Similar results were observed when a 4-Cl atom (18) was introduced on 17; 17 is considered superior to 18 since 17 is 10-times as effective against L1210 cell culture, indicating better transport of 17.

When the SO₂F group of **2** was moved to the 2 position, the resultant **19** was a poor irreversible inhibitor of the enzyme from Walker 256 or L1210. Introduction of a 5-Cl (**20**) or 4-Cl (**22**) atom gave compounds with excellent irreversible inhibition of the enzyme from Walker 256 and L1210; unfortunately tissue specificity was poor. In contrast, introduction of a 3-Cl gave a compound (**21**) that was even less effective than **19**.

The parent 3-chloro-4-phenethylphenyl-s-triazine (4) was an excellent irreversible inhibitor of the enzyme from Walker 256⁶ and L1210.³ There was poor tissue specificity in the rat,⁶ but good tissue specificity between L1210 and mouse liver;³ the latter was due to the action of the "sulfonyl fluoridase" as shown by excellent irreversible inhibition of the purified mouse liver enzyme.⁷ In addition, 4 showed *in vivo* cures of Walker 256 ascites.⁶ Introduction of a 2-Cl (6) or 3-Cl (7) did not change the specificity pattern; 7 was about as effective as 4 against L1210 cell culture, but 6 had greatly impaired cell wall transport.

When the SO_2F moiety of 4 was moved to the 2 position and a 4-Cl (8) or 5-Cl (9) substituent placed on the benzenesulfonyl fluoride moiety, the inactivation of the enzyme from Walker 256 or L1210 was somewhat impaired. However, the $4-Cl-2-SO_2F$ (8) showed an interesting irreversible inhibition pattern. Whereas the parent 4 showed no tissue specificity between Walker 256 and rat liver enzymes, 8 did; that this tissue specificity was due to the action of the liver "sulfonyl fluoridase" was shown by the extensive inactivation of the purified rat liver enzyme by 8. In contrast, the tissue specificity between L1210 and mouse liver seen with 8 was unchanged when the purified mouse liver enzyme was inactivated by 8; thus 8 apparently is not attacked by the "sulfonyl fluoridase" and the results indicate a difference in the primary structure of dihydrofolate reductase from L1210 and mouse liver. Unfortunately 8 was 35-fold less effective than 4 against L1210 cell culture.

The 4-Cl-3-SO₂F analog (11) of 4 showed tissue specificity between L1210 and mouse liver, the specificity being due to the hydrolysis of 11 by the "sulfonyl fluoridase."

In the fourth subclass, the parent *m*-phenylbutyl-striazine (1) showed good irreversible inhibition of the enzyme from L1210 and Walker 256 with poor tissue specificity (Table I); 1 was effective *in vivo* against Walker 256.⁶ Introduction of 4-Cl on the inside Ph (23) on 1 practically destroyed the irreversible inhibition. However, introduction of 2-Cl on the benzenesulfonyl fluoride moiety gave 25 which still showed excellent irreversible inhibition of the L1210 and Walker 256 enzymes. Although 25 showed no enzyme specificity between Walker 256 and rat liver, 25 did show good

⁽⁸⁾ B. R. Baker, G. J. Lourens, R. B. Meyer, Jr., and N. M. J. Vermeulen, J. Med. Chem., 12, 67 (1969), paper CXXXIII of this series.

⁽⁹⁾ B. R. Baker and R. B. Meyer, Jr., *ibid.*, **12**, 668 (1969), paper CLIV of this series.

TAILS 1

INDEPTION® OF DUIYDROFOLVEE REDUCTIVES BY

 $\underset{H_{1}N}{\overset{NH_{1}}{\underset{N}{\overset{V}{\longrightarrow}}}} \underset{(CH_{2})}{\overset{NH_{2}}{\underset{N}{\overset{V}{\longrightarrow}}}} \overset{NH_{2}}{\underset{(CH_{2})}{\underset{N}{\overset{V}{\longrightarrow}}}} \overset{R}{\underset{(CH_{2})}}$

No	184	Enzyma source	In St. M	Inhib, "M	Time,	in a crue	EDistu	1-111
1			$\Delta \alpha \alpha \alpha \alpha$	<u>д.ч</u> 0. 000		index ii	(1,1) = (1,1) = (1,1)	() ()
1	$p_{t-(C \Pi_2)_4 C_6 \Pi_4 S O_2 \Gamma - p}$	Mouse lines (A)	0.0080	0.000	00 60	50	0.0002	0.03
		Wose (A)	0.011	0.000	00 60	0 1		
		W 200 (A) ^p Dat Erron (A) ^p	0.014	0.050	00 CO	95 D-		
		Rat river (A)	0.015	0.050	- 00 - 00	90		
		Rat spieen (A) [*]		0.050	20	1.7		
		Rat kidney $(A)^*$		0.050	20 90	10		
		Rat knulley $(C)^{*}$		0.050	20	94		
		that intestine (A) ²		0.000	20	0		
2	$3-Cl-4-(CH_2)_4C_6H_4SO_2F-p$	$L1210/DF8~(A)^{g}$	0.0072	0.050	60	100	0,0009	0.1
		Mouse liver (A) ^ø		0.050	60	41		
		W256 (A) ^g		0,050	60	95		
		Rat liver (A) ^g		0.050	60	97		
		Rat kidney (A)		0.050	20	0		
		Rat kidney (C)		0.050	20	64		
		Rat intestine (A)		0.050	20	15		
••	$(CH_{\rm e})$ (C.11 SO F $_{\rm eff}$	L1910/DFS (A.w	0.0080	0.050	60	0.1	0.25	.40
• ,	//=(C112)4C611457721 =//	$\frac{D1210}{D130} \frac{D13}{A} \frac{A}{W}$	0.0000	0.050	(3)	-0 -	0.00	40
		Monse fiver (<i>Ap</i>		0.050				
		W956 (Aba		0,050	60	70		
		Pat Error (A.W		0,050	do do	70 80		
		nat nver tage		0.0.0	00	-00		
4	$3-Cl-4-(CH_2)_2C_6H_4SO_2F-\mu$	L1210/DF8 (A) ^g	0.014	0.070	60	93	0.03	2
		Mouse liver (A) ^y		0.070	60	17		
		Mouse liver (C i'		0.070	60	92		
		W256 (A)*	0.0080	0.050	60	86		
		Rat liver $(A)^h$	0.018	0.050	60	86		
		Rat intestine (A)*		0.050	20	9		
-	m. (CHa). Call. SOaE-a	1 1940 / DES (A)g	0.020	0.10	60	7.5	0.18	Ģ
•)	<i>p</i> -\0112/4061140021- <i>p</i>	$\frac{11210}{1000} \frac{100}{100} (A)^{g}$	0.020	0.10	60	97	0.10	5
		Mouse liver $(C)^{i}$		0.10	60	76		
		W956 (A)4	0.014	0.050	60	69		
		$\frac{1}{200} (\mathbf{A})^k$	0.022	0,000	60	1.9		
		Pat liver (C)i	0.022	0,000	60	1- 00		
		$\frac{1}{2} \operatorname{Pat} \operatorname{kiduov} (\mathbf{A})^{h}$		0.060		00 Q		
		Rut kidney (C)		0.000	20	57		
		But intestine (A_1)		0.060	20	5		
		nut intestino (ir)			-			
6	3-Cl-4-(CH ₂) ₂ C ₆ H ₃ -2-Cl-4-SO ₂ F	L1210/DF8 (A)	0.0047	0.05	60	76	0.45	100
		Mouse liver (A)		0.05	60	9		
		Mouse liver (C)		0.05	60	52		
		W256 (A)		0.05	60	62		
		Rat liver (A)		0.05	60	46		
7	3-Cl-4-(CH ₂) ₂ C ₆ H ₃ -3-Cl-4-SO ₄ F	L1210/DF8 (A)	0.014	0.05	60	83	0.05	4
		Mouse liver (A)		0.05	60	11		
		Monse liver (C)		0.05	60	62		
		W256 (A)		0.05	60	88		
		Rat liver (A)		0.05	60	61		
		Rat intestine (A)		0.05	20	43		
	P CLA (CLL) C LL 1 CL 9 SO T	1.1010/1168/145	0.0050	0.05	co	65	0.6	70
0	5-01-4-(0112)206110-4-01-2-50/2r	$\frac{1}{1210} \frac{1}{1763} (A)$	0.0050	0.05	60	6	0.0	10
		Mouse liver (C)		0.05	60	15		
		$W_{256}(\Lambda)$		0.05	00 60	\$1		
		Rut Error (A)		0.05	60	15		
		Pat liver (C)		0.05	60	70		
		Rat intestine (A)		0.05	20	20		
		and moothie (14)						
9	$3-Cl-4-(CH_2)_2C_6H_3-5-Cl-2-SO_2F$	L1210/DF8 (A)	0.014	0.05	60	31	0.8	60
		W256 (A)		0.05	60	51		
10	3-Cl-4-(CH ₃) ₂ C ₆ H ₃ -3-Cl-2-SO ₆ F	L1210/DF8 (A)	0.0050	0.05	60	Q	2.4	500
	· · · · · · · · · · · · · · · · · ·	W256 (A)		0,05	60	13		

		TABLE I	(Continued)				
No.	\mathbf{R}^{b}	Enzyme source ^c	$\mathbf{I}_{50}, {}^{d}$ μM	Inhib, μM	Time, mi n	% inactvn ^e	$\mathrm{ED}_{60},^{f}$ μM	ED50/ 150
11	$3-Cl-4-(CH_2)_2C_6H_3-4-Cl-3-SO_2F$	L1210/DF8 (A) Mouse liver (A)	0.0054	$\begin{array}{c} 0.05 \\ 0.05 \end{array}$	60 60	76 5	0.16	30
		Mouse liver (C)		0.05	60	60		
		W256 (A)		0.05	60	94		
		Rat liver (A) Rat intestine (A)		$\begin{array}{c} 0.05 \\ 0.05 \end{array}$	$\frac{60}{20}$	53 38		
12	p-(CH ₂) ₄ C ₆ H ₃ -2-Cl-4-SO ₂ F	L1210/DF8 (A)	0.011	0.05	60	69	0.4	40
		Mouse liver (A)		0.05	60	98		
		W256 (A)		0.05	60 60	93		
		Rat intestine (A)		$0.05 \\ 0.05$	$\frac{80}{20}$	99 60		
13	p-(CH ₂) ₄ OC ₆ H ₄ SO ₂ F- p	L1210/DF8 (A)		0.05	20	45	0.0003	0.04
		Mouse liver (\mathbf{A})	0.0079	0.05	20 60	0		
		W200 (A) Bat liver (A)	0.0073	0.05	60 60	00		
		Rat liver (C)		0.05 0.05	60	79		
		Rat intestine (A)		0.05	20	4		
14	p-(CH ₂) ₆ C ₆ H ₄ SO ₂ F- p	L1210/DF8 (A)	0.075	0.15	60 60	66 10	0.1	1
		Mouse liver (\mathbf{A})		0.15	60 60	10		
		W256 (A)		0.15	60 60	84 84		
		Rat liver (A)		$0.15 \\ 0.15$	60	23		
		Rat liver (C)		0.15	60	83		
15	$3-Cl-4-(CH_2)_4C_6H_3-2-Cl-SO_2F$	L1210/DF8 (A)	0.017	0.050	60 60	94 0 -	0.01	0.6
		Wouse fiver (\mathbf{A}) W256 (\mathbf{A})		0.050	60 60	95 97		
		Rat liver (A)		0.050	60 60	100		
		Rat spleen (A)		0.050	20	$\overline{5}$		
		Rat intestine (A)		0.050	20	22		
16	$3-Cl-4-(CH_2)_4C_6H_3-3-Cl-4-SO_2F$	L1210/DF8 (A) W256 (A)	0.020	$\begin{array}{c} 0.050 \\ 0.050 \end{array}$	60 60	$35 \\ 31$	0.007	0.4
17	$3-Cl-4-(CH_2)_4C_6H_4-3-SO_2F$	L1210/DF8 (A)	0.0094	0.050	60	100	0.02	2
		Mouse liver (A)		0.050	60	35		
		Mouse liver (C)		0.050	60	23		
		W256 (A) Det V_{exc} (A)		0.050	60 C()	96 97		
		Rat fiver (\mathbf{A}) Ret spleen (\mathbf{A})		0.050	00 20	97		
		Rat intestine (\mathbf{A})		0.050	$\frac{20}{20}$	25		
18	$3-Cl-4-(CH_2)_4C_6H_3-4-Cl-3-SO_2F$	L1210/DF8 (A)	0.0078	0.050	60	97	0.2	20
		Mouse liver (A)		0.050	60 #0	37		
		Mouse liver (C)		0.050	60 60	33		
		$\frac{W200}{Rat} (A)$		0.050	60 60	94		
		Rat intestine (A)		0.050	20	46		
19	$3-Cl-4-(CH_2)_4C_6H_4-2-SO_2F$	L1210/DF8 (A) W256 (A)	0.017	$\begin{array}{c} 0.050 \\ 0.050 \end{array}$	$\begin{array}{c} 60 \\ 60 \end{array}$	46 27	0.0004	0.02
20	$3-Cl-4-(CH_2)_4C_6H_3-5-Cl-2-SO_2F$	L1210/DF8 (A)	0.088	0.18	60	99	0.001	0.01
		Mouse liver (A)		0.18	60	41		
		W256 (A)		0.18	60 60	100		
		Rat liver (A) Rat intestine (A)		0.18	60 20	82 85		
21	$3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F$	L1210/DF8 (A)	0.0063	0.05	60	0	0.0003	0.05
		W256 (A)		0.05	60	30		
22	$3-Cl-4-(CH_2)_4C_6H_3-4-Cl-2-SO_2F$	L1210/DF8 (A)	0.015	0.050	60 60	93		
		W256 (A)		0.050	00 60	20 100		
		Rat liver (A)		0.050	60	97		
		Rat spleen (A)		0.050	20	7		
		Rat intestine (A)		0.050	20	0		
23	$4\text{-}\mathrm{Cl}\text{-}3\text{-}(\mathrm{CH}_2)_2\mathrm{C}_6\mathrm{H}_4\mathrm{SO}_2\mathrm{F}\text{-}p$	L1210/DF8 (A) W256 (A)	1.5	3.1 3.1	60 60	$13 \\ 8$	6	4

		Тлв), в 1	(Continuou	()				
No.	\mathbb{R}^{h}	Enzy av suo cue ^r	150, d µ.17	$\frac{\ln k \partial h_{\ell}}{\mu M}$	Thoe. Doig	(Jacivo"	(£10a0, ')i 1/	100 so $(1)_{0}$
24	$4-Cl-3-(CII_2)_4C_6II_4SO_2F-p$	L1210/DF8 (A) W256 (A)	0.17	0.34 0.34	60 60	33 32	>2	>{0
25	$3-(C\Pi_2)_4C_8\Pi_3-2-CI-4-SO_2F$	L1210/DF8 (A) Monse liver (A) Monse liver (C) W256 (A) Rat liver (A) Rat liver (A)	0.010	$\begin{array}{c} 0,050\\ 0,050\\ 0,050\\ 0,050\\ 0,050\\ 0,050\\ 0,050\\ \end{array}$	60 60 60 60 60 20	$100 \\ -31 \\ -23 \\ -91 \\ -96 \\ -43 \\ -100 \\ -31$	0.07	7
26	3-(CH ₂) ₄ C ₆ H ₃ -3-Ci-4-SO ₂ F	L1210/DF8 (A) W256 (A)	0.020	0.050	60 60	33 52	0.02	I
27	3-(CH ₂) ₄ C ₆ H ₃ -5-Cl-2-SO ₂ F	L1210/DF8 (A) W256 (A)	0.011	$0.050 \\ 0.050$	60 60	16 35	0.02	2
28	3-(CH ₂) ₄ C ₆ H ₃ -4-Cl-3-S() ₂ F	L1210/DF8 (A) Monse liver (A) Monse liver (C) W256 (A) Rat liver (A) Rat intestine (A)	0.0043	0.050 0.050 0.050 0.050 0.050 0.050	60 60 60 60 60 20	100 33 45 94 76 30	0.1	20

"The technical assistance of Diane Shea, Janet Wood, and Julie Leseman with these assays is acknowledged. ^b Numbered from triazine junction. ^c W256 = Walker 256 rat tumor; L1210/DF8 = monse lenkemia resistant to methotrexate; A, 45-90% (NII₄)₂SO₆ fraction; ⁸ C, enzyme purified by affinity column.⁷ ^d Conen for 50% reversible inhibition when assayed with $6 \mu M$ dihydrofolate and 0.15 M KCl in pH 7.4 Tris buffer as previously described.⁸ ^e Intenbated with enzyme in pH 7.4 Tris buffer containing $60 \mu M$ TPNH, then the remaining enzyme assayed as previously described;⁸ 20-min incubations were run at 24° and 60-min incubations at 37°. ^d Conen for 50% inhibition of L1210 cell culture. ^a Data from ref 3. ^b Data from ref 6. ^d Data from ref 7.

^a Compounds prepared by method A. ^b Yield of analytically pure material. ^a Anal., C, H. ^a Recrystd from EtOH-C₆H₆, ^e Recrystd from EtOH-H₈O. ^d Anal., C, H, F. ^e Mp 120°, resolidifies at 165°, then remelts. ^b Solvated with 0.5 C₆H₆.

specificity between L1210 and mouse liver; this specificity was apparently due to a difference in enzyme structure, since the purified liver enzyme was inactivated by **25** about the same extent as the crude preparation. Note that **25** was transported through the L1210 cell wall much less effectively than **1**, but still sufficient.

Introduction of 3-Cl (26) was detrimental to inactivation of the enzyme from L1210 and Walker 256. Similarly, when the SO_2F group was shifted to the ortho position, the resultant 27 was a very poor irreversible inhibitor. When the p-SO₂F group of 1 was moved to the meta position (3),³ inactivation specificity between L1210 and mouse liver was seen that was apparently due to the difference in structure of the enzyme since the purified mouse liver enzyme was not inactivated appreciably more. Unfortunately 3 is transported about 1000-fold less effectively than 1. Introduction of 4-Cl on 3 gave 28 with about the same specificity and transport pattern.

Discussion

Of the 28 compounds in Table I, only 4 (5, 8, 13, 14) showed specificity in inactivation between the crude enzyme from Walker 256 and rat liver; in all 4 cases inactivation of the purified liver enzyme⁷ was extensive, indicating that the specificity was due to rapid hydrolysis of SO₂F to SO₃H by "sulfonyl fluoridase" in liver.¹⁰ In the ease of 1.1210 mouse leukenia and mouse liver, 12 compounds (3–8, 11, 14, 17, 18, 25, 28) showed good specificity of irreversible inhibition; in 6 cases (4–7, 11, 14) the specificity was due to hydrolysis of SO₂F by the "sulfonyl fluoridase" and the remaining 6 were apparently due to differences in the structure of dihydrofolate reductase from I.1210 and mouse liver.

Folsch and Bertino¹¹ have observed that several of our irreversible inhibitors of dihydrofolate reductase of the SO_2F type are rapidly hydrolyzed to the sulfonic acids by mouse serum, slowly by rat serum,¹⁰ and negligibly by human serum. They suggested that this destruction of the irreversible inhibitors by this "sulfony! fluoridase" could account for the poor in vivo response of L1210 mouse leukemia to these inhibitors and suggested that the compounds be tested against rat tumors: this suggestion was followed with success.⁶ The fact that 6 of the irreversible inhibitors (3, 8, 17, 18, 25, 28) in Table I are not destroyed by the mouse liver "sulfouryl fluoridase" suggests that these 6 compounds might be effective on L1210 mouse leukemia in viva. particularly if neither the mouse liver nor mouse scrum "sulfonyl fluoridase" can destroy these 6 compounds. Furthermore, the 6 compounds have a sufficiently good ED_{50} (0.02-0.4 μM) against L1210 in cell culture that cell wall transport should not be a serious problem.

Chemistry—All of the new compounds (6–28) in

⁽¹⁰⁾ A. J. Ryan, N. M. J. Vermeulen, and B. R. Baker, J. Med. Chem. 13, 1140 (1970), paper CLNNIV of this series.

⁽¹¹⁾ E. Folseb and J. R. Bertino, Mol. Pharmacol., 2, 93 ()970).

TABLE III: PHYSICAL PROPERTIES OF

O₂N (CH=CH)_n

No. ^a R _b ^b u $(CH=CH)_n$ R_2^c % Mp, °C P 32a 3-Cl 1 4 2-Cl-4-SO ₂ F 61 ^f 133-136 $C_{14}H_1$ 32b 3-Cl 1 4 3-Cl-4-SO ₂ F 72 ^{g.h} 136-138 $C_{14}H_2$ 32b 3-Cl 1 4 3-Cl-4-SO ₂ F 72 ^{g.h} 136-138 $C_{14}H_2$ 32b 3-Cl 1 4 4-Cl-4-SO ₂ F 72 ^{g.h} 136-138 ClaHa	⁵ orinula ⁶ ₈ Cl ₂ FNO ₄ S ₈ Cl ₂ FNO ₄ S ₅ Cl ₂ FNO ₅ S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8Cl ₂ FNO ₄ S 8Cl ₂ FNO ₄ S 9Cl ₂ FNO ₄ S 9Cl ₂ FNO ₄ S 9Cl ₂ FNO ₄ S 9Cl ₂ FNO ₄ S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8Cl2FNO4S 8Cl2FNO4S 9Cl2FNO4S 9Cl2FNO4S 9Cl2FNO4S
22_{0} $2C_{1}$ 1 4 4 C_{1} 20 E 42_{0} 140 155 C H	SCl2FNO4S SCl2FNO4S Cl2FNO4S
520 $5-01$ 1 4 $4-01-2-50_2\Gamma$ 0.5^{00} $149-155$ $0.14\Gamma_8$	SCI2FNO4S
$32d$ 3-Ci 1 4 5-Ci-2-SO ₂ F $62^{c_1 f}$ 119-122 C ₁₄ H ₁	3Cl2FNO4S
32e 3-Ci 1 4 3-Ci-2-SO ₂ F 31^{4} $112-155^{3}$ C ₁₄ H ₈	CLENOS
$32f$ 3-Ci 1 4 4-Ci-3-SO ₂ F $56^{a,h}$ 150-156 C ₁₄ H ₀	3012FIN 045
32g H 2 4 2-Cl-4-SO ₂ F ^k 54/ 223-224 C ₁₆ H	IICIFNO4S'
32h H 3 4 $4-SO_2F^{m,n}$ $42^{y,f}$ 157-160 $C_{18}H$	I4FNO4S
32i 3-Cl 2 4 2-Cl-4-SO ₂ F° 36' 274-276 dec $C_{16}H_{2}$	$_{10}Cl_2FNO_4S^t$
32j 3-Cl 2 4 3-Cl-4-SO ₂ F° 60' 240-243 C ₁₆ H·	10Cl ₂ FNO ₄ S
32k 3-Ci 2 4 $3-SO_2F^{\circ,p}$ 557 208-210 $C_{16}H^{\circ}$	11CiFNO ₄ S ^t
321 3-Ci 2 4 4-Ci-3-SO ₂ F° 42' 224-230 $C_{16}H$	10Cl ₂ FNO ₄ S
$32m$ 3-Ci 2 4 2-SO ₂ F° $56^{i,f}$ 216–218 C ₁₆ H	nClFNO ₄ S
32μ 3-Ci 2 4 5-Ci-2-SO ₂ F° 557 228-230 C ₁₆ H.	10Cl ₂ FNO ₄ S
320 3-Ci 2 4 3-Ci-2-SO ₂ F° 41 ^h 212-214 C ₁₆ H;	10Cl ₂ FNO ₄ S
32p 3-Cl 2 4 4-Cl-2-SO ₂ F° 48/ 245-247 C ₁₆ H·	$_{10}Cl_2FNO_4S$
32q 4-Cl 1 3 4-SO ₂ F ⁿ 77 ^{<i>p</i>,f} 190–191 C ₁₄ H ₂	$_{9}CIFNO_{4}S$
32r 4-Cl 2 3 4-SO ₂ F ⁿ 67 ^f 158-196 ^f C ₁₈ H ₂	11CiFNO4S
32s H 2 3 2-Cl-4-SO ₂ F [*] 39/ 175-180 C ₁₆ H ₂	nCiFNO ₄ S
32t H 2 3 $3-Cl-4-SO_2F^k$ 33/ 201-205 $C_{16}H$	nCiFNO4S
32u H 2 3 $5-Cl-2-SO_2F^k$ 557 218-220 $C_{16}H_2$	nClFNO4S
32v H 2 3 4-Cl-3-SO ₂ F ^k 30/ 184-186 C ₁₆ H.	$_{11}$ ClFNO ₄ S

" All compounds prepared by method A in ref 14. b Numbered from 1-NO2. c Numbered from 1-vinyl group. d Analytically pure material. $^{\circ}$ Anal., C, H, N unless otherwise indicated. f Recrystd from EtOH-THF. $^{\circ}$ Recrystd from EtOH-H₂O. h Recrystd from EtOH- i Recrystd from Et

TABLE IV: PHYSICAL PROPERTIES OF

	- (01	-9/2		
НΧ	\mathbf{R}^{b}	Yield,' %	Mp. °C dec	$\operatorname{Form} \operatorname{ula}^d$
EtSO ₃ H	$3-Cl-4-(CH_2)_2C_6H_3-2-Cl-4-SO_2F$	52	226 - 229	$C_{12}H_{20}Cl_2FN_5O_2S \cdot EtSO_3H$
EtSO ₃ H	$3-Cl-4-(CH_2)_2C_6H_3-3-Cl-4-SO_2F$	42	216 - 219	$C_{19}H_{20}Cl_2FN_5O_2S \cdot EtSO_3H^e$
EtSO ₃ H	3-Cl-4-(CH ₂) ₂ C ₆ H ₃ -4-Cl-2-SO ₂ F	44	209 - 211	$C_{19}H_{20}Cl_2FN_5O_2S \cdot EtSO_3H$
EtSO₃H	$3-Cl-4-(CH_2)_2C_6H_3-5-Cl-2-SO_2F$	52	210 - 212	$C_{19}H_{20}Cl_2FN_5O_2S\cdot EtSO_3H$
EtSO₃H	$3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F$	40	224 - 226	$C_{1y}H_{20}Cl_2FN_5O_2S\cdot E(SO_3H$
$EtSO_{2}H$	$3-Cl-4-(CH_2)_2C_6H_3-4-Cl-3-SO_2F$	52	215 - 216	$C_{19}H_{20}Cl_2FN_3O_2S \cdot EtSO_3H$
EtSO₃H	$4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F$	32	204 - 205	$C_{21}H_{25}ClFN_5O_2S \cdot EtSO_3H$
HCl	$4-(CH_2)_4OC_6H_4SO_2F-p$	39	223 - 225	$C_{21}H_{26}FN_5O_3S\cdot HCl$
EtSO₃H	p-(CH ₂) ₆ C ₆ H ₄ SO ₂ F- p	34	205 - 207	$\mathrm{C}_{23}\mathrm{H}_{30}\mathrm{FN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{Et}\mathrm{SO}_{3}\mathrm{H}$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F$	49	201 - 203	$C_{21}H_{24}Cl_2FN_5O_2S\cdot EtSO_3H$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_3-3-Cl-4-SO_2F$	44	214 - 215	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{Cl}_{2}\mathrm{FN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{Et}\mathrm{SO}_{3}\mathrm{H}$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_4-3-SO_2F$	34	185 - 187	$\mathrm{C_{21}H_{25}CiFN_5O_2S}\cdot\mathrm{EtSO_3H}$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_3-4-Cl-3-SO_2F$	44	198 - 200	$\mathrm{C_{21}H_{24}Cl_2FN_5O_2S}\cdot\mathrm{EtSO_3H}$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_4-2-SO_2F$	42	194 - 197	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{ClFN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{Et}\mathrm{SO}_{3}\mathrm{H}$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_3-5-Cl-2-SO_2F$	45	193 - 194	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{Cl}_{2}\mathrm{FN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{Et}\mathrm{SO}_{3}\mathrm{H}$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F$	21	>215	$\mathrm{C_{21}H_{24}Cl_2FN_5O_2S\cdot EtSO_3H}$
EtSO₃H	$3-Cl-4-(CH_2)_4C_6H_3-4-Cl-2-SO_2F$	29	200 - 202	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{Cl}_{2}\mathrm{FN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{Et}\mathrm{SO}_{3}\mathrm{H}$
HCl	$4-Cl-3-(CH_2)_2C_6H_4-4-SO_2F$	37	218 - 220	$C_{19}H_{21}CIFNO_2S \cdot HCI$
EtSO₃H	$4-Cl-3-(CH_2)_4C_6H_4-4-SO_2F$	24	205 - 206	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{ClFN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{Et}\mathrm{SO}_{3}\mathrm{H}$
EtSO₃H	$3-(CH_2)_4C_6H_3-2-Cl-4-SO_2F$	32	168 - 170	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{ClFN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{EtSO}_{3}\mathrm{H}$
EtSO ₃ H	$3-(CH_2)_4C_6H_3-3-Cl-4-SO_2F$	43	185 - 187	$C_{21}H_{25}ClFN_5O_2S \cdot EtSO_3H$
HCl	$3-(CH_2)_4C_6H_3-5-Cl-2-SO_2F$	16^{g}	190 - 192	$C_{21}H_{25}ClFN_5O_2S\cdot HCl$
EtSO ₃ H	$3-(CH_2)_4C_6H_3-4-Cl-3-SO_2F$	28^{h}	176 - 178	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{ClFN}_{5}\mathrm{O}_{2}\mathrm{S}\cdot\mathrm{EtSO}_{3}\mathrm{H}$
	HX $EtSO_8H$ $EtSO_8H$ $EtSO_8H$ $EtSO_8H$ $EtSO_2H$ $EtSO_8H$ EtS	$\begin{array}{cccccc} HX & R^b \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F \\ EtSO_2H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F \\ EtSO_3H & 4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ HCl & 4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-4-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-3-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-2-Cl-4-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-2-Cl-2-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-4-Cl-3-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-4-Cl-3-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-4-Cl-3-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-4-Cl-3-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-Cl-2-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-Cl-2-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-Cl-2-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-Cl-3-SO_2F \\ EtSO_3H & 3-(CH_2)_4C_6H_3-Cl-3-$	$\begin{array}{c c} HX & R^b & Yield, \epsilon \\ \% \\ \hline EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-2-Cl-4-SO_2F & 52 \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-4-SO_2F & 42 \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F & 44 \\ EtSO_3H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F & 40 \\ EtSO_2H & 3-Cl-4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F & 52 \\ EtSO_3H & 4-(CH_2)_2C_6H_3-3-Cl-2-SO_2F & 52 \\ EtSO_3H & 4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F & 32 \\ HCl & 4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F & 32 \\ HCl & 4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F & 34 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F & 34 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-2-Cl-4-SO_2F & 44 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-4-SO_2F & 44 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-4-SO_2F & 44 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-4-SO_2F & 44 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 44 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 42 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 21 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 23 \\ EtSO_3H & 3-Cl-4-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 23 \\ EtSO_3H & 3-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 32 \\ EtSO_3H & 3-(CH_2)_4C_6H_3-3-Cl-4-SO_2F & 32 \\ EtSO_3H & 3-(CH_2)_4C_6H_3-3-Cl-4-SO_2F & 32 \\ EtSO_3H & 3-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 43 \\ HCl & 3-(CH_2)_4C_6H_3-3-Cl-2-SO_2F & 69 \\ HCl & 3-(CH_2)_4C_6H_3-4-Cl-3-SO_2F & 28^{h} \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a Prepared by catalytic reduction of compounds in Table III in MeOEtOH with a PtO₂ catalyst in the presence of 1 equiv of HX, followed by condensation with cyanoguanidine,³ unless otherwise indicated. ^b Numbered from triazine at position 1. ^c Analytically pure material recrystallized from *i*-PrOH-H₂O, unless otherwise indicated. ^d Anal., C, H, F unless otherwise indicated. ^e Anal., C, H, N. ^f Reduction performed with Raney Ni catalyst, then HCl added. ^g Recrystd from Me₂CO. ^k Recrystd once from EtOH and twice from Me₂CO.

Table I, except 13, were prepared by the previously described general methods used for $1-5^{3,12-14}$ The appropriate fluorosulfonylbenzyl bromide (31) was converted into the Wittig reagents (30) with Ph₃P; the chloro derivatives of 30 were available from another study.¹⁵ Wittig condensation of 29 and 30 afforded 32; these were catalytically reduced in the presence of EtSO₃H and PtO₂ to 33 which were condensed with cyanoguanidine and acetone by the method of Modest¹⁶ to give the requisite dihydro-s-triazines (35).

Reduction of *p*-nitrophenylbutyryl chloride (**34**) to the alcohol **36** was accomplished with NaBH₄ in dioxane. Conversion of **36** into **37** with PBr₃₀ then alkylation of *p*-hydroxybenzenesulfonyl fluoride¹⁷ afforded **39**; the latter was converted into **13** by reduction, then condensation with cyanoguanidine.

Experimental Section

Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. All analytical samples had proper ir spectra and moved as a single spot on tlc; Brinkmann silica gel GF was used for all compounds except **35** where Brinkmann

(13) B. R. Baker and G. J. Loaresns, *ibid.*, **12**, 95 (1969), paper CXL of this series.

114) B. R. Baker and N. M. J. Vermeulen, *ibid.*, **12**, 89 (1969), paper CXXXVIII of this series.

(15) B. R. Baker and J. A. Hurlbut, $ibid.,\, \mathbf{12},\, 902$ (1969), paper CLXI of this series.

(16) E. J. Modest, J. Org. Chem., 21, 1 (1956).

(17) B. R. Baker and N. M. J. Vermeulen, J. Med. Chem., 13, 82 (1970), paper CLXVI of this series.

polyamide MN was employed. All analytical samples gave combustion values for C, H, N, or F within 0.4% of theoretical.

2-Chloro-5-nitrocinnamaldehyde (29a).—Condensation of 2-chloro-5-nitrobenzaldehyde¹⁸ with MeCHO, as described¹⁹ for the condensation of 4-nitrocinnamaldehyde with MeCHO, gave a erude product that was recrystd from C_8H_6 ; yield, 40% of analytically pure material, mp 141–143°. Anal. ($C_8H_6CINO_8$) C, H, N.

3-Chloro-4-fluorosulfonylbenzyltriphenylphosphonium Bromide (30a). Method A.—A soln of 2.0 g (7 mmoles) of 3-chloro-4-fluorosulfonylbenzyl bromide (31a)¹⁵ and 1.9 g (7.3 mmoles) of Ph₈P in 100 ml of C₆H₆ was refluxed 16 hr; during this (ime he product separated. The cooled reaction mixture was filtered; the solid was washed with C₆H₆ and recrystd from EtOH-C₆H₆ to give white crystals, mp 268–270°. See Table II for additional data and other compounds prepared by this method.

4-(p-Nitrophenylbutoxy)benzenesulfonyl Fluoride (39).--Reduction of the crude acid chloride (34) prepared from 6.3 g (60 mmoles) of *p*-nitrophenylbutyric acid with NaBH₄ in di $xane^{20}$ gave 5.3 g (45%) of 36 which was converted into 37²¹ with PBr₃ in CCl₄ in 75% yield. A mixture of 2.58 g (10 mmoles) of **37**, 1.93 g (11 mmoles) of 38,²² 1.38 g (10 mmoles) of K₂CO₃, and 25 ml of DMF was stirred in a bath at 80° for 14 hr.¹⁷ The cooled reaction mixture was dild with 50 nil of H_2O and extracted with $CHCl_{\alpha}$ (three 50-ml portions). The combined extracts were washed successively with 25 ml of 10% Na₂CO₃ and 25 ml of H₂O, then dried (MgSO₄). Evapn in vacuo gave 3.4 g (97%) of an oil which showed one major spot and one trace component on the with 4:1 CHCl₃-petroleum ether (bp 60-110°). The compound had an appropriate ir spectrum and was used without further purification for conversion into 13; see Table IV.

- (18) B. R. Baker, B. T. Ho, and G. J. Lourens, J. Pharm. Sci., 56, 737 (1967), paper LXXXVI of this series.
- (19) B. R. Baker and J. H. Jordaan, J. Med. Chem., 8, 35 (1965).
- (20) E. Walton, A. F. Wagner, F. W. Bachelor, L. H. Peterson, F. W. Holley, and K. Folkers, J. Amer. Chem. Soc., **77**, 5144 (1955),
- (21) B. Elpern, L. N. Gardner, and L. Grumbach, ibid., 79, 1951 (1957
- (22) W. Steinkopf, J. Prakt. Chem., 117, 1 (1927).

 $[\]pm12)$ B. R. Baker and G. J. Lourens, J. Med. Chem., 11, 666 (1968), paper CXXVII of this series.