				Т	ABLE 1				
$ \begin{array}{c} & & \\ & & \\ & & \\ \\ & \\ \\ & & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ \\ & \\ \\ \\ & \\ \\ \\ & \\ \\ \\ & \\$									
() 1	12	D	D	Mp (HCl).	Yield,		<i>i</i>		
Compd	141	\mathbf{R}_{2}	Rs	"C dec"	1	Formula	Anal"	Method	$1 \Lambda_{\rm a}$
1	Н	Н	Н	216 - 217	51.6	$C_5H_{10}NCl$	C, H, N^c	А	8.42
11	Н	Н	Me	165 - 166	58	$C_{10}H_{12}NCl$	C, H, N	А	8.10
111	H	Н	Et	180 - 180.5	57	$C_{11}H_{14}NCl$	C, H, \mathbf{N}^d	А	8.30
IV	H	Ме	Me	162-163	35.6	$C_{11}H_{14}NCl$	C, H, N	В	7.27
V	H	Et	Et	137-138	39	$C_{13}H_{18}NCl$	C, H, N	Beef	8.46
$\mathbf{V}\mathbf{I}^{g}$	Мe	Н	Н	178 - 178.5	60	$C_{10}H_{12}NCl$	C, H, N	A^{μ}	7.93
VII	${\rm Me}$	Н	Me	152.5-153	65	$C_{11}H_{14}NCl$	C, H, N	A ⁴	8.21
VIII	Me	Н	Et	178.5 - 179	60	$C_{12}H_{16}NCl$	C, H, N	\mathbf{A}^h	8.67
IX	Me	Me	Me	205-205.5	66	$C_{12}H_{16}NCl$	C, H, N	$\mathbf{A}^{h_{1},i}$	7.55
Х	Ме	Et	Et	134 - 135	.5.5	$\mathrm{C}_{14}\mathrm{H}_{20}\mathrm{NCl}$	C, H, \mathbf{N}^k	$\mathbf{A}^{h,t}$	7.57

^a Melting points (uncorr) were taken in open capillary tubes. ^b Microanalyses were performed by Dr. C. Daessle, Organic Microanalysis, Montreal. ^b N: calcd, 8.36; found, 7.72. ^d C: calcd, 67.5; found, 68.4. ^c Water bath, 90 min. ^f Reagent (II), Et₂N (Experimental Section). ^g Compounds VI-X were not resolved. ^b Reagent I, 1-phenyl-3-bromo-1-butyne (Experimental Section). ^f C: Calcd 68.7, found 69.14. ^f Five min. ^k C: Calcd 70.7, found 70.25. ^f Three days, room temperature.

^{ser} for 30 hr. Work-up in the usual manner gave 31.7 g of the free base. Treatment of the base with HCl gas in Et₂O gave a solid which was recrystd (Me₂CO).

Antifungal Activity and Geometric Isomerism. Anilides of *o*-Coumarinic Acid

ALEX GRINGAUZ

Brooktyn College of Pharmacy, Long Island University, Brooklyn, New York 11216

Received April 18, 1970

The report by Schultz¹ that anilides of *o*-coumaric acid possessed some antifungal properties prompted the preparation of several cis analogs, anilides of *o*-coumarinic acid, for biological evaluation. Screening against *Trychophyton mentagrophytes*, *T. rubrum*, and *Candida albicans* by known methods,² however, showed these compounds to be inactive.

Experimental Section³

o-Hydroxy-cis-cinnamanilide,—To a PhH solution of o-acetoxycoumarinyl chloride, prepared from 10.3 g (0.05 mole) of oacetoxycoumarinic acid,⁴ there was added 9.3 g (0.1 mole) of $C_6H_5NH_2$ at room temperature. After allowing the mixture to evaporate to dryness it was treated with 5% HCl. The solid obtained was then treated with 0.1 N NaOH for 30 min at 40–45°. Filtration and rapid acidification of the cooled filtrate (HCl) gave 5.9 g (49%) of product. Purification was effected by solution in cold EtOH and precipitation with crushed ice. Several repetitions gave mp 114–115° (trans isomer, mp 186–187°1). Anal. (C₁:H₁₃NO₂) C, H.

A 1-g sample was refluxed in 95% EtOH for 1 hr. The product obtained after recrystallizing twice (EtOH 50%), melted at 186–188° (reported[†] mp 186–188°). A mixture melting point

(3) Melting points were determined on a Thomas-Hoover Uni-Melt and are uncorrected. It spectra were recorded on a Perkin-Elmer 337 (KBr): uv spectra on a Hitachi-Coleman 124 (95% EtOH). Elemental analyses were performed by F. B. Strauss, Oxford, England.

(4) R. Stoermer and B. Ladewig, Ber., 44, 651 (1911).

with an authentic sample of 2-hydroxycinnamanilide gave no depression; the ir spectra were identical.⁵

Acknowledgment.—Acknowledgment is made to Messrs. P. Skolnick and P. Rost who participated in this study as senior students. The author wishes to thank Mr. Leo Greenberg for his assistance with the screening of the compounds and the supply of pathogens.

15) The 2'-methyl- and 3'-methyl-o-hydroxy-cis-cinnamanilides were also prepared. However, repeated purifications failed to give samples of analytical purity. Recrystallizations from hot polar solvents invariably led to partial or total isomerization (o the trans isomer. Uv spectra on all three compounds were as expected.

Potential Antidiabetics. VI. 3-Methyl-4-arylhydrazono-2-isoxazolin-5-ones and

3-Methyl-4-arylazo-5-(methyl/phenyl)isoxazoles

H. G. CARG AND PREM PAL SINGH

Department of Chemistry, University of Roorkee, Roorkee, India

Received April 27, 1970

In view of the weak hypoglycemic¹⁻⁵ and chemotherapeutic⁶ properties of some pyrazoles, the synthesis of 3-methyl-4-arylhydrazono-2-isoxazolin-5-ones (1), 3,5-dimethyl-4-arylazoisoxazoles (IIa), and 3-methyl-5-phenyl-4-arylazoisoxazoles (IIb) containing both isoxazolyl and either arylhydrazono or arylazo grouping was undertaken.

Oral administration at various doses (12.5 to 100 mg/kg) in fasted male guinea pigs for 18 hr prior to and during testing, of 3-methyl-4-arylhydrazono-2-isoxa-zolin-5-ones (I) and 3,5-dimethyl-4-arylazoisoxazoles

(6) R. G. Micetich, J. Med. Chem., 12, 611 (1969).

⁽¹⁾ H. W. Schultz, J. Pharm. Sci., 52, 503 (1963).

⁽²⁾ A. M. Kligman and E. J. Rosenweig, J. Invest. Dermatol., 10, 51 (1948).

Part V, W. U. Malik, H. G. Garg, P. P. Singh, Veena Arora, J. Med. Chem., 13, 780 (1970).
H. G. Garg and P. P. Singh, *ibid.*, 11, 1103 (1968).

 ⁽²⁾ H. G. Garg and P. P. Singh, *ibid.*, **11**, 1105 (1966).
(3) H. G. Garg and P. P. Singh, *ibid.*, **11**, 1104 (1968), and ref cited therein.

⁽⁴⁾ H. G. Garg, D.Sc. Thesis, Agra University, Agra, India, 1969, an-published.

⁽⁵⁾ W. E. Dulin and G. C. G. rritsen, Proc. Soc. Exp. Biol. Med., 113 683 (1963).