(1 molar equiv), and Et₃N (2 molar equiv) in anhyd C₅H₆ or CH₄Cl₂ was stirred for several hours. After washing the reaction mixture with H₂O and drying (MgSO₄), the organic phase was concd to dryness *in vacuo* to afford the product in 60-95% yield. Solid products were purified by recrystaln from appropriate solvents, such as EtOAe, C₈H₆, and heptane. Liquid products were purified by fractionation on a kugelrohr distiln apparatus.

The following modification was used with gaseous amines and NH_4 . The analyd amine was introduced into a suspension of the chloroformate HCl in C₆H₆ for 30 min and the reaction mixture worked up as described above. For the preparation of N-um-substituted carbamates, coned NH₄OH may also be used instead of NH₄ gas.

Procedure B. From 4-Piperidinols.—A 1-substituted or 1.4disubstituted 4-piperidinol and an isoeyanate in molar equivalent amounts were refluxed in anhyd $C_8 H_8$ for 2 hr. Evaporation of the reaction soln *in vacuo* afforded the carbamate in 82–94% yield. The products were purified as in procedure A.

Acknowledgment.—We thank Mr. John F. Hoops and Mrs. Margaret M. Weber for their valuable technical assistance.

Some Biphenylene Derivatives with Pharmacophoric Side Chains¹

ALFRED BURGER²⁴ AND SHARON S. HILLERY²⁶

Department of Chemistey, Uniceesity of Virginia, Chaelottesville, Virginia 22901

Received May 18, 1970

The observation that the sterically strained ring system, [2.2]paracyclophane, served as a favorable matrix for pharmacodynamically active derivatives,³ turned our attention to another strained ring system, biphenylene. We are describing a number of biphenylene derivatives with typical pharmacophoric side chains, synthesized by traditional methods (see Experimental Section). Preliminary pharmacologic tests⁴ of some of the target compounds revealed weak CNS signs but no noteworthy properties.

Experimental Section

Melting points were determined in a Hoover-Thomas capillary melting point bath preheated to 15° below the melting point, and are corrected. Ir spectra were recorded on a Perkin-Elmer spectrophotometer Model 337 (KBr), mmr spectra on a Varian Model A-60 (TMS). Both ir and nmr spectra were taken of all compounds and were as expected. Analyses, performed by (talbraith Laboratories, Knoxville, Tenn., were within $\pm 0.4\%$ of ealed values.

Biphenylen-1- and -2-aldehyde were prepared by improvements over published^{5,6} directions, with much better yields.

Biphenylen-1-aldehyde (1).—An Et₂O soln of 1-lithiobiphenylene,⁷ from 10 g (0.07 mole) of biphenylene, was cooled to 5°, and 15 g (0.11 mole) of HCONHMe⁸ in dry Et₂O was added dropwise. The mixture was refluxed for 3 hr and cooled and 25

(1) Supported by Grant GM-12781 from the National Institute of General Medicine, National Institutes of Health.

(2) (a) To whom all inquiries should be addressed; (b) National Defense Education Act Fellow, 1966-1969.

(3) A. Burger, D. J. Abraham, J. P. Buckley, and W. J. Kinnard, *Monatsh. Chem.*, **95**, 6 (1964).

(4) These tests were carried out by Smith Kline and French Laboratories. We are grateful for permission to publish their results.

(5) A. J. Boulton, J. B. Chadwick, C. R. Harrison, and J. F. W. McOmie, J. Chem. Soc. C, 328 (1968).

(6) J. F. W. McOmie and S. D. Thatte, ibid., 5298 (1962).

(7) W. Baker, M. P. V. Boarland, and J. F. W. McOmie, *ibid.*, 1476 (1954).

(8) L. F. Fieser and J. E. Jones, Org. Syn., 20, 66 (1940).

g of ice and 50 ml of 2 N HCl were added. The E($_{2}$ O layer, combined with Et $_{2}$ O washings, was washed (NaHCO₅, H₂O) and then stirred with a 40% NaHSO₅ soln for 12 hr. The solid addition product was filtered, washed (Et $_{2}$ O), decomposed with aq Na₂CO₅ and the aldehyde worked up by ether extraction: yield 4.5 g (36C_C), mp 51–52° (cf. lit.⁵ yield, 17C_C, lit.⁵ mp 44°).

Biphenylen-2-aldehyde (2).—The acid chloride from bipheteylene-2-carboxylic acid⁵ (6 g, 0.03 mole) and SOCL, was dissolved in Diglyme under N₂ at -70° . A solut of LiAl(O-4-Bu)₃,⁹ from 1.5 g of LAH, 13 ml of t-BaOH, and 50 ml of Diglyme, was added slowly over 1 hr. The solution was allowed to warm to 26° and poured into ice, the pptd solid was filtered off, dissolved in Et₂O, stirred with NaHSO₃ solution, and worked up as for the 1-isomer; yield 4 g (74%), mp 75-77°; lit.⁶ yield <10%, it.⁶ mp 78-79°.

2-(2-Aminopropy]**biphenylene (3)**...-To a solid of biphenyleu-2aldehyde (2, 2 g, 11 mmoles) in a slight excess of EtNO₂, 4-5 drops of *n*-BaNH₂ was added. The mixture was heated at 90° for 3 hr and cooled until the nitroethene crystallized. This product was filtered off and purified partially by one crystallization from Et₂O-petr ether, mp 107-108°, in (cm⁻⁴) 1645 (C==C₃, 1520 (NO₂). It was dissolved in dry Et₂O and the solid added dropwise at 0°, under N₃, to a solit of LAH (0.5 g, 13 numbers) in Et₂O (50 ml). After 10 hr refluxing the nuixture was worked up as usual. The HCl salt of **3**, from EtOH-Et₂O, weighed 0.8 g (33°C_C), mp 227-229°. Anal. (C₃H₄₆CIN) C, 11. **1-(2-AminopropyI)biphenylene** (**4**) was prepared analogoosfy

1-(2-Aminopropyl)biphenylene (4) was prepared analogoosly from 1 *via* the oily 1-(2-nitro-1-propenyl)biphenylene (ir spectra as expected). The HCl salt of 4 had mp 223-225° from EtOH-Et₂O; yield 20%. Anal. (Cu₅H₆ClN·0.5C₂H₅OH) C, H.

1-(2-Amino-1-hydroxyethyl)biphenylene (5).—A mixture of 1.8 g (10 mmoles) of aldehyde 1 in enough MeNO₂ to effect sola and 2 ml of satd aq NaHCO₃ was stirred at 26° for 1 week. Et₂O was added, the layers were separated, and the Et₃O soln was stirred with aq NaHSO₃ to remove unchanged 1. After filtering 1·NaHSO₃ and drying (Na₂SO₄) the Et₃O soln furnished 1.4 g of oily 1-(1-hydroxy-2-nitroethyl)biphenylene [ir (cm⁻¹) 3450 (OH), 1550 (NO₂)] which was reduced in dry Et₃O with LAH (0.13 g, 3 mmoles) at 0°, and then at reflux for 12 hr. Work-up furnished oily 5 which was converted into the HCl salt. Becrystallization gave 0.7 g (28%) of salt, mp 225-228°, $\partial \sigma =$ (70 eV) 211(M⁺), Anal. (C₁₄H₁₄ClNO) C, H.

The isomeric 2-(2-amino-1-hydroxyethyl)biphenylene (6) was prepared similarly from aldehyde 2. The crude oily intermediate 2-(1-hydroxy-2-nitroethyl)biphenylene showed ir 3400 (OII) and 1500 cm⁻⁺ (NO₂). Crystalline 6+HCl had mp 209-210° dec (from EtOH-Et₂O), mass spectrum (70 eV) ua/v 211 (M⁺). An analytical sample of the free amino alcohol was obtained from the salt with base, ether extraction, and work-up. The lowmelting substance crystallized from Et₂O-C₆H₄₄. *Abadl.* (C₁₄-H₁aNO) C, H.

2-Chloroacetylbiphenylene (7). – Biphenylene (5 g, 33 mmoles) in 250 ml of CS₂ was added dropwise to a stirred slurry of 5 g of anhyd AlCl₄ and 50 g of ClCH₂COCl in 400 ml of dry CS₂. The deep-red mixture was warmed gently for 1 hr but never above 40°. After being stirred for another 15 hr, it was cooled in ice, and 200 ml of 18% HCl was added slowly. The mixture was filtered, the aq layer ex(d with CS₂, the combined CS₂ solus were washed (H₂O), dried (Na₂SO₄), and evapd. The residual red solid weighed 6 g (80%). It was sublimed (20 mm) to give yellow crystals, mp 134–135°, ir as expected. *Anal.* (Ct₄H₃CINO) C, 11.

2-(3-*N*,*N*-**Dimethylaminopropionyl)biphenylene** (**8**), \neg A solution of 1.5 g (7.6 mmoles) of 2-acetylbiphenylene,[†] 0.75 g (9 mmoles) of Me₂NH₂+Cl⁺, 0.6 g (20 mmoles) of paraformaldehyde, and 50 ml of *i*-AmOH was refluxed for 45 min. A few drops of ethereal HCl were added, the mixture was cooled to 0° and diluted (EuO). The crystals that formed were liftered, washed (a little H₂O), Et₂O), and recrystd (EtOH). The salt, **8** HCl, had mp 204–205° dee, ir as expected, mass spectrum (70 eV) $m_c^+c_251$ (M⁺). Anal. (C₄H₁₆ClNO) C, H.

In one batch of this Mannich reaction, using a large excess of paraformaldehyde, a second material was obtained as the major reaction product. A solin of 5 g (26 inmoles) of 2-acetylbiphenylene, 19.5 g (650 inmoles) of paraformaldehyde, 24.5 g (310 inmoles) of Me₂NH₂·Cl⁻, and 150 ml of *i*-AmOH was treated as described in the preparation of **8**. On recrystallization of the crude hydrochloride only a little **8** HCl pptd out. Concentra-

(9) (I. C. Brown aret B. C. Subba Rao, J. Amer. Chem. Soc., 80, 5377 (1958).

TABLE I

PHARMACOLOGIC PROPERTIES OF SOME BIPHENYLENE DERIVATIVES^a

Com- pound No. of base		Dose, mg/kg	Tetrabenazine antagonism	Vehicle	Remarks, number of animals
3	$2-CH_2CH(CH_3)NH_2 \cdot HCl$	$\frac{200}{200}$	Yes (ptosis) No	PEG + MeC PEG + MeC	Slight exophthalmos $(3/3)$, mydriasis $(3/3)$
8 12	2-CO(CH ₂) ₂ NMe ₂ ·HCl 2-COCH ₂ NC ₃ H ₁₀ ·HCl	200	No No	PEG + MeC	No apparent effects (3/3) Moderate ptosis (1/3), low posture, moderate decrease in motor activity, bradypnea (1/3), prostration (1/3), intention tremors, dyspnea (1/3), respiratory arrest (1/3), death (1/3), ataxia (2/3), high posture (1/3), slight exophthalmos (2/3), abnormal gait (1/3), weak grasp reflex (1/3), moderate hypothermia (1/3)
13	2-CHOHCH ₂ NC ₅ H ₁₀ ·HCl	$25 \\ 50 \\ 100$		PEG + MeC	 Slight hypertonia (2/3) No overt signs (3/3) High body posture (3/3), fine body tremors (2/3), piloerection (1/3), abnormal gait (2/3), moderate hypersensitivity to touch (3/3), marked salivation (1/3), toe-walking (1/3)
		200	No		Fine body tremors (3/3), high body posture (3/3), moderate hypersensitivity to touch (1/3), abnormal gait (3/3), marked salivation (2/3), marked rhinorrhea (1/3), descended testes (1/3)
14	$1\text{-}O(CH_2)_2NEt_2\cdot HCl$	200	No	Η ₂ Ο	Slight hypersensitivity $(1/3)$, slight decrease in motor activity $(1/3)$, moderate ptosis $(1/3)$
15	$2\text{-}O(CH_2)_2NEt_2\cdot HCl$	200	No	EtOH	High body posture $(1/3)$, slight increase in motor activity $(1/3)$, slight exophthalmos $(2/3)$, slight mydriasis (1/3)

^a All compounds were administered once orally to male Wistar rats (210–275 g), usually at 200 mg/kg, in H₂O or a mixture of 5% polyethylene glycol (PEG 400) and 95% methylcellulose (Methocel). Overt effects and tetrabenazine antagonism were recorded. For the latter effect, one animal of each dose level was injected ip with 15 mg of tetrabenazine/kg 3 hr after dosing. Tetrabenazine is 9,10-dimethoxy-1,2,3,4,6,7-hexahydro-3-isobutyl-2-oxo-11bH-benzo[a]quinolizine.

ion of the EtOH-Et₂O mother liquors furnished 1.5 g of a yellow crystalline material which was (erroneously, *vide infra*) believed to be more 8 · HCl and was reduced directly with 0.3 g (8 mmoles) of LAH in dry Et₂O for 1 hr. After the usual work-up by decomposition with H₂O, drying (Na₂SO₄), and *acidification* with Et₂O-HCl, 0.8 g of a salt was obtained, mp 205-208° (from EtOH-Et₂O), mass spectrum (70 eV) m/e 283 (M⁺). Anal. (C₁₉H₁₉Cl₂N): calcd C, 67.51; H, 5.97. Found, C, 67.61; H, 6.25.

This salt must be 2-(1-chloro-2-methylene-3-dimethylaminopropyl)biphenylene HCl (9) (Ar = 2-biphenylyl). It must

$$\begin{array}{c} \operatorname{ArCHClC}(=:CH_2)CH_2NMe_2 \cdot HCl \xrightarrow{NaOH} \\ 9 \end{array}$$

$ArCHOHC = CH_2)CH_2NMe_2$ 10

have originated from the Mannich product, $ArCOCH(CH_2-NMe_2)_2$ by LAH reduction which effected both reduction of the keto group (cf. 13) and deamination in the alkaline medium.¹⁰

When an aq soln of **9** was made basic with 10% NaOH, the amino alcohol **10** was obtained in 50% yield, mp 84-85°; m/e (70 eV) 265 (M⁺). Anal. (C₁₈H₁₈NO): calcd C, 81.47; H, 7.21. Found: C, 80.95; H, 7.48.

2-(3-Dimethylamino-1-hydroxypropyl)biphenylene (11).—The base 8 was reduced with LAH as described for the reduction of 13 below. The resulting amino alcohol 11 was converted into its HCl salt in Et₂O; yield 55%, mp 170–171° dec (from EtOH-Et₂O); m/e (70 eV) 253 (M⁺). Anal. (C₁₇H₂₀ClNO) C, H.

2-Piperidinoacetylbiphenylene (12).-A soln of 7 (2.5 g, 11

mmoles) and 2 ml of piperidine in dry C_6H_6 was allowed to stand overnight, filtered from pptd piperidine \cdot HCl, and washed (H₂O). Shaking the C_6H_6 soln with 10% aq HCl gave a yellow ppt (3.1 g, 88%) of 12 \cdot HCl. The free base, liberated with NaOH in H₂O, was recrystd from Et₂O-pet ether, mp 112-114°. Anal. (C₁₉H₁₉NO) C, H.

2-(1-Hydroxy-2-piperidinoethyl)biphenylene (13).—To a solu of LAH (0.2 g, 5 mmoles) in dry Et₂O was added dropwise, at 0° under N₂, a solu of 1.1 g (4 mmoles) of 10 in 40 ml of Et₂O. After stirring at 26° for 1 hr, H₂O was added, and the Et₂O solu was filtered, dried (Na₂SO₄), and worked up. Ethereal HCl pptd 0.7 g (56%) of 13 HCl, mp 230–232° (from EtOH-Et₂O). Anal. (C₁₉H₂₂CINO) C, H.

1-(2-Diethylaminoethoxy)biphenylene (14).—A mixture of 1-hydroxybiphenylene⁶ (2.5 g, 15 mmoles), NaH (1 g, 20 mmoles, 50% in mineral oil), and 50 ml of dry PhMe was refluxed for 5 hr, and then cooled. A soln of 2.5 g (20 mmoles) of $Et_2N(CH_2)_2Cl$ in dry PhMe was added, and the mixture stirred and refluxed for 19 hr. It was decompd with ice-dil HCl and extd (Et_2O). The aq layer was made basic (10% NaOH) and the product extd into Et_2O , dried, and worked up. The oily base was converted into the hydrochloride in dry Et_2O , yield 1.5 g (33%), mp 145– 147° (from $EtOH-Et_2O$), m/e (70 eV) 267 (M⁺). Anal. (C₁₈-H₂₂ClNO) C, H.

2-(2-Diethylaminoethoxy)biphenylene (15) was prepared similarly from 2-hydroxybiphenylene.¹¹ The salt 15 HCl crystallized from EtOH-Et₂O, mp 135-136.5°, m/e (15 eV) 267 (M⁺), yield 31%. Anal. (C₁₈H₂₂ClNO) C, H.

⁽¹⁰⁾ Cf. F. F. Blicke, Org. React., 1, 303 (1942).

⁽¹¹⁾ J. M. Blatchly, J. F. W. McOmie, and S. D. Thatte, J. Chem. Soc., 5090 (1962).