bath for 3.5 hr, poured into ice, and extracted with Et₂O. The extracts were washed and distd to give 20.5 g (63.5%) of an oil: bp 130–133° (1 mm); n^{25} D 1.5548; ir, strong band at 5.85 μ .

2.3-Diethyl-6-methoxyindan-1-one (6),—To 70 g of NaOMe was added with stirring 80 g (0.42 mole) of 5. With cooling 400 g of EtI was added rapidly and the mixture was stirred for 30 min and then heated on the steam bath for 3 hr. Excess EtI was removed by distr., H₂O added, and the mixture extracted (Et₂O). The solvent was evapd after drying (Na₂SO₄) and the residue was distd: yield 74.5 g (81%); bp 155–160° (1 mm); n^{25} D 1.5393. Anal. (C₁₄H₁₈O₂) C, H.

Pyridyllithium Reactions. 2-(p-Methoxyphenyl)-1-(2-pyridyl)cyclohexanol. -- To an Et₂() soin (400 ml) of BuLi prepared under N_2 at -10° from 4.1 g (0.6 mole) of Li and 41.1 g (0.3 mole) of BuBr was added at -40° , 47.4 g = 0.3 mole) of 2-bromopyridine in 200 ml of Et₂O. After 1 hr. a soln of 30.6 g (0.15 mole) of 2-(p-methoxyphenyl)cyclohexanoue⁵⁶ in 500 ml of Et₂O was added dropwise with stirring and the mixture was allowed to warm to room temp. Stirring was continued for 6 hr. H₂O was cautiously added, the organic layer was sepd and combined with an additional Et₂O extract. The combined Et₂O solu were extracted with 10% HCl and, after preliminary washing (Et₂O), the acid soln was basified (NH4OH) and extracted (CHCl3). The CHCl₃ soln was washed (H₂O) and coned on the steam bath to an oil which was triturated with pet ether (bp 30-60°) and recrystd from hexane: yield 24.7 g (58%); mp 74-75°. The ir spectrum showed a typical OH band at 3μ . Anal. (C₁₈H₂₁NO₂)

1-(2-Pyridyl)-2,3-diethyl-6-methoxy-indan-1-ol was prepared by a similar procedure: yield 74%; bp $183-189^{\circ}$ (1 mm); n^{25} 1c 1.5722; strong OH in ir at 3.0 μ . Anal. ($C_{19}H_{23}NO_2$) C, H, N.

1-(3-Pyridyl)-2,3-diethyl-6-methoxy-1-indene (8b).—This

compound was obtained from 3-bromopyridine by the above procedure in 61% yield: bp $180{\text -}185^\circ$ (1 mm); $n^{25}n$ 1.5923; log $\epsilon_{265\,m\mu}$ 4.05. Anal. (C₁₉H₂₁NO) C, H, N.

Dehydration Procedure (Mixture 4). A mixture of 10 g (0.035 mole) of 2-(p-methoxyphenyl)-1-(2-pyridyl)cyclohexanol and 40 g of powdered potassium pyrosulfate was placed in a bath at 240° and the temp raised to 240-260° with manual stirring until the fusion was completed and held at this temp for 1 min. The mixture was allowed to cool somewhat and poured into ice, made basic (NH₄OH), and extracted (CHCl₄), washed, and distd: bp 172-175° (2.5 mm); yield 5.8 g (63° c): n²⁵p 1.0063. Anal. (C₁₈H₁₉NO) C, H, N.

1-(2-Pyridyl)-2,3-diethyl-6-methoxy-1-indene (8a). A mixture of the 2-pyridyl carbinol (10 g) and 7 ml of 85% H₃PO₄ was heated under reflux for 6 hr and poured into ice. The solution was made basic (NaOH) and extracted (CHCl₈). The solvent was removed and the residue was distd: yield 7 g (76%): bp 173-178° (1 mm): n^{25} p 1.5838; $\log_{-6238 \text{ mg}} 4.08$. Anal. (Costage) C, H, N.

p-Methoxyphenyl-2-(2-pyridyl)cyclohexane (2).—A solic of 5.0 g (0.019 mole) of mixture 4 in 250 ml of EtOH was hydrogenated in a Parr hydrogenator in presence of 0.5 g of PtO₂. The reduction required 20–22 hr. The catalyst was filtered and the residue after removal of the solvent was distd: yield 4.3 g (85%); bp 190–192° (3 mm); n^{25} n 1.5766. Anal. (C_CH₂₁NO) C, H, N.

1-(2-Pyridyl)-2,3-diethyl-6-methoxyindane (3). The indene 8a (5.5 g, 0.02 mole) in 150 ml of EtOH was reduced for 20 hr in a Parr hydrogenator using Raney Ni catalyst. The catalyst was removed and the product was distd: yield 3.8 g (83%); bp $185-190^{\circ}$ (1 mm); $n^{26}\mathrm{p}$ 1.5696. Anal. (C₁₈H₂₃NO) HN, calcd: C, 81.10; found: C, 80.68.

New Compounds

1-Dodecylpyridinium Dodecyl Sulfate

Gunther S. Fonken and Forrest A. MacKeblar

The Upjohn Company, Kalamazoo, Michigan 49001

Received April 18, 1970

When a mixture of 1-decanol and N-bromoacetamide in pyridine is treated with SO₂ under the conditions described for the dehydration of certain steroid alcohols ¹ an excellent yield of 1-dodecylpyridinium dodecyl sulfate is obtained. The same compound is obtained when didodecyl sulfate is reacted with pyridine. Evidently this fact had been observed some years ago by Sementsov, et al., ² but their "S-containing salt of pyridine" had not been characterized.

Experimental Section³

A solution of 18.6 g of 1-dodecanol and 27.6 g of N-bromo-acetamide (NBA) in 160 ml of pyridine was treated with $\rm SO_2$ at about 25° until all of the NBA had been destroyed. Upon pouring the solution into an ice-water slurry, 20.23 g of 1-dodecyl-pyridinium dodecyl sulfate, mp 88-90°, precipitated. Re-

crystallization from EtOAc gave an analytical sample, mp 90-90.5°. Ir and mnr spectra supported the structure. Anal. (C_{2v}H₅₅NO₄S) C, H, N, S.

The sample prepared by dissolving didodecyl sulfate in pyridine, followed by addition to H₂O, had mp 91–92° and spectral properties identical with those of the material prepared by the other route.

SH Analog of the Estrogen Hexestrol

LARS TERENIUS

Department of Pharmacology, University of Uppsala, Uppsala, Sweden

Received April 4, 1970

The synthetic estrogen meso-hexestrol (I) is frequently used in the clinic. A great number of analogous compounds have been prepared. The thiophenol isostere II should at least be useful in making decisions about bonding forces in estrogen-receptor complexes and could be expected to show some interesting biological properties. The synthesis of II by a method similar to one previously described is reported.

Biological Activity.—The thiophenol analog II was

⁽¹⁾ See L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," Wiley, New York, N. Y., 1967, p 75.

⁽²¹ A. Sementsov, R. J. Kiesel, M. E. McGreal, and W. F. Hart, J. Ocy. Chem., 23, 2020 (1958).

⁽³⁾ Melting points are uncorrected. Where analyses are indicated only by the symbols for the elements, analytical results obtained for those elements were within $\pm 0.3\%$ of the theoretical values.

¹¹¹ U. V. Solrassen, Chem. Rev., 37, 481 (1945); J. Grandy, ibid., 57, 281 (1957).

⁽²⁾ H. G. Mautner, Phys m. Rev., 19, 107 (1967).

⁽³⁾ S. F. Torf and N. V. Khromov-Borisov, Zh. Obshch. Khim., 31, 2102 (1961). They report 11 to bave up 155-157°.