# "Aromatic" Substituent Constants for Structure-Activity Correlations $\dagger$ 

Corwin Hansch, * Albert Leo, Stefan H. Unger, Ki Hwan Kim. Donald Nikaitani, and Eric J. Lien<br>Department of Chemistry, Pomona College. Claremont. California 91711. Received June 18, 1973

Aromatic substituent constants (lipophilic $\pi$, electronic $\sigma_{m}$ and $\sigma_{p}$, and steric MR. molar refractivity) have been collected for 236 substituents including $128 \pi$ values and 191 values for which both $\sigma_{m}$ and $\sigma_{1}$ were found. Swain and Lupton's $\mathcal{F}$ and $\mathcal{R}$ values could then be calculated for these 191 substituents by a corrected procedure. The mutual correlation of $\sigma_{\mathrm{m}}$ and $\sigma_{\mathrm{p}}$ is high, $r=0.903$, while $\mathcal{F}$ and $\mathcal{C}$ are essentially orthogonal.

Interest in the use of substituent constants for correlating structure with reactivity continues to grow rapidly in both simple organic ${ }^{1}$ as well as complex biochemical ${ }^{2}$ and biomedicinal ${ }^{3 a-d}$ systems. The use of $\sigma$ constants (Hammett and Taft) for the electronic and $E_{\mathrm{s}}$ constants (Taft ${ }^{3 \mathrm{e}}$ ) for the steric effects of substituents has greatly facilitated understanding of organic reaction mechanisms. ${ }^{1,3 e .4}$ The hydrophobic parameters ${ }^{5} \pi$ and $\log P$ have bridged the gap between simple organic and biochemicalbiomedicinal systems. To further advance the extrathermodynamic approach ${ }^{4 \mathrm{~b}}$ to quantitative structure-activity relationships (QSAR), ${ }^{3 a-d}$ we have made a search of the literature to assemble as many substituents as possible for which both $\sigma_{\mathrm{m}}$ and $\sigma_{\mathrm{p}}$ have been determined. These appear in Table I together with measured $\pi$ values and other parameters calculated as described below.

There are two reasons for focusing on these two particular electronic parameters ${ }^{6}$ instead of any of the others. First, far more of these constants are available than others such as $\sigma_{1}$ or $\sigma_{\mathrm{R}} \cdot{ }^{7}$ Second. it is possible, using only $\sigma_{\mathrm{m}}$ and $\sigma_{p}$, to factor the electronic effect into resonance and nonresonance components. ${ }^{6}$ Since Taft and Lewis ${ }^{7}$ first explored factoring of this kind, it has become increasingly evident that it can lead to greater insight into substituent effects. Although there are a variety of ways in which such factoring can be accomplished, ${ }^{6-8, \ddagger}$ the general approach of Swain and Lupton ${ }^{6}$ has the advantage that $\mathcal{F}$ and $\mathscr{R}$ can be calculated directly from $\sigma_{\mathrm{m}}$ and $\sigma_{\mathrm{p}}$, avoiding nongeneral procedures. $\ddagger$ A further improvement by way of an op-timization-orthonormalization procedure will be published shortly. $\ddagger$ This modification has the advantage of depending upon a large amount of data instead of an "arbitrarily" selected model reaction(s); it contains only a single general chemical constraint and it guarantees completely independent (orthogonal) and equiscalar (normal) substituent vectors. Actually. $\mathcal{F}$ and $\mathscr{R}$ are remarkably orthogonal, as will be discussed below, and therefore they largely avoid the common pitfall of multicollinearity (even though they are neither "optimum" nor precisely orthogonal).
To provide a measure of hydrophobic character, Table I lists the known ${ }^{5 b}$ values of $\pi$ from the benzene solute system partitioning in the octanol-water solvent system and also includes many new $\pi$ values not previously reported. $\pi$ constants have previously been measured using a variety of solute systems.§ The most common "parent" solutes

[^0](besides benzene) on which the substituents are placed are phenol. phenoxyacetic acid, benzoic acid, aniline, and nitrobenzene. The variation from system to system can often be predicted with acceptable precision, ${ }^{50}$ and it is generally not so great that it precludes using the $\pi$ constants from benzene to serve in the design of new drugs and enzyme substrates where the variable substituent is attached to any aromatic ring. The $\pi$-/benzene values are much more independent of electronic contributions than. say, $\pi$-/nitrobenzene and are thus more likely to represent a true "lipophilicity" for aromatic substituents. Where the attachment is at an aliphatic site. the substituent $\pi$ constant from benzene requires a correction for electronic effects and possibly for "folding" over the ring. ${ }^{5 b}$ Additivity of both $\pi$ and $\sigma$ on benzene rings is considered below.

The most widely used parameter for steric substituent effects in organic reaction mechanism studies is $E_{\mathrm{s}} .{ }^{3 \mathrm{e}}$ This parameter is useful for studying intramolecular steric effects, particularly in reactions where the substituent is near the reaction center. However, since $E_{s}$ constants have not been determined for the majority of substituents listed in Table I and since biochemical-biomedical "steric" requirements are often (but not always) of the "bulk" type, we have sought another measure. albeit approximate, of the general "steric" bulk. Fortunately. there are two parameters which are readily available for each substituent: molar refraction (MR) and molecular weight (MW). Van der Waals molar volumes as calculated by Bondi ${ }^{9}$ might also have been used but, for the full range of substituents listed in Table I. a great number of approximations and assumptions would have been necessary.

MR values have been used previously in some biological QSAR. ${ }^{10}$ For liquids, the MR can be calculated (in units of volume) from the Lorentz-Lorentz relation=

$$
\begin{equation*}
\mathrm{MR}=\mathrm{MW}\left(n^{2}-1\right) / d\left(n^{2}+2\right) \quad\left(\mathrm{cm}^{3} / \mathrm{mol}\right) \tag{1}
\end{equation*}
$$

where $\mathrm{MW}=$ molecular weight, $n=$ index of refraction (normally at $20^{\circ}$, Na D line), and $d=$ density (normally at $20^{\circ}$ ).
The tolerance by enzymes and receptors for the "bulkiness" of the substrates and drugs to which they are exposed is a problem of great concern ${ }^{11}$ in biomedicinal-biochemical studies. We believe that MR and/or MW may be crude but useful measures of "bulk." We wish to emphasize, however, that we consider these parameters as only a possible interim solution. MR contains an electronic contribution (it is directly proportional to the polarizability): therefore. its use in multiple regression analysis must be viewed with caution. The MR values in Table I were included partly for the purpose of the cluster analysis which appears in the following paper. ${ }^{12}$ In this they are somewhat less critical than in a multiple regression.

## Methods

1. Hydrophobic Parameters. Log $P$ values have been determined as previously described. ${ }^{5 a}$ In general. at least


Figure 1. Plot of $\sigma_{\mathrm{m}}$ ©'s. $\sigma_{1}$, for 191 substituents.
four determinations of $P$ have been made at varying concentrations. Where $P$ is a function of concentration, we have extrapolated to infinite dilution. We have used the value of 2.13 for $\log P$-benzene. Boček and Tichý** have obtained a value of 2.15 . In a few instances. as noted. $\pi$-X/benzene was not available, and a constant from another solute system was given. Ionic substituents, such as $-\mathrm{CO}_{2}{ }^{-}$and $-\mathrm{NMe}_{3}{ }^{+}$, are so hydrophilic that, when attached to benzene. the resulting $\log P$ is so low that it is quite difficult to measure. In such cases, the more lipophilic biphenyl solute system was used.
2. Electronic Parameters. $\sigma_{\mathrm{m}}$ and $\sigma_{\mathrm{p}}$ values were taken from our larger (unpublished) collection of substituent constants $\dagger \dagger$ and represent both primary and secondary values of varying quality. We have attempted to select the "best" values available for each substituent. using updated values and discarding inconsistent values. However, we urge that the original sources be consulted because of the variety of methods represented.

We have completely repeated Swain and Lupton's procedure for obtaining $\mathcal{F}$ and $\mathscr{R}$ since the factor $\rho=1.65$ was omitted from the calculation of $\sigma^{\prime}$ (ionization of 4-X-bicyclooctanecarboxylic acids in $50 \mathrm{wt} \% \mathrm{EtOH}$, Set 5$)^{6}$ with the effect that their $\mathfrak{F}$ values are out of scale with $\mathcal{A}$. Furthermore, our selected $\sigma_{\mathrm{m}}$ and $\sigma_{\mathrm{p}}$ do not always agree with those of Swain and Lupton. We have consistently rounded to two decimal places, and our $\mathfrak{F}$ and $\mathscr{R}$ are selfconsistent with the $\sigma_{\mathrm{m}}$ and $\sigma_{\mathrm{p}}$ in Table I. Thus

[^1]\[

\mathcal{F}=$$
\begin{array}{r}
1.369( \pm 0.186) \sigma_{\mathrm{m}}-0.373( \pm 0.142) \\
0.009( \pm 0.038) \\
 \tag{2}\\
\end{array}
$$
\]

The figures in parentheses are $95 \%$ confidence limits: the overall $F$ statistic if $F_{2.11}=318.77\left(F_{2.11: \alpha=0.005}=8.91\right)$. All the coefficients are evaluated from 14 data points of Baker, et al. ${ }^{13}$ (corrected for $\rho=1.65$ ), but all $\mathcal{F}$ are calculated from eq 2. Then

$$
\begin{equation*}
\mathfrak{R}=\sigma_{\mathrm{B}}-\alpha \mathcal{F} \tag{3}
\end{equation*}
$$

which gives $\alpha=0.921$ under the assumption ${ }^{6}$ that $\mathrm{R}\left(\mathrm{NMe}_{3}{ }^{+}\right)=0.0\left(\sigma_{\mathrm{p}}=0.82, \mathcal{F}=0.89\right)$. Independent evaluation of new substituent constants has confirmed the general validity of this assumption. ${ }^{8} \cdot \underset{\leftarrow}{\ddagger}$ Results siven below further show that $\mathcal{F}$ and $\mathcal{R}$ are remarkably orthogonal. considering the relative simplicity of the assumptions.
3. Steric Parameters. There are various systems for calculating molar refractivity, but the atom-group-structure constants of Vogel and the bond values of Vogel and others= are the ones most commonly used. The atom-group-structure system of Vogel could be applied to the greatest number of substituent structures of Table I, and so it was chosen for the sake of consistency. However. exaltations between aliphatic and aromatic values can be rather large (as much as $10 \%$ ), and for substituents containing unsaturation or a lone electron pair which could interact with the benzene ring. and for which Vogel did not list separate aromatic values, we have used Ingold's special values. We have ignored the slight variation

Table I. "Aromatic" Substituent Constants

| No. | Function ${ }^{\text {a }}$ | $\pi^{\text {b }}$ | $\sigma_{\text {m }}$ | $\sigma_{\mathrm{p}}$ | $\mathrm{F}^{\text {c }}$ | $R^{c}$ | MR ${ }^{\text {d }}$ | MW ${ }^{\text {e }}$ | Wiswesser line notation ${ }^{\prime}$ | Ref |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | $\sigma_{\text {m }}$ |  |
| 1 | $\mathrm{B}(\mathrm{OH})_{2}$ | -0.55 | -0.01 | 0.12 | -0.07 | 0.18 | $11.04 \mathrm{~A}^{h}$ | 44.8 | *BQQ | 1 | 1 |
| 2 | Br | 0.86 | 0.39 | 0.23 | 0.44 | -0.17 | 8.88B | 79.9 | *E | 2 | 2 |
| 3 | $\mathrm{CBr}_{3}$ |  | 0.28 | 0.29 | 0.27 | 0.04 | 28.81 | 251.7 | *XEEE | 3 | 3 |
| 4 | $\mathrm{CCl}_{3}$ |  | 0.32 | 0.33 | 0.31 | 0.05 | 20.12 | 118.4 | *XGGG | 3 | 3 |
| 5 | $\mathrm{CF}_{3}$ | 0.88 | 0.43 | 0.54 | 0.38 | 0.19 | 5.02 | 69.0 | *XFFF | 2 | 2 |
| 6 | CN | -0.57 | 0.56 | 0.66 | 0.51 | 0.19 | 6.33 B | 26.0 | *CN | 2 | 2 |
| 7 | $\mathrm{COO}^{-}$ | -4.36W | -0.10 | 0.00 | -0.15 | 0.13 | 6.05 BC | 44.0 | *VO | 2 | 2 |
| 8 | CHO | -0.65 | 0.35 | 0.42 | 0.31 | 0.13 | 6.88 B | 29.0 | *VH | 4 | 5 |
| 9 | COOH | -0.32 | 0.37 | 0.45 | 0.33 | 0.15 | 6.93B | 45.0 | *VQ | 2 | 2 |
| 10 | $\mathrm{CH}_{2} \mathrm{Br}$ | 0.79 | 0.12 | 0.14 | 0.10 | 0.05 | 13.39 | 93.9 | *1E | 1 | 1 |
| 11 | $\mathrm{CH}_{2} \mathrm{Cl}$ | 0.17 | 0.11 | 0.12 | 0.10 | 0.03 | 10.49 | 49.5 | *1G | 1 | 1 |
| 12 | $\mathrm{CH}_{2} \mathrm{I}$ |  | 0.10 | 0.11 | 0.09 | 0.03 | 18.60 | 140.9 | *1I | 1 | 1 |
| 13 | $\mathrm{CONH}_{2}$ | -1.49 | 0.28 | 0.36 | 0.24 | 0.14 | 9.81 B | 44.0 | *VZ | 4 | 6 |
| 14 | $\mathrm{CH}=\mathrm{NOH}$ | -0.38 | 0.22 | 0.10 | 0.25 | -0.13 | 10.28B | 44.0 | *1UNQ | 7 | 7 |
| 15 | $\mathrm{C}=\mathrm{O}(\mathrm{NHOH})$ | -1.87 |  |  |  |  | 11.22B | 60.0 | *VMQ |  |  |
| 16 | $\mathrm{CH}_{3}$ | 0.56 | -0.07 | -0.17 | -0.04 | -0.13 | 5.65 | 15.0 | *1 | 2 | 2 |
| 17 | $\mathrm{CH}_{2} \mathrm{OH}$ | -1.03 | 0.00 | 0.00 | 0.00 | 0.00 | 7.19 | 31.0 | *1Q | 8 | 8 |
| 18 | $\mathrm{CH}_{2} \mathrm{NH}_{2}$ | -1.04 |  |  |  |  | 9.09 | 30.1 | *1Z |  |  |
| 19 | $\mathrm{C}=\mathrm{O}\left(\mathrm{CF}_{3}\right)$ | 0.02 |  |  |  |  | 11.17B | 97.0 | *VXFFF |  |  |
| 20 | $3,4-\left(\mathrm{CF}_{2} \mathrm{OCF}_{2}\right)$ |  | 0.81 | 0.81 | 0.80 | 0.08 | 10.19 | 116.0 | *XFFOX*FF(C,D) | 9 | 9 |
| 21 | $\mathrm{C} \equiv \mathrm{CH}$ | 0.40 | 0.21 | 0.23 | 0.19 | 0.05 | 9.55B | 25.0 | *1UU1 | 10 | 10 |
| 22 | $\mathrm{CH}_{2} \mathrm{SCF}_{3}$ |  | 0.12 | 0.15 | 0.10 | 0.06 | 17.59 | 115.1 | *1SXFFF | 11 | 11 |
| 23 | $\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{CF}_{3}$ |  | 0.29 | 0.31 | 0.27 | 0.06 | $17.51{ }^{\text {i }}$ | 147.1 | *1SWXFFF | 11 | 11 |
| 24 | $\mathrm{CH}_{2} \mathrm{CN}$ | -0.57 | 0.16 | 0.01 | 0.21 | -0.18 | 10.11 | 40.0 | *1CN | 1 | 4 |
| 25 | $\underset{\text { (trans) }}{\mathrm{CH}=\mathrm{CHNO}_{2}}$ | 0.11 | 0.32 | 0.26 | 0.33 | -0.05 | 16.42B | 72.0 | *1U1NW -T | 12 | 12 |
| 26 | $\mathrm{CH}=\mathrm{CH}_{2}$ | 0.82 | 0.05 | -0.02 | 0.07 | -0.08 | 10.99B | 27.1 | *1U1 | 5 | 5 |
| 27 | $\mathrm{COCH}_{3}$ | -0.55 | 0.38 | 0.50 | 0.32 | 0.20 | 11.18B | 43.1 | *V1 | 2 | 2 |
| 28 | $\mathrm{CO}_{2} \mathrm{CH}_{3}$ | -0.01 | 0.37 | 0.45 | 0.33 | 0.15 | 12.87 B | 59.0 | *VO1 | 2 | 13 |
| 29 | $\mathrm{CH}_{2} \mathrm{COOH}$ | -0.72 |  | -0.07 |  |  | 11.88 | 59.0 | *1VQ |  | 8 |
| 30 | $\mathrm{C}=\mathrm{O}\left(\mathrm{NHCH}_{3}\right)$ | -1.27 | 0.35 | 0.36 | 0.34 | 0.05 | 14.57B | 58.1 | *VM1 | 14 | 14 |
| 31 | $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ | -1.68 |  | 0.07 |  |  | 14.41 | 58.1 | *1VZ |  | 15 |
| 32 | $\mathrm{C}=\mathbf{S}\left(\mathrm{NHCH}_{3}\right)$ |  | 0.30 | 0.34 | 0.27 | 0.09 | 22.33 | 74.1 | *YUS\&M1 | 14 | 14 |
| 33 | $\mathrm{C}_{2} \mathrm{H}_{5}$ | 1.02 | -0.07 | -0.15 | -0.05 | -0.10 | 10.30 | 29.1 | *2 | 2 | 2 |
| 34 | $\begin{gathered} 1-\left(1,2-\mathrm{B}_{10} \mathrm{H}_{10} \mathrm{C}_{2} \mathrm{H}\right) \\ \alpha \text {-carboranyl } \end{gathered}$ |  | 0.48 | 0.52 | 0.45 | 0.10 |  | 143.2 | *? | 16 | 16 |
| 35 | 3-Barenyl |  | 0.20 | 0.19 | 0.19 | 0.01 |  | 143.2 | *? | 17 | 17 |
| 36 | 1-Neobarenyl |  | 0.25 | 0.33 | 0.21 | 0.14 |  | 143.2 | *? | 17 | 17 |
| 37 | $\mathrm{C} \equiv \mathrm{CCF}_{3}$ |  | 0.41 | 0.51 | 0.36 | 0.18 | 14.13B | 93.0 | *1UU1XFFF | 18 | 18 |
| 38 | $\mathrm{CF}\left(\mathrm{CF}_{3}\right)_{2}$ |  | 0.37 | 0.53 | 0.30 | 0.25 | 13.44 | 169.0 | *XFXFFFXFFF | 19 | 19 |
| 39 | $\mathrm{C}(\mathrm{OH})\left(\mathrm{CF}_{3}\right)_{2}$ |  | 0.29 | 0.30 | 0.28 | 0.05 | 15.18 | 167.0 | *XQXFFFXFFF | 19 | 19 |
| 40 | $\underset{\text { (trans) }}{\mathrm{CH}=\mathrm{CHCF}_{3}}$ |  | 0.24 | 0.27 | 0.22 | 0.07 | 15.57B | 95.0 | *1U1XFFF-T | 3 | 3 |
| 41 | $\underset{\text { (cis) }}{\mathrm{CH}=\mathrm{CHCF}_{3}}$ |  | 0.16 | 0.17 | 0.15 | 0.03 | 15.57B | 95.0 | *1U1XFFF - ${ }^{\text {c }}$ | 3 | 3 |
| 42 | $\mathrm{CH}=\mathrm{CHCN}$ | -0.17 ${ }^{\text {i }}$ | 0.24 | 0.17 | 0.26 | -0.07 | 16.23B | 52.1 | $*_{1} \mathrm{U}_{1} \mathrm{CN}$ | 20 | 20 |
| 43 | $\mathrm{C} \equiv \mathrm{CCH}_{3}$ |  |  | 0.09 |  |  | 14.14B | 39.1 | *1UU2 | 21 | 21 |
| 44 | $\mathrm{CH}=\mathrm{CHCHO}$ |  | 0.24 | 0.13 | 0.27 | -0.12 | 16.88 B | 55.1 | *1U1VH | 20 | 20 |
| 45 | $\mathrm{CH}=\mathrm{CHCOOH}$ | 0.00 | 0.14 | 0.90 | -0.15 | 1.04 | $17.91 \mathrm{~B}^{k}$ | 71.1 | * ${ }^{\text {U }}$ 1VQ | 22 | 8 |
| 46 | $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ | 1.10 |  |  |  |  | 14.49 | 41.1 | *2U1 |  |  |
| 47 | Cyclopropyl |  | -0.07 | -0.21 | -0.03 | -0.19 | 13.53 | 41.1 | * AL3TJ | 23 | 23 |
| 48 | $\mathrm{CH}_{2} \mathrm{COCH}_{3}$ | -0.69 |  |  |  |  | 15.06 | 57.1 | $*_{1} \mathrm{~V} 1$ |  |  |
| 49 | $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{3}$ | 0.51 | 0.37 | 0.45 | 0.33 | 0.15 | 17.47B | 73.1 | *VO2 | 2 | 2 |
| 50 | $\mathrm{CH}_{2} \mathrm{OC}=\mathrm{O}\left(\mathrm{CH}_{3}\right)$ | -0.17 |  | 0.05 |  |  | 16.48 | 73.1 | *10V1 |  | 15 |
| 51 | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ | -0.29 | -0.03 | -0.07 | -0.02 | -0.05 | 16.52 | 73.1 | *2VQ | 22 | 22 |
| 52 | $3,4-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ | 1.20 | -0.26 | -0.26 | -0.27 | -0.01 | 13.94 | 42.1 | *3* (C,D) | 4 | 4 |
| 53 | $\begin{aligned} & \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{3}^{+}\right)- \\ & \mathrm{COO}^{-} \end{aligned}$ | $-3.56^{\text {l }}$ |  |  |  |  |  | 88.1 | *1YZVQ |  |  |
| 54 | $\mathrm{C}_{3} \mathrm{H}_{7}$ | 1.55 | -0.07 | -0.13 | -0.06 | -0.08 | 14.96 | 43.1 | *3 | 5 | 4 |
| 55 | $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ | 1.53 | -0.07 | -0.15 | -0.05 | -0.10 | 14.98 | 43.1 | *Y | 24 | 2 |
| 56 | $\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ | $-0.15^{m}$ |  | 0.01 |  |  | 18.74 | 58.1 | *1N1\&1 |  | 25 |
| 57 | $\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$ |  | 0.47 | 0.52 | 0.44 | 0.11 | 17.65 | 219.0 | */XFF/4F | 19 | 19 |
| 58 | 2-Thienyl | 1.61 | 0.09 | 0.05 | 0.10 | 0.04 | $24.04 \mathrm{~A}^{n}$ | 83.1 | * BT5SJ | 26 | 26 |
| 59 | $\begin{aligned} & 3,4-(\mathrm{CH}= \\ & \mathrm{CHCH}=\mathrm{CH}) \end{aligned}$ | 1.32 | 0.04 | 0.04 | 0.03 | 0.01 | $17.47 \mathrm{~A}^{\circ}$ | 52.1 | R A* $\mathrm{B}^{*}(\mathrm{C}, \mathrm{D})$ |  |  |
| 60 | $\mathrm{CH}=\mathrm{CHCOCH}_{3}$ | -0.06 ${ }^{\text {i }}$ | 0.21 | -0.01 | 0.28 | -0.27 | 21.10 B | 69.1 | *1U1V1 | 20 | 20 |
| 61 | Cyclobutyl |  |  | -0.15 |  |  | 17.88 | 55.1 | * AL4TJ |  | 27 |
| 62 | $3,4-\left(\mathrm{CH}_{2}\right)_{4}$ | 1.39 X | -0.48 | -0.48 | -0.49 | -0.03 | 18.59 | 56.1 | ${ }^{4}$ * (C,D) | 4 | 4 |
| 63 | $\mathrm{C}_{4} \mathrm{H}$ |  | -0.08 | -0.16 | -0.06 | -0.11 | 19.59 | 57.1 | * 4 | 5 | 4 |
| 64 | $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{3}$ | 1.98 | -0.10 | -0.20 | -0.07 | -0.13 | 19.62 | 57.1 | *X | 2 | 2 |
| 65 66 | $\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ |  | -0.16 | -0.21 | -0.15 | -0.07 | 29.61 D | 87.2 | *1-SI-1\&1\&1 | 2 | 2 |
| 66 67 | 4-Pyridyl | 0.32 |  |  |  |  | $23.03 \mathrm{~A}^{\text {c }}$ | 78.1 | * DT6NJ |  |  |
| 68 | $\underset{\text { Cyclopentyl }}{ }$ | $0.86{ }^{\circ}$ | 0.19 | 0.03 | 0.24 | -0.19 | 27.21B | 99.1 | *1U1VO2 | 20 | 20 |
|  | Cyclopentyl | 2.14 X |  | -0.02 |  |  | 22.02 | 69.1 | * AL5TJ |  | 27 |

Table I (Continued)


Table I (Continued)

|  |  |  |  |  |  |  |  |  | Wiswesser line |  | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Function ${ }^{\text {a }}$ | $\pi^{b}$ | $\sigma_{\mathrm{m}}$ | $\sigma_{\mathrm{p}}$ | $\mathcal{F}^{\text {c }}$ | Q ${ }^{\text {c }}$ | MR ${ }^{\text {d }}$ | MW ${ }^{\text {e }}$ | ation ${ }^{\text {f }}$ | $\sigma_{\mathrm{m}}$ | $\sigma_{\mathrm{p}}{ }^{\sigma}$ |
| 122 |  |  | 0.30 | 0.19 | 0.33 | -0.11 |  | 101.1 | *M-ET5NNNSJ | 28 | 28 |
| 123 | NHCHO | $-0.98$ | 0.19 | 0.00 | 0.25 | $-0.23$ | 10.31 | 44.0 | *MVH | 43 | 43 |
| 124 | $\mathrm{NHCONH}_{2}$ | -1.30 | -0.03 | -0.24 | 0.04 | -0.28 | 13.72 | 59.1 | *MVZ | 43 | 43 |
| 125 | $\mathrm{NHCSNH}_{2}$ | -1.40 | 0.22 | 0.16 | 0.23 | -0.05 | 22.19 | 75.1 | *MYZUS | 28 | 28 |
| 126 | $\mathrm{NHCH}_{3}$ | -0.47 | -0.30 | -0.84 | -0.11 | -0.74 | 10.33 | 30.1 | *M1 | 4 | 2 |
| 127 | $\mathrm{NHSO}_{2} \mathrm{CH}_{3}$ | -1.18 | 0.20 | 0.03 | 0.25 | -0.20 | $18.17{ }^{i}$ | 94.1 | *MSW1 | 43 | 43 |
| 128 | $\mathrm{N}\left(\mathrm{CF}_{3}\right)_{2}$ |  | 0.40 | 0.53 | 0.34 | 0.22 | 14.28 | 152.0 | *NXFFFXFFF | 45 | 45 |
| 129 | $\mathrm{NHCOCF}_{3}$ | 0.08 | 0.30 | 0.12 | 0.36 | -0.21 | 14.30 | 112.0 | *MVXFFF | 43 | 43 |
| 130 |  |  | 0.63 | 0.64 | 0.61 | 0.07 | $49.17 \mathrm{D}^{v}$ | 201.2 | $\begin{aligned} & \text { * AT5NNNNJ } \\ & \text { ESS- } \\ & \text { ET5MNNNJ } \end{aligned}$ | 3 | 3 |
| 131 | $\mathrm{NHCOCH}_{2} \mathrm{Cl}$ |  | 0.17 | $-0.03$ | 0.23 | -0.25 | 19.77 | 92.5 | ${ }^{*} \mathrm{MV1G}$ | 43 | 43 |
| 132 | $\mathrm{NHCOCH}_{3}$ | $-0.97$ | 0.21 | 0.00 | 0.28 | -0.26 | 14.93 | 58.1 | *MV1 | 2 | 2 |
| 133 | NHCSCH, |  | 0.24 | 0.12 | 0.27 | -0.13 | 23.40 | 74.1 | *MYUS | 14 | 14 |
| 134 | $\mathrm{NHC}_{2} \mathrm{H}_{3}$ | $0.088^{y, z}$ | $-0.24$ | $-0.61$ | $-0.11$ | $-0.51$ | 14.98 | 44.1 | *M2 | 4 | 6 |
| 135 | $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ | 0.18 | $-0.15$ | $-0.83$ | 0.10 | -0.92 | 15.55 | 44.1 | *N1\&1 | 46 | 2 |
| 136 | $\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right)_{2}$ | $-1.51$ |  |  |  |  | $31.22^{i}$ | 172.2 | *NSW1\&\&SW1 |  |  |
| 137 | $\mathbf{N}=\mathbf{N N}\left(\mathrm{CH}_{3}\right)_{2}$ | 0.46 |  |  |  |  | 20.88 D | 72.1 | *NUNN1\&1 |  |  |
| 138 | $\mathrm{NHCOC}_{2} \mathrm{H}_{5}$ | $-0.47$ |  |  |  |  | 19.58 | 72.1 | *MV2 |  |  |
| 139 | $\mathrm{NHCO}_{2} \mathrm{C}_{2} \mathrm{H}_{3}$ | 0.17 | 0.07 | -0.15 | 0.14 | -0.28 | 21.18 | 88.1 | *MVO2 | 43 | 43 |
| 140 | $\mathrm{NHCONHC}_{2} \mathrm{H}_{5}$ |  | 0.04 | -0.26 | 0.14 | -0.39 | 23.19 | 87.1 | *MVM2 | 14 | 14 |
| 141 | $\mathrm{NHCSNHC}_{2} \mathrm{H}_{5}$ |  | 0.30 | 0.07 | 0.38 | -0.28 | 31.66 | 103.2 | *MYUS\&M2 | 14 | 14 |
| 142 | $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}$ | -5.96W | 0.88 | 0.82 | 0.89 | 0.00 |  | 59.1 | *K | 2 | 2 |
| 143 | $\mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}$ |  | 0.11 | -0.10 | 0.18 | -0.26 | 24.25 | 86.1 | *MVY | 43 | 43 |
| 144 | $\mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ |  | $-0.10$ |  |  |  | 25.82 | 102.1 | *M1VO2 | 47 |  |
| 145 | $\mathrm{NHC}_{4} \mathrm{H}_{5}$ | $1.45{ }^{y}$ | $-0.34$ | $-0.51$ | -0.28 | -0.25 | 24.26 | 72.15 | *M4 | 4 | 6 |
| 146 | $\mathbf{N}=\mathrm{NC}_{6} \mathrm{H}_{3}$ | 1.69 | 0.32 | 0.39 | 0.28 | 0.13 | 31.31 | 105.1 | *NUNR | 13 | 13 |
| 147 | $\mathrm{NHC}_{6} \mathrm{H}_{3}$ | 1.37 | -0.12 | -0.40 | -0.02 | -0.38 | 30.04 | 92.1 | *MR | 48 | 48 |
| 148 | $\mathrm{NHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ | 0.45 | 0.16 | 0.01 | 0.21 | -0.18 | $37.88{ }^{i}$ | 156.2 | *MSWR | 43 | 43 |
| 149 | $\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{3}$ | -0.29 | $-0.08$ | -0.55 | 0.09 | -0.63 | 33.01 D | 104.1 | *NU1R | 43 | 43 |
| 150 | $\mathrm{NHCOC}_{6} \mathrm{H}_{5}$ | 0.49 | 0.02 | $-0.19$ | 0.09 | -0.27 | 34.64 | 120.1 | *MVR | 43 | 43 |
| 151 | $\begin{aligned} & \mathrm{N}=\mathrm{NC}_{6} \mathrm{H}_{3} \\ & (2-\mathrm{OH})\left(5-\mathrm{CH}_{3}\right) \end{aligned}$ |  | 0.27 0.07 | 0.31 | 0.24 | 0.08 | 37.45 | 135.2 | *NUNR BQ E1 | 43 | 43 |
| 152 | $\begin{gathered} \mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \\ \left(4-\mathrm{OCH}_{3}\right) \end{gathered}$ |  | $-0.07$ | -0.54 | 0.10 | $-0.63$ | 39.29 D | 134.2 | *NU1R DO1 | 43 | 43 |
| 153 | $\mathrm{NHCOC}_{6} \mathrm{H}_{4}$ - <br> $\left(4-\mathrm{OCH}_{3}\right)$ |  | 0.09 | $-0.06$ | 0.14 | $-0.19$ | 41.03 | 150.2 | *MVR DO1 | 43 | 43 |
| 154 | $\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ |  | 0.00 | -0.22 | 0.07 | -0.29 | 54.96 | 168.2 | *NR\&R | 49 | 50 |
| 155 | $\mathrm{O}^{-}$ | $-3.87 \mathrm{~W}$ | $-0.47$ | -0.81 | $-0.35$ | $-0.49$ |  | 16.0 | * O | 44 | 44 |
| 156 | OH | -0.67 | 0.12 | -0.37 | 0.29 | -0.64 | 2.85 B | 17.0 | *Q | 2 | 2 |
| 157 | 3,4-( $\mathrm{OCF}_{2} \mathrm{O}$ ) |  | 0.36 | 0.36 | 0.35 | 0.04 | 8.95B | 82.0 | *OXFFO* $(\mathrm{C}, \mathrm{D})$ | 9 | 9 |
| 158 | $\mathrm{OCF}_{3}$ | 1.04 | 0.38 | 0.35 | 0.38 | 0.00 | 7.86 B | 85.0 | *OXFFF | 45 | 45 |
| 159 | $\mathrm{OCHF}_{2}$ |  | 0.31 | 0.18 | 0.35 | -0.14 | 7.86B | 57.0 | *OYFF | 51 | 51 |
| 160 | $\mathrm{OCONH}_{2}$ | $-1.05$ |  |  |  |  | 11.28B | 60.0 | *OVZ |  |  |
| 161 | $3,4-\left(\mathrm{OCH}_{2} \mathrm{O}\right)$ | -0.05 | $-0.16$ | $-0.16$ | $-0.17$ | 0.00 | 8.96 B | 46.0 | *O1O* ${ }^{(C, D}$ ) | 22 | 22 |
| 162 | $\mathrm{OCH}_{3}$ | $-0.02$ | 0.12 | $-0.27$ | 0.26 | -0.51 | 7.87B | 31.0 | *O1 | 2 | 2 |
| 163 | $\mathrm{OSO}_{2} \mathrm{CH}_{3}$ | -0.88 | 0.39 | 0.36 | 0.39 | 0.00 | 16.99 | 95.1 | *OSW1 | 43 | 43 |
| 164 | $\mathrm{OCF}_{2} \mathrm{CHFCl}$ |  | 0.35 | 0.28 | 0.37 | $-0.06$ | 17.30B | 133.5 | *OXFFYGF | 51 | 51 |
| 165 | $\mathrm{OCOCH}_{3}$ | -0.64 | 0.39 | 0.31 | 0.41 | $-0.07$ | 12.47 B | 59.0 | *OV1 | 2 | 2 |
| 166 | $\mathrm{OCH}_{2} \mathrm{COOH}$ | $-0.87$ |  | -0.33 |  |  | 13.99 B | 75.0 | *O1VQ |  | 52 |
| 167 | OEt | 0.38 | 0.10 | -0.24 | 0.22 | -0.44 | 12.47B | 45.1 | *O2 | 2 | 2 |
| 168 | $\mathrm{OPO}\left(\mathrm{OCH}_{3}\right)_{2}$ |  |  | 0.04 |  |  | 22.02B | 125.0 | *OPO\&O1\&O1 |  | 53 |
| 169 | $\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$ |  | 0.10 | $-0.45$ | 0.30 | $-0.72$ | 17.06B | 59.1 | *OY | 2 | 2 |
| 170 | $\mathrm{OC}_{3} \mathrm{H}_{7}$ | 1.05 | 0.10 | $-0.25$ | 0.22 | $-0.45$ | 17.06B | 59.1 | *O3 | 2 | 2 |
| 171 | $\mathrm{OC}_{4} \mathrm{H}_{3}$ |  | 0.10 | $-0.32$ | 0.25 | -0.55 | 21.66B | 73.1 | *O4 | 2 | 2 |
| 172 | $\mathrm{OC}_{5} \mathrm{H}_{11}$ |  | 0.10 | -0.34 | 0.25 | -0.57 | 26.26B | 87.2 | *O5 | 2 | 2 |
| 173 | $\mathrm{OC}_{6} \mathrm{H}_{5}$ | 2.08 | 0.25 | $-0.03$ | 0.34 | -0.35 | 27.68B | 93.1 | *OR | 2 | 4 |
| 174 | $\mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{\text {; }}$ | 0.93 | 0.36 | 0.33 | 0.36 | 0.00 | $36.70^{i}$ | 157.2 | *OSWR | 43 | 43 |
| 175 | O-p-glucose | $-2.84{ }^{a}$ |  |  |  |  | 36.53 D | 179.0 | $\begin{aligned} & \text { *O- BT6OTJ } \\ & \text { CQ DQ EQ } \\ & \text { F1Q } \end{aligned}$ |  |  |
| 176 | $\mathrm{OCOC}_{6} \mathrm{H}_{5}$ | 1.46 | 0.21 | 0.13 | 0.23 | $-0.08$ | 32.33 B | 121.1 | *OVR | 43 | 43 |
| 177 | $\mathrm{POCl}_{2}$ |  | 0.80 | 0.43 | 0.93 | $-0.42$ | 20.16D | 117.9 | *PO\&GG | 54 | 53 |
| 178 | $\mathrm{PCl}_{2}$ |  | 0.53 | 0.61 | 0.49 | 0.16 | 21.42 D | 101.9 | *PGG | 54 | 41 |
| 179 | $\mathrm{POF}_{2}$ |  | 0.81 | 0.89 | 0.77 | 0.18 | 9.58 D | 85.0 | *PO\&FF | 41 | 41 |
| 180 | $\mathrm{PF}_{2}$ |  | 0.26 | 0.61 | 0.12 | 0.50 | 11.02D | 69.0 | *PFF | 41 | 41 |
| 181 | $\mathrm{PSCl}_{2}$ |  | 0.73 | 0.39 | 0.84 | $-0.39$ | 28.29 D | 133.9 | *PS\&GG | 54 | 53 |
| 182 | $\mathrm{PO}_{3} \mathrm{H}^{-}$ |  | 0.20 | 0.26 | 0.17 | 0.11 |  | 80.0 | *PWQ | 2 | 2 |
| 183 | $\mathrm{PH}_{2}$ |  | 0.05 |  |  |  | 12.19 D | 33.0 | *PHH | 54 |  |
| 184 | $\mathrm{P}(\mathrm{Cl}) \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ |  | 0.38 | 0.56 | 0.30 | 0.28 | 27.01 D | 110.5 | *PGN1\&1 | 41 | 41 |
| 185 | $\mathrm{PO}\left(\mathrm{CH}_{3}\right)_{2}$ |  | 0.42 |  |  |  | 19.93 D | 77.0 | *PO\&1\&1 | 54 |  |

Table I (Continued)

| No. | Function | $\pi^{\prime \prime}$ | $\sigma_{0}$ | $\sigma^{1}$ | $\therefore$ | 4 | MR ${ }^{1}$ | MW ${ }^{\epsilon}$ | Wiswesser line notation | Ref |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | ${ }^{19}$ | $\sigma_{1}{ }^{\text {a }}$ |
| 186 | $\mathrm{PO}(\mathrm{OCH} \cdot$ |  | 0.42 | 0.53 | 0.37 | 0.19 | 21.87D | 109.0 | *PO\&O1\&O1 | 55 | 55 |
| 187 | $\mathrm{P}\left(\mathrm{CH}_{4}\right)_{2}$ | 0.44 | 0.03 | 0.31 | $-0.08$ | 0.39 | 21.19D | 61.1 | *P1\&1 | 54 | 41 |
| 188 |  |  |  | 0.33 |  |  | 32.42 D | 121.1 | *PO2\&O2 |  | 53 |
| 189 | $\mathrm{PO} \mathrm{OC}_{2} \mathrm{H}^{-}$ |  | 0.55 | 0.60 | 0.52 | 0.12 | 31.16 D | 137.1 | *PO\&O2\&O2 | 56 | 56 |
| 190 | $\mathrm{PO}(\mathrm{Cl}) \mathrm{C} \mathrm{H}_{-}-3-\mathrm{F}$ |  | 0.65 |  |  |  | $39.49 \mathrm{D}^{\text {/3 }}$ | 177.5 | *PO\&GR CF | 54 |  |
| 191 | $\mathrm{P}(\mathrm{Cl}) \mathrm{C} \mathrm{H}_{4}-3-\mathrm{F}$ |  | 0.42 |  |  |  | $40.75 \mathrm{D}^{\text {² }}$ | 161.5 | *PGR CF | 54 |  |
| 192 | $\mathrm{PS}(\mathrm{Cl}) \mathrm{C} \cdot \mathrm{H}-3-\mathrm{F}$ |  | 0.56 |  |  |  | $47.62 \mathrm{D}^{\text {i/m }}$ | 193.6 | *PS\&GR CF | 54 |  |
| 193 | $\mathrm{P}(\mathrm{Cl}) \mathrm{C} \mathrm{H}$ : |  |  | 0.44 |  |  | 40.99 D | 143.5 | *PGR |  | 53 |
| 194 | P(H:C.H:-3-F |  | 0.09 |  |  |  | $36.14 \mathrm{D}^{\prime \prime}$ | 127.1 | *PHR CF | 54 |  |
| 195 | $\mathrm{PO} \mathrm{OCH}^{\mathrm{H}}$ ) |  | 0.38 | 0.50 | 0.32 | 0.20 | 40.46 D | 165.2 | *PO\&O3\&O3 | 55 | 55 |
| 196 | $\begin{aligned} & \mathrm{P} O \mathrm{OCH}, \mathrm{C} \mathrm{H}:- \\ & 3-\mathrm{F} \end{aligned}$ |  | 0.33 |  |  |  | $41.68 \mathrm{D}^{\text {i. }}$ | 157.1 | *PO1\&R CF | 54 |  |
| 197 | $\underset{3-\mathrm{F}}{\mathrm{POCF}}$ |  | 0.40 |  |  |  | $39.37 \mathrm{D}^{i, h}$ | 157.1 | *PO\&1\&R CF | 54 |  |
| 198 | $\mathrm{P}(\mathrm{CH}) \mathrm{C}, \mathrm{H}-3-\mathrm{F}$ |  | 0.20 |  |  |  | $40.63 \mathrm{D}^{\prime \prime}$ | 141.1 | *P1\&R CF | 54 |  |
| 199 | POCO H |  | 0.35 | 0.49 | 0.29 | 0.23 | 47.81 D | 161.2 | *PO\&4\&4 | 55 | 55 |
| 200 | $\mathrm{P}) \mathrm{C}_{6} \mathrm{H}$ | 0.70 | 0.38 | 0.53 | 0.31 | 0.24 | 59.29 D | 201.2 | *PO\&R\&R | 57 | 57 |
| 201 | P (C. H |  | 0.11 | 0.19 | 0.07 | 0.12 | 60.55 D | 185.2 | *PR\&R | 57 | 57 |
| 202 | PSCCH: |  | 0.29 | 0.47 | 0.21 | 0.27 | 67.42D | 217.2 | *PS\&R\&R | 57 | 57 |
| 203 | SO | $0.05^{\circ} \mathrm{Z}$ | 0.80 | 0.91 | 0.75 | 0.22 | 8.65 | 83.1 | *SWF | 58 | 58 |
| 204 | SE. | 1.23 | 0.61 | 0.68 | 0.57 | 0.15 | 9.89 A | 127.1 | *SFFFFF | 59 | 59 |
| 205 | SO: |  | -0.02 | $-0.05$ | $-0.02$ | $-0.03$ |  | 64.1 | *SW | 60 | 60 |
| 206 | SO, | --4.76W | 0.05 | 0.09 | 0.03 | 0.07 |  | 80.1 | *SWO | 2 | 2 |
| 207 | SH | 0.39 | 0.25 | 0.15 | 0.28 | $-0.11$ | 9.22B | 33.1 | * SH | 2 | 2 |
| 208 | $\mathrm{SO}\left(\mathrm{NH}_{3}\right)$ | -1.82 | 0.46 | 0.57 | 0.41 | 0.19 | $12.28^{\circ}$ | 80.1 | *SZW | 2 | $\underline{2}$ |
| 209 | $\mathrm{SCCl}^{\text {S }}$ | 1.65 |  |  |  |  | 28.34 B | 150.4 | *SXGGGG |  |  |
| 210 | $\mathrm{S}-\mathrm{O}(\mathrm{CF})$ |  | 0.63 | 0.69 | 0.60 | 0.14 | 13.07 | 117.1 | *SO\&XFFF | 18 | 18 |
| 211 | SO. $\mathrm{CF}_{\text {: }}$ | 0.55 | 0.79 | 0.93 | 0.73 | 0.26 | 12.86 | 133.1 | *SWXFFF | 61 | 61 |
| 212 | $\mathrm{SCF}_{3}$ | 1.44 | 0.40 | 0.50 | 0.35 | 0.18 | 13.81 B | 101.1 | *SXFFF | 61 | 61 |
| 213 | SCiN | 0.41 | 0.41 | 0.52 | 0.36 | 0.19 | 13.40 | 58.1 | *SCN | 6 | 2 |
| 214 | SCHF |  | 0.33 | 0.37 | 0.30 | 0.09 | 13.81 B | 83.1 | *SYFF | 1 | 1 |
| 215 | SOCHF |  | 0.54 | 0.58 | 0.51 | 0.11 | $13.28{ }^{\prime}$ | 99.1 | *SO\&YFF | 62 | 62 |
| 216 | SOCHF: |  | 0.75 | 0.86 | 0.70 | 0.22 | 13.08 | 115.1 | *SWYFF | 1 | 1 |
| 217 | SOCH. | --1.58 | 0.52 | 0.49 | 0.52 | 0.01 | 13.70 | 63.1 | *SO\& 1 | 2 | 2 |
| 218 | SO. CH . | --1.63 | 0.60 | 0.72 | 0.54 | 0.22 | 13.49 | 79.1 | *SW 1 | 2 | 2 |
| 219 | SCH | 0.6 I | 0.15 | 0.00 | 0.20 | $-0.18$ | 13.82 B | 47.1 | *S1 | 2 | 2 |
| 220 | SCFCHF |  | 0.35 | 0.47 | 0.34 | 0.16 | 18.40 B | 133.1 | *SXFFYFF | 61 | 61 |
| 221 | SCOCH | 0.10 | 0.39 | 0.44 | 0.36 | 0.11 | 18.42 B | 75.1 | *SV1 | 2 | 2 |
| 222 | $\mathrm{SC.H}$ | 1.07 | 0.18 | 0.03 | 0.23 | -0.18 | 18.42 B | 61.1 | * S 2 | 5 | 2 |
| 223 | $\mathrm{SCH})^{(1)}$ |  | 1.00 | 0.90 | 1.02 | -0.04 |  | 62.1 | *S1\&1 | 2 | 2 |
| 224 | $\mathrm{SO} \mathrm{C} \cdot \mathrm{H}$ | 0.27 | 0.61 | 0.70 | 0. 56 | 0.18 | 33.20 | 141.2 | *SWR | 5 | 5 |
| 225 | $\mathrm{SC}, \mathrm{H}$ | 2.32 |  | 0.18 |  |  | 34.29 B | 109.2 | *SR |  | 36 |
| 226 | $\begin{gathered} \mathrm{SCH})=\mathrm{NSO}_{2} \\ \mathrm{CH}_{4}-4-\mathrm{CH} \end{gathered}$ |  | 0.6 i | 0.70 | 0.62 | 0.13 |  | 216.3 | *SI\&UNSWR D1 | 63 | 63 |
| 227 | seCF |  | 0.32 | 0.38 | 0.29 | 0.12 | 16.32 D | 148.0 | *-SE-XFFF | 64 | 64 |
| 228 | SeCN |  | 0.61 | 0.66 | 0.58 | 0.13 | 16.82 D | 105.0 | *-SE-CN | 48 | 4 |
| 229 | SeCH: | 0.74 | 0.10 | 0.00 | 0.13 | $-0.12$ | 17.03 D | 94.0 | *-SE-1 | 2 | 2 |
| 230 | SiBr |  | 0.48 | 0.57 | 0.44 | 0.17 | 32.76 D | 267.8 | *-SI-EEE | 40 | 40 |
| 231 | SiCl |  | 0.48 | 0.56 | 0.44 | 0.16 | 23.85 D | 134.4 | *-SI-GGG | 40 | 40 |
| 232 | SiF. |  | 0.54 | 0.69 | 0.47 | 0.25 | 7.62 D | 85.1 | *-SI-FFF | 41 | 41 |
| 233 | $\mathrm{Si}(\mathrm{CH})$; | 2.59 | $-0.04$ | $-0.07$ | $-0.04$ | -0.04 | 24.96 D | 73.2 | *-SI-1\&1\&1 | 2 | 2 |
| 234 | $\begin{gathered} \mathrm{Si}\left(\mathrm{CH}_{3}\right) \mid \mathrm{OSi} \\ \left.\mathrm{CH}_{2}\right) \end{gathered}$ |  | 0.00 | $-0.01$ | $-0.01$ | $-0.01$ | 43.64 D | 147.4 | $\begin{aligned} & * \text {-SI-1\&1\&O-SI- } \\ & \text { 1\&1\&1 } \end{aligned}$ | 65 | 65 |
| 235 | $\begin{gathered} \mathrm{SuCHO} \\ \text { CHOSI } \\ \text { CH: } \end{gathered}$ |  | --0.02 | --0.01 | $-0.03$ | 0.02 | 62.32 D | 221.6 | $\begin{aligned} & *-\mathrm{SI}-1 \& \mathrm{O}-\mathrm{SI}- \\ & 1 \& 1 \& 12 \end{aligned}$ | 65 | 65 |
| 236 | $\mathrm{Si} \mid \mathrm{OSi}(\mathrm{CH}) \mathrm{C}_{1}$ |  | $-0.09$ | --0.01 | $-0.13$ | 0.11 | 80.99 D | 295.7 | $\begin{gathered} * \text { SI- O-SI- } \\ 1 \& 1 \& 13 \end{gathered}$ | 65 | 65 |

"Function begins with attachment atom. sorted alphabetically on attachment atom and within each such grouping: first, if $n \prime\left(C^{\prime} H\right.$, then alphabetically on remainder; second, if no C , then on H and alphabetically on remainder; third. C then It then alphabetically on remainder. "All $\pi$ values from partition coefficients measured in this laboratory using octanolwater solvent system and substituted benzene solutes unless footnoted to give other sources or suffixed to give other solute systems: W =: from substituted biphenyl solutes: $X=$ from substituted phenoxyacetic acid solutes: Y $=$ calculated from
$O H$ derivative: $Z=$ from substituted toluene solutes. ${ }^{c}$ Calculated from $\sigma_{1}$, and $\sigma_{1}$ given in this table according to the proeddure outlined in the text. ${ }^{d}$ Molar refraction using A. I. Vogel's [ $J$. Chem. Soc., 1833 (1948)] atom. group, or structural $R_{\mathrm{D}}$ yellow line? values unless suffixed: $A=$ calculated [usually from index of refraction, density, and molecular weight from Lorentz Lorentz formula (eq 1)] using Vogel's (1948) values for corrections; $\mathrm{B}=$ atom, group. or structural $\mathrm{H}_{\alpha}$ ( $=R_{\mathrm{C}}$ red line: values from Ingold ("Structure and Mechanism in Organic Chemistry," 2nd ed, Cornell University Press, Ithaca, N. Y., 1969, 1" 142 152). Note: Table 10.1 "alcohol" and "ether'" values inverted: $\mathbf{C}=$ approximate; $\mathrm{D}=$ bond values (including bond $t_{0}$ (. "f substrate) from A. I. Vogel, W. T. Cresswell, G. H. Jeffery, and J. Leicester, J. Chem. Soc., 514 (1952), and carlier references cited therein (general): A. I. Vogel, W. T. Cresswell, and J. Leicester, J. Phys. Chem., 58,174 (1954) (Sn, Si. (it, and Hg bonds): A. A. Foxton, G. H. Jeffery, and A. I. Vogel, J. Chem. Soc. A, 249 (1966) (P bonds); R. G. Gillis, Rev. Pur Appl. (hem.. 10, 21 (1960) (bonds to C, H, O. and self), updated by P. M. Christopher and T. L. Patterson, Aust. J. (hcm., 21, 2373 (1968), and earlier references cited therein: C. Stölzer and A. Simon, Chem. Ber., 96, 1335 (1963) (P bonds to I', (il, N): R. Sayre. J. Amer. Chem. Soc., 80, 5438 (1958) (P bonds to S). "From "Handbook of Chemistry and Physics," 53 rd ed, Chemical Rubber Publishing Co., Cleveland. Ohio, 1972. The WLN follow as closely as possible the rules in "The

Wiswesser Line-Formula Chemical Notation,' E. C. Smith, Ed., McGraw-Hill, New York, N. Y., 1968, with these additions. (1) The WLN begins at the point of attachment: (a) if the substituent group becomes part of an aromatic fused ring system, the substituent is cited as a closed ring and the attachment locants (for the substituent ring) are marked with asterisks. The notation is followed by a parentheses showing attachment locants on the parent ring; (b) if the substituent completes a single saturated ring on an aromatic ring it is treated as a linear chain with a two-point attachment; (c) the WLN for a carbocyclic or heterocyclic ring as a substituent begins with a space and then a locant showing the attachment point on the substituent ring. (2) Methyl contractions are made on " $X$," " $Y$," and " $K$ " symbols but not on rings. (3) Multipliers are used according to normal rules. (4) The \# symbol denotes a saturated alkyl chain of undetermined length. (5) If a "?" begins the notation, the structure is not definable by WLN. o The following refrences refer to $\sigma_{m}$ and $\sigma_{\mathrm{p}}$, respectively: (1) O. Exner, Collect. Czech. Chem. Commun., 31, 65 (1966); (2) D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958); (3) W. A. Sheppard. Trans. N. Y. Acad. Sci., [II] 29, 700 (1967); (4) H. H. Jaffé, Chem. Rev., 53, 191 (1953); (5) M. Charton, J. Org. Chem., 30, 552 (1965); (6) M. Charton, ibid., 28, 3121 (1963); (7) P. Cecchi, Ric. Sci., 28, 2526 (1958); (8) P. Zuman, 'Substituent Effects in Organic Polarography," Plenum Press, New York, N. Y., 1967, p 76; (9) L. M. Yagupol'skii and L. N. Yagupol'skaya, Dokl. Chem., 134, 1207 (1960); (10) J. A. Landgrebe and R. H. Rynbrandt, J. Org. Chem., 31, 2585 (1966); (11) V. V. Orda, L. M. Yagupol'skii, V. F. Bystrov, and A. U. Stepanyants, J. Gen. Chem. USSR, 35, 1631 (1965); (12) R. Stewart and L. G. Walker, Can. J. Chem., 35, 1561 (1957); (13) W. F. Little, C. N. Reilley, J. D. Johnson, K. N. Lynn, and A. P. Sanders, J. Amer. Chem. Soc., 86, 1376 (1964); (14) T. Nishiguchi and Y. Iwakura, J. Org. Chem., 35, 1591 (1970); (15) O. Exner and J. Jonáš, Collect. Czech. Chem. Commun., 27, 2296 (1962); (16) M. F. Hawthorne, T. E. Berry, and P. A. Wegner, J. Amer. Chem. Soc., 87, 4746 (1965); (17) L. I. Zakharkin, V. N. Kalinin, and I. P. Shepilov, Dokl. Chem., 174,484 (1967); (18) V. F. Bystrov, L. M. Yagupol'skii, A. U. Stepanyants, and Yu. A. Fialkov, ibid., 153, 1019 (1963); (19) W. A. Sheppard, J. Amer. Chem. Soc., 87, 2410 (1965); (20) G. B. Ellam and C. D. Johnson, J. Org. Chem., 36, 2284 (1971); (21) M. Charton and H. Meislich, J. Amer. Chem. Soc., 80, 5940 (1958); (22) L. P. Hammett, "Physical Organic Chemistry," McGraw-Hill, New York, N. Y., 1940, p 188; (23) J. Šmejkal, J. Jonás, and J. Farkaś, Collect. Czech. Chem. Common., 29, 2950 (1964); (24) M. Charton, J. Chem. Soc., 1205 (1964); (25) J. H. Smith and F. M. Menger, J. Org. Chem., 34, 77 (1969); (26) F. Fringuelli, G. Marino, and A. Taticchi, J. Chem. Soc. B, 1595 (1970); (27) Yu. S. Shabarov, T. P. Surikova, and R. Ya. Levina, J. Org. Chem. USSR, 4, 1131 (1968); (28) J. C. Kauer and W. A. Sheppard, J. Org. Chem., 32, 3580 (1967); (29) W. A. Sheppard, J. Amer. Chem. Soc., 92, 5419 (1970); (30) V. F. Bystrov, Zh. N. Belaya, B. E. Gruz, G. P. Syrova, A. I. Tolmachev, L. M. Shulezhko, and L. M. Yagupol'skii, J. Gen. Chem. USSR, 38, 963 (1968); (31) W. N. White, R. Schlitt, and D. Gwynn, J. Org. Chem., 26, 3613 (1961); (32) C. Weiss, W. Engewald, and H. Müller, Tetrahedron, 22, 825 (1966); (33) J. J. Ryan and A. A. Humffray, J. Chem. Soc. B, 842 (1966); (34) W. F. Little, C. N. Reilley, J. D. Johnson, and A. P. Sanders, J. Amer. Chem. Soc., 86, 1382 (1964); (35) J. K. Kochi and G. S. Hammond, ibid., 75, 3452 (1953); (36) L. M. Litvinenko, Bull. Acad. Sci. USSR, Div. Chem. Sci., 10, 1653 (1962); (37) A. N. Nesmeyanov, E. G. Perevalova, S. P. Gubin, K. I. Grandberg, and A. G. Kozlovsky, Tetrahedron Lett., 22, 2381 (1966); (38) H. Alper, E. C. H. Keung, and R. A. Partis, J. Org. Chem., 36, 1352 (1971); (39) P. Zuman, "Substituent Effects in Organic Polarography," Plenum Press, New York, N. Y., 1967, p 325; (40) N. V. Kondratenko, G. P. Syrova, V. I. Popov, Yu. N. Sheinker, and L. M. Yagupol'skii, J. Gen. Chem. USSR, 41, 2075 (1971); (41) M. G. Hogben and W. A. G. Graham, J. Amer. Chem. Soc., 91, 283 (1969); (42) E. S. Lewis and M. D. Johnson, ibid., 81, 2070 (1959); (43) O. Exner and J. Lakomý, Collect. Czech. Chem. Commun., 35, 1371 (1970); (44) J. Hine, J. Amer. Chem. Soc., 82, 4877 (1960); (45) F. S. Fawcett and W. A. Sheppard, ibid., 87, 4341 (1965); (46) J. C. Howard and J. P. Lewis, J. Org. Chem., 31, 2005 (1966); (47) E. P. Serjeant, Aust. J. Chem., 22, 1189 (1969); (48) M. Charton, J. Org. Chem., 30, 557 (1965); (49) E. N. Tsvetkov, D. I. Lobanov, and M. I. Kabachnik, Chem. Abstr., 66, 28299r (1967); (50) E. N. Tsvetkov, D. I. Lobanov, and M. I. Kabachnik, ibid., 64, $12523 f(1966)$; (51) R. Van Poucke, R. Pollet, and A. De Cat, Bull. Soc. Chim. Belg., 75, 573 (1966); (52) P. J. Bray and R. G. Barnes, J. Chem. Phys., 27, 551 (1957); (53) H. L. Retcofsky and C. E. Griffin, Tetrahedron Lett., 18, 1975 (1966); (54) H. Schindlbauer and W. Prikoszovich, Chem. Ber., 102, 2914 (1969); (55) E. N. Tsvetkov, D. I. Lobanov, L. A. Izosenkova, and M. I. Kabachnik, J. Gen. Chem. USSR, 39, 2126 (1969); (56) L. D. Freedman and H. H. Jaffé, J. Amer. Chem. Soc., 77, 920 (1955); (57) E. N. Tsvetkov, D. I. Lobanov, M. M. Makhamatkhanov, and M. I. Kabachnik, Tetrahedron, 25, 5623 (1969); (58) K. Kalfus, M. Večeřa, and O. Exner, Collect. Czech. Chem. Commun., 35, 1195 (1970); (59) W. A. Sheppard, J. Amer. Chem. Soc., 84, 3072 (1962); (60) B. J. Lindberg, Acta Chem. Scand., 24, 2852 (1970); (61) W. A. Sheppard, J. Amer. Chem. Soc., 85, 1314 (1963); (62) L. N. Sedova, L. Z. Gandel'sman, L. A. Alekseeva, and L. M. Yagupol'skii, J. Gen. Chem. USSR, 39, 2011 (1969); (63) Ā. Kucsman, F. Ruff, S. Sólyom, and T. Szirtes, Acta Chim. Acad. Sci. Hung., 57, 205 (1968); (64) V. G. Boloshckuk, L. M. Yagupol'skii, G. P. Syrova, and V. F. Bystrov, J. Gen. Chem. USSR, 3, 105 (1967); (65) Z. Plzák, F. Mareš, J. Hetflejš, J. Schraml, Z. Papouśková, V. Bažant, E. G. Rochow, and V. Chvalovský, Collect. Czech. Chem. Commun., 36, 3115 (1971). ${ }^{h}$ From M. M. Otto, J. Amer. Chem. Soc., 57, 1476 (1935). ${ }^{i} \mathrm{SO}_{2}$ from $\mathrm{SO}_{2}(\mathrm{OR})_{2}=7.838$; SO from $\mathrm{SO}(\mathrm{OR})_{2}=8.046$; Vogel's values (1948). ${ }^{\text {i }}$ From C. E. Lough, Suffield, Memorandum No. $17 / 71 .{ }^{k}$ Aromatic oxygen from $-\mathrm{OH}=1.76 .{ }^{l} \mathrm{pH}=6.0$; phosphate buffer. ${ }^{m} \mathrm{~T}$. Fujita, private communication. ${ }^{n}$ From G. H. Jeffery, R. Parker, and A. I. Vogel, J. Chem. Soc., 570 (1961), average for thenoates and thienyl ketones. ${ }^{\circ}$ From H. H. Huang and S. C. Ng, J. Chem. Soc. B, 582 (1968), report 41.8 for naphthalene. ${ }^{p}$ Vogel's group value (1948). ${ }^{d}$ Bond value is $26.387-1.676=24.711$ where 26.387 is from Vogel's (1948) 25.359 phenyl value plus his 1.028 hydrogen value. Ingold's value $25.93-1.092=24.838$. $^{\text {a From T. P. Vishnyakova, Y. M. Paushkin, and T. A. Sokolinskata, }}$ $J$. Gen. Chem. USSR, 33, 3615 (1963), from monosubstituted isooctyl and cyclohexyl derivatives. Disubstituted showed -0.90 "exaltation." + From S. Landa and V. Machacek, Collect. Czech. Chem. Commun., 5, 1 (1933). srom Vogel, et al. (1952), ${ }^{d}$ which gives a factor of 2.3 for conversion of single to double bonds. Christopher and Patterson (1968) ${ }^{d}$ estimate ( $\mathrm{I}-\mathrm{O}$ ) bond as 10.63 , thus we obtain 24.449 for ( $\mathrm{I}=\mathrm{O}$ ). Gillis (1960) ${ }^{d}$ gives $(\mathrm{C}-\mathrm{I})$ as $14.61 .{ }^{t}$ Vogel, et al. (1952), ${ }^{d}$ give $\mathrm{PhNO}_{2}=$ 32.72 in Table 53 . Thus $32.72-25.36=7.36$. This procedure was not used for other values because of better agreement with standard method. ${ }^{u}$ From E. Lieber, C. N. R. Rao, T. S. Chao, and W. H. Wohl, J. Sci. Ind. Res., Sect. B, 16, 95 (1957), for Ph derivative. ${ }^{v} \mathrm{PhNHSO}_{2} \mathrm{NHSO}_{2} \mathrm{NH}_{2}$ was the gift of Dr. R. Appel, University of Bonn, Germany. ${ }^{w} \mathrm{Using}^{2} \mathrm{C}_{\mathrm{a}}-\mathrm{NR}_{2}=3.22$ or $\mathrm{C}_{\mathrm{ar}}-$ NHR $=2.96$ bond values from Vogel, et al. (1952). ${ }^{\text {d }}$ Other values of $\mathrm{C}_{\mathrm{ar}}-\mathrm{X}$ were not used since these agreed closely with normal values. ${ }^{x}$ Approximate: group value for $N_{3}$ plus bond value for tetrazolyl. ${ }^{4}$ From Y. Ichikawa, T. Yamano, and H. Fujishima, Biochim. Biophys. Acta, 171, 32 (1969). From O. E. Schultz, C. Jung, and K. E. Moller, Z. Naturforsch., B, 25, 1024 (1970). a From R. Poretz and I. Goldstein, Arch. Biochem. Biophys., 125, 1034 (1968). ${ }^{b}$ Bond: $24.711-\mathrm{H}+\mathrm{F}=$ 24.475 for $\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{F} .{ }^{c c}$ From W. A. Sheppard, J. Amer. Chem. Soc., 84, 3064, 3072 (1962). Calculated from data on $\mathrm{PhSF}_{3}$. ${ }^{d d}$ From V. Lee, M.S. Thesis, San Jose State College, Aug 1967.
( $<1 \%$ ) between the $R_{C}$ (red line) values reported by Ingold and the $R_{\mathrm{D}}$ (yellow line) values of Vogel.

Very few atom or group refractivities have been reported for organometallic substituents, and so the more common bond values were used. Our MR values always
include the bond to the carbon atom of the parent benzene ring. We have not calculated the refractivity for charged substituents as no suitable values are available (except the octet values given by Ingold, which have not been widely used).


Figure 2. Plot of $\mathcal{F}$ us. $\mathbb{R}$ for 191 substituents.
The following examples illustrate these methods. (1) $-\mathrm{NHCSNH}_{2}$ (by Vogel's group values)

| NH | CS |  |
| :---: | :---: | :---: |
| secondary aromatic amine | xanthates |  |
| 4.678 | $+13.07$ | $+$ |
|  | $\mathrm{H}_{2}$ |  |
| primary aliphatic amine $=22.19$ |  |  |
|  | 438 |  |

(2) $-\mathrm{OCOC}_{6} \mathrm{H}_{5}$ (by Ingold's group values with exaltation)
$-\mathrm{O}-$
aromatic PhOR 2.18

$$
\begin{aligned}
& -\mathrm{C}-\quad \begin{array}{c}
=\mathrm{O} \\
+\overline{2.413}+\frac{\mathrm{PhC}(\mathrm{OR})=\mathrm{O}}{2.90} \\
\\
\quad \frac{\mathrm{C}_{6} \mathrm{H}_{5}}{\text { footnote } p, \text { Table I }} \\
\frac{24.84}{24}
\end{array}=32.33
\end{aligned}
$$

We have used the symbol MR for molar refractivity instead of $R_{\mathrm{M}}$ or $P_{\mathrm{E}}$ in order to avoid confusion with the chromatographic $R_{\mathrm{M}}=\log \left[\left(1 / R_{\mathrm{f}}\right)-1\right]$ and to avoid confusion between electronic polarization $\left(P_{\mathrm{E}}\right)$ and polarizability $(\alpha)$ since $P_{\mathrm{E}}=\mathrm{MR}=4 / 3 \pi N \alpha{ }^{10 \mathrm{a}},=$
4. Structural Notation. In planning for computerized multiple parameter regression analysis with potentially thousands of sets of data and hundreds of different substituents and parameters, it is highly expedient (and much more accurate) to machine load various parameters. This further facilitates large-scale comparisons of parameter types. Machine loading requires the storage and retrieval of values classified both as to substituent and parameter type. Substituents require a suitable system for the handling of chemical structures and substructures.

For these reasons Wiswesser line notation has been given for the functions in Table I. A number of such systems have been thoroughly investigated, ${ }^{14}$ and it is evident that the Wiswesser line notation (WLN) ${ }^{14 d}$ combines three important attributes: low-cost file construction and searching, readability. by the chemist ( $c f$. connectivity tables). and the widest acceptance thus far by both industry and the literature searching services.

We have modified the canonical WLN rules ${ }^{14 \mathrm{~d}}$ to a very slight extent to better specify the structure of a molecular fragment (i.e.. substituent) rather than the whole molecule. A simple subroutine will suffice to make them compatible with a file encoded in canonical WLN. These modifications are explained in Table I. This system will, furthermore, interface with our extensive structure-activity and physical parameter data bases. $\dagger \dagger$

## Discussion

There are two general aspects of the lipophilic constant which must be kept in mind when comparing $\pi$ from different solute systems. The value of $\pi$ for a given function is, for the most part, determined by the intrinsic lipophilic or hydrophilic character of the substituent. However. this intrinsic value can be influenced by the environment which includes both substrate and solvent; that is, $\pi$ is defined operationally. The electronic effect on $\pi$ can be easily appreciated by noting that $\log P-\mathrm{OH} /$ benzene ${ }^{\text { }}$ is -0.67 , while the corresponding value from aliphatic alcohols is -1.16 . The strong influence of electron withdrawal on the $\pi$ values of alkyl groups has been shown to be quite general. ${ }^{15}$ This effect can be seen when a methylene group is placed between two electron-withdrawing functions: $\pi-\mathrm{CN}=-0.57$ and $\pi-\mathrm{CH}_{2} \mathrm{CN}=-0.57 ; \pi-\mathrm{COCH}_{3}=$

Table II. Octanol-Water $\pi$ Constants from the Benzene System and Hammett $\sigma$ Constants for Multiple Substituents

| No. | Substituents ${ }^{\text {a }}$ | $\Sigma \pi$ |  | $\Sigma \sigma$ |  | No. | Substituents ${ }^{\text {a }}$ | $\Sigma \pi$ |  | $\Sigma \sigma$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Obsd | Calcd ${ }^{\text {b }}$ | Obsd ${ }^{\text {c }}$ | Calcd ${ }^{\text {b }}$ |  |  | Obsd | Calcd ${ }^{\text {b }}$ | $\overline{\text { Obsd }}{ }^{c}$ | Calcd ${ }^{\text {b }}$ |
| 1 | 3-Cl, 4-Cl | $1.25{ }^{\text {d }}$ | 1.42 | 0.52 | 0.60 | 35 | $3-\mathrm{NO}_{2}, 5-\mathrm{NO}_{2}$ | -0.64 | -0.56 | 1.39 | 1.42 |
| 2 | $3-\mathrm{Cl}, 4-\mathrm{OH}$ | 0.02 | 0.04 | $-0.05$ | 0.00 | 36 | $3-\mathrm{NO}_{2}, 5-\mathrm{Cl}$ | 0.33 | 0.43 | 1.07 | 1.08 |
| 3 | $3-\mathrm{Cl}, 4-\mathrm{CH}_{3}$ | $1.29{ }^{d}$ | 1.27 | 0.23 | 0.20 | 37 | $3-\mathrm{NO}_{2}, 5-\mathrm{OH}$ | $-0.13$ | $-0.95$ |  | 0.83 |
| 4 | $3-\mathrm{Cl}, 4-\mathrm{OCH}_{3}$ |  | 0.69 | 0.27 | 0.10 | 38 | $3-\mathrm{NO}_{-}, 5-\mathrm{NH}_{2}$ | $-0.76$ | $-1.51$ |  | 0.55 |
| 5 | $3-\mathrm{Cl}, 4-\mathrm{NH}_{2}$ | $-0.23$ | $-0.52$ |  | $-0.29$ | 39 | $3-\mathrm{NO}_{2}, 5-\mathrm{OCH}_{3}$ | 0.03 | -0.30 |  | 0.83 |
| 6 | $3-\mathrm{Br}, 4-\mathrm{Br}$ | 1.51 | 1.72 |  | 0.62 | 40 | $3-\mathrm{F}, 5-\mathrm{OH}$ | $-0.20$ | -0.53 |  | 0.46 |
| 7 | $3-\mathrm{Br}, 4-\mathrm{CH}_{3}$ |  | 1.42 | 0.15 | 0.22 | 41 | $3-\mathrm{F}, 5-\mathrm{NH}_{2}$ | $-0.83$ | -1.09 |  | 0.18 |
| 8 | $3-\mathrm{Br}, 4-\mathrm{OCH}_{3}$ |  | 0.84 | 0.09 | 0.12 | 42 | $3-\mathrm{Cl}, 5-\mathrm{Cl}$ | $1.25{ }^{\text {d }}$ | 1.42 | 0.75 | 0.75 |
| 9 | $3-\mathrm{Br}, 4-\mathrm{OH}$ | 0.22 | 0.19 |  | 0.02 | 43 | $3-\mathrm{Cl}, 5-\mathrm{OH}$ | 0.37 | 0.04 |  | 0.49 |
| 10 | $3-\mathrm{Br}, 4-\mathrm{NH}_{2}$ | $0.16^{\text {e }}$ | $-0.37$ |  | -0.27 | 44 | $3-\mathrm{Cl}, 5-\mathrm{NH}_{2}$ | $-0.25$ | $-0.52$ |  | 0.21 |
| 11 | 3-I, 4-OH | 0.52 | 0.45 |  | -0.02 | 45 | $3-\mathrm{Br}, 5-\mathrm{Br}$ | 1.62 | 1.72 | 0.72 | 0.78 |
| 12 | 3-F, 4-OH | -0.42 | -0.53 |  | -0.03 | 46 | $3-\mathrm{Br}, 5-\mathrm{OH}$ | 0.50 | 0.19 |  | 0.51 |
| 13 | $3-\mathrm{CH}_{3}, 4-\mathrm{CH}_{3}$ | 0.99 | 1.12 | -0.30 | -0.24 | 47 | $3-\mathrm{Br}, 5-\mathrm{NO}_{2}$ | 0.51 | 0.58 |  | 1.10 |
| 14 | $3-\mathrm{CH}_{3}, 4-\mathrm{OCH}_{3}$ |  | 0.54 | -0.26 | $-0.34$ | 48 | $3-\mathrm{I}, 5-\mathrm{OH}$ | 0.80 | 0.45 |  | 0.47 |
| 15 | $3-\mathrm{CH}_{3}, 4-\mathrm{NO}_{2}$ | $0.17^{d}$ | 0.28 | 0.69 | 0.71 | 49 | $3-\mathrm{CH}_{3}, 5-\mathrm{CH}_{3}$ | $1.07{ }^{\text {d }}$ | 1.12 | $-0.17$ | -0.14 |
| 16 | $3-\mathrm{CH}_{3}$, | $0.68{ }^{\prime}$ | 0.74 | $-0.30$ | $-0.90$ | 50 | $3-\mathrm{CH}_{3}, 5-\mathrm{Cl}$ | $1.15{ }^{\text {d }}$ | 1.27 | 0.35 | 0.30 |
|  | 4-N( $\left.\mathrm{CH}_{3}\right)_{2}$ |  |  |  |  | 51 | $3-\mathrm{CH}_{3}, 5-\mathrm{NO}_{2}$ | 0.32 | 0.28 |  | 0.64 |
| 17 | $3-\mathrm{CH}_{3}, 4-\mathrm{Cl}$ | 1.29 | 1.27 | 0.17 | 0.16 | 52 | $3-\mathrm{CH}_{3}, 5-\mathrm{OH}$ | $-0.17$ | -0.11 |  | 0.05 |
| 18 | $3-\mathrm{CH}_{3}, 4-\mathrm{NH}_{2}$ | $-0.81{ }^{\text {d }}$ | -0.67 | $-0.72$ | $-0.73$ | 53 | $3-\mathrm{CH}_{3}, 5-\mathrm{NH}_{2}$ | $-0.73$ | -0.67 |  | $-0.23$ |
| 19 | $3-\mathrm{CH}_{3}, 4-\mathrm{OH}$ | $-0.18$ | $-0.11$ |  | -0.44 | 54 | $3-\mathrm{OCH}_{3}$, | 0.08 | -0.04 | 0.05 | 0.24 |
| 20 | $\begin{gathered} 3-\mathrm{OCH}_{3}, \\ 4-\mathrm{OCH}_{3} \end{gathered}$ | 0.08 | -0.04 | -0.12 | -0.15 | 55 | $\begin{gathered} 5-\mathrm{OCH}_{3} \\ 3-\mathrm{OCH}_{3}, 5-\mathrm{Cl} \end{gathered}$ |  | 0.69 | 0.44 | 0.49 |
| 21 | $3-\mathrm{OCH}_{3}, 4-\mathrm{Cl}$ |  | 0.69 | 0.34 | 0.35 | 56 | $3-\mathrm{OCH}_{3}, 5-\mathrm{OH}$ | $-0.55$ | -0.69 |  | 0.24 |
| 22 | $3-\mathrm{OCH}_{3}, 4-\mathrm{OH}$ |  | -0.69 | -0.33 | $-0.25$ | 57 | $3-\mathrm{OH}, 5-\mathrm{OH}$ | -1.33 | -1.34 | 0.16 | 0.24 |
| 23 | $3-\mathrm{NO}_{2}, 4-\mathrm{NO}_{2}$ | $-0.55^{d}$ | $-0.56$ | 1.38 | 1.49 | 58 | $3-\mathrm{OH}, 5-\mathrm{NH}_{2}$ | -1.96 | -1.90 |  | -0.04 |
| 24 | $3-\mathrm{NO}_{2}, 4-\mathrm{Cl}$ | $0.11{ }^{\text {d }}$ | 0.43 | 0.90 | 0.94 | 59 | $3,4,5-\left(\mathrm{OCH}_{3}\right)_{3}$ | $-0.60$ | -0.06 | 0.07 | -0.03 |
| 25 | $3-\mathrm{NO}_{2}, 4-\mathrm{Br}$ |  | 0.58 | 0.83 | 0.94 | 60 | 1,3,5-( $\left.\mathrm{CH}_{3}\right)_{3}$ | 1.29 | 1.68 |  |  |
| 26 | $3-\mathrm{NO}_{2}, 4-\mathrm{OCH}_{3}$ |  | $-0.30$ | 0.41 | 0.44 | 61 | 1,3,5-(OH) ${ }_{3}$ | -1.97 | -2.01 |  |  |
| 27 | $3-\mathrm{NO}_{2}, 4-\mathrm{CH}_{3}$ | $0.17^{\text {d }}$ | 0.28 | 0.50 | 0.54 | 62 | 1,3,5-( $\left.\mathrm{NO}_{2}\right)_{3}$ | $-0.95$ | -0.84 |  |  |
| 28 | $3-\mathrm{NO}_{2}, 4-\mathrm{NH}_{2}$ | $-0.30$ | $-1.51$ |  | 0.04 | 63 | 1,3-(OH) ${ }_{2}$, | $-0.57$ | $-1.62$ |  |  |
| 29 | $3-\mathrm{NO}_{2}, 4-\mathrm{OH}$ | -0.34 | $-0.95$ |  | 0.34 |  | 2-NO: |  |  |  |  |
| 30 | $3-\mathrm{OH}, 4-\mathrm{OH}$ | -1.25 | -1.34 | $-0.28$ | $-0.25$ | 64 | 2,4-( $\left.\mathrm{NO}_{2}\right)_{2}$, | $-0.15$ | 0.00 |  |  |
| 31 | $3-\mathrm{NH}_{2}, 4-\mathrm{NH}_{2}$ | $-1.98{ }^{\text {d }}$ | -2.46 |  | $-0.82$ |  | $1-\mathrm{CH}_{3}$ |  |  |  |  |
| 32 | $3-\mathrm{NH}_{2}, 4-\mathrm{OH}$ | -1.51 | -1.90 |  | $-0.53$ | 65 | $3-\mathrm{OCH}_{3}, 4-\mathrm{OH}$, |  | $-0.97$ | 0.43 | 0.46 |
| 33 | $3-\mathrm{NH}_{2}, 4-\mathrm{CH}_{3}$ | -0.73 | $-0.67$ | $-0.21$ | $-0.33$ |  | $5-\mathrm{NO}_{2}$ |  |  |  |  |
| 34 | $\begin{gathered} 3-\mathrm{N}\left(\mathrm{CH}_{3}\right), \\ 4-\mathrm{CH}_{3} \end{gathered}$ | $0.68{ }^{\text {f }}$ | 0.74 | $-0.18$ | $-0.32$ | 66 | $\begin{gathered} 3-\mathrm{OH}, 4-\mathrm{OCH}_{3}, \\ 5-\mathrm{NO}_{2} \end{gathered}$ |  | $-0.97$ | 0.63 | 0.56 |

${ }^{a}$ For $\pi$ constants 3,4 represents the ortho derivative and 3,5 the meta derivative. ${ }^{b}$ The calculated value is simply the sum of the values from Table I for the monosubstituted benzenes ( $\pi$ ) or benzene derivatives ( $\sigma$ ). © From H. H. Jaffé, Table I, footnote g, ref 4. ${ }^{d}$ See footnote **. e From Y. Ichikawa, T. Yamano, and H. Fujishima, Biochim. Biophys. Acta, 171, 32 (1969). ${ }^{\text {i }}$ From O. E. Schultz, C. Jung, and K. E. Moller, Z. Naturforsch., B, 25, 1024 (1970).
-0.55 and $\pi-\mathrm{CH}_{2} \mathrm{COCH}_{3}=-0.69$. A methylene unit normally increases $\pi$ by 0.50 units. ${ }^{5 b}$ In the above two examples and many others of this type, ${ }^{15}$ no increase in $\pi$ is observed. Generally, however, there is no correlation of $\pi$-/benzene with electronic effects; for 93 substituents, $\pi$ is completely uncorrelated with $\mathcal{F}$ and /or $\mathscr{R}(r \sim 0.21, s \sim$ 1.5). Furthermore, there is no correlation of $\pi$ with MR ( $n$ $=116, r=0.159, s=1.30$ ).

The phenyl group is not quite additive (differing by about -0.2 ) when attached to another aromatic ring. In Table I, $\pi-\mathrm{C}_{6} \mathrm{H}_{5}$ is 1.96 , while $\pi-\mathrm{C}_{6} \mathrm{H}_{5}$ from 2-phenylquinoline is 1.87 , from 4 -phenylpyridine it is 1.80 , and from 2 -phenylthiophene it is 1.93 . The mean deviation from 2.13 is $\pm 0.24$. Whether this is due to a steric or electronic effect (or both) is not yet clear.

There is a range in $\pi$ in Table I of $-5.96-3.30$ (over nine powers of ten). Many other functions, more lipophilic than those listed, can be constructed with confidence simply by adding $\mathrm{CH}_{2}$, halogen, or phenyl groups to a known function and following additivity rules in calculating $\pi \cdot{ }^{56.15}$ It is relatively easy to obtain variation in $\pi$ of 10-12 log units; that is, one can design molecules having only one functional group but varying as much as 100 billion in their relative hydrophobicity.

Exner ${ }^{16}$ has commented upon the dominance of MW in giving apparent additivity in MR. This will undoubtedly be true of individual substituents; however, we find that for 220 substituents the correlation of MR with MW is not
high ( $r=0.759, s=8.97$ ). Thus, less than $60 \%$ of the overall variation in MR is accounted for by MW, and "volume" (approximated by MR) is only roughly correlated by "mass." In other words, the density of the substituents is not very constant. This is interesting because (MW) ${ }^{1 / 3}$ is sometimes used as an approximation to molecular radius in diffusion studies. ${ }^{17}$

Figure 1 shows a plot of $\sigma_{\mathrm{p}}$ us. $\sigma_{\mathrm{m}}$ for 191 substituents. Exner ${ }^{18}$ and Taft, et al., ${ }^{19}$ have studied subsets of this group, but Figure 1 is an impressive demonstration of the general interdependence of these two substituent parameters, especially considering the variety of sources from which the data were obtained. (The single outlier corresponds to $\mathrm{CH}=\mathrm{CHCOOH}$. Since this substituent contains no special structural features compared to others, it is most likely that either or both of the parameter values are in error; they come from two different sources. No other values were found in the literature for confirmation.) Note that the full range of charged, uncharged, and even organometallic substituents is accommodated with surprising precision ( $r=0.903, s=0.17$ ). Considered as vectors, $\sigma_{\mathrm{m}}$ and $\sigma_{p}$ are separated by an angle of only $25^{\circ}$ (arcosine $0.903) .{ }^{8 b}$ On the other hand, the simple factorization of Swain and Lupton achieves a remarkably high separation of effects as shown in Figure 2. The correlation of $r=$ 0.222 corresponds to an angle of $77^{\circ}$ (arcosine 0.222 ). Similarly, the angle between $\sigma_{\mathrm{p}}$ and $\mathcal{F}$ is $39^{\circ}(r=0.780)$, and the angle between $\sigma_{\mathrm{m}}$ and $\mathcal{F}$ is $13^{\circ}(r=0.973)$.

Since $\mathcal{F}$ and $\mathscr{R}$ were calculated directly from $\sigma_{\mathrm{m}}$ and $\sigma_{\mathrm{p}}$, they are coplanar with them; that is, the angle between any other vector Z and the plane of $\mathcal{F}$ and $\mathscr{R}$ or $\sigma_{\mathrm{n} 1}$ and $\sigma_{\mathrm{p}}$ (or any two of the four) is the same; that is. the correlation coefficients will be the same. Thus it is clear that an increasing angle (decreasing correlation coefficients) between the vectors will be reflected in plots such as Figures 1 and $\supseteq$ by increasing scatter. Plotting a parameter against a simple multiple of itself will yield a perfect straight line. As the second parameter becomes more and more unlike the first. the points on the original line will disperse, eventually forming a perfect scatter plot. Hence, limited relationships found by Exner ${ }^{18}$ and Taft. et al.. ${ }^{19}$ are. in this sense, artifactitious. This is confirmed by employing truly orthogonal vectors, ${ }^{8 a}$ in which many of the special linear relations are eliminated. Subgroups on the basis of uniting atoms generally tend to have constant resonance values and differ only in field-inductive effects. On this scale. ${ }^{8 a} \sigma_{\mathrm{m}}$ has about $30 \%$ resonance and $\sigma_{p} 50 \%$ resonance, not a very large difference. These results further confirm the dual nature of electronic substituent effects. $6.8 \times$ Further discussion of the interrelations of parameters will be given in the accompanying paper on clustering. ${ }^{12}$

Table II provides some insight into the additivity of $\pi$ and $\sigma$. For disubstitution and three examples of trisubstitution (consult Jaffe's survey, Table I, footnote g, ref 4), $\pi$ shows consistently good additivity. There are only four examples $(16,34,54$, and 65 ) where the difference between observed and calculated values is much greater than experimental error. In the case of $\pi$. additivity is not nearly so good. The most pronounced effects occur when strong electron-withdrawing groups are placed on the ring with groups having lone pair electrons $\left(-\mathrm{OH},-\mathrm{NH}_{2}\right)$. The $-\mathrm{NO}_{2}$ function or even halogen functions, when combined with -OH and $-\mathrm{NH}_{2}$. give higher than expected $\pi$ values.

Acknowledgment. We wish to thank Dr. Rolf Appel of the University of Bonn for a generous sample of $\mathrm{PhNHSO}_{2} \mathrm{NHSO}_{2} \mathrm{NH}_{2}$ and Dr. W. A. Sheppard of the Du Pont Company for a sample of $3-\mathrm{NH}_{2} \mathrm{PhSF}_{5}$ from which we made PhSF $_{5}$.

## References

(1) N. B. Chapman and J. Shorter. Ed.. "Advances in Linear Free Energy Relationships," Plenum Press, New York, … Y.. 1972.
(2) (a) C. Hansch, J. Schaeffer, and R. Kerley. J. Biol. Chem.. 247. 4703 (1972): (b) J. Fastrez and A. R. Fersht. Biochemistry. 12, 1067 (1973): (c) M. Stockdale and M. J. Selwyn, Eur. J. Biochem.. 21, 565 (1971).
(3) (a) C. Hansch in "Drug Design." Vol. 1. E. J. Arièns, Ed. Academic Press, New York, N. Y'., 1971. p 271: (b) W. P. Purcell, J. A. Singer. K. Sundaram. and G. L. Parks in "Medicinal Chemistry," A. Burger. Ed., Wiley-Interscience. New York, N. Y, 1970, p 164: (c) B. Duperray. Chim. Ther, 6. 305 (1971): (d) Advan. Chem. Ser., No. 114 (1972): (e) R. W. Taft in "Steric Effects in Organic Chemistry"" M. S. Newman. Ed., Wiley. New York. N. Y., 1956, p 556.
(4) (a) L. P. Hammett, "Physical Organic Chemistry." 2nd ed, McGraw-Hill, New York. N. Y., 1970; (b) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic Reactions." Wiiey, New York, N. Y., 1963.
(弓) (a)T. Fujita, J. Iwasa, and C. Hansch, A. Amer. Chem. Soc. 86, 5175 (1964): (b) A. Leo. C. Hansch, and D. Elkins. Chem. Reu., 71. 525 (1971).
(6) C. G. Swain and E. C. Lupton, J. Amer. Chem. Soc., 90. 4328 (1968).
(7) R. W. Taft and I. C. Lewis, J. Amer. Chem. Soc., 80. 2436 (1958).
(8) (a)S. H. Linger, Ph.D. Thesis. Massachusetts Institute of Technology. Cambridge, Mass., Sept 15. 1970: (b) S. H. linger and C. Hansch. J. Med. Chem., 16, 745 (1973).
(9) A. Bondi, J. Phys. Chem.. 68, 441 (1964).
(10) (a) D. Agin. L. Hersh. and D. Holtzman. Proc. Nat. Acad. Sci. U. S., 53, 952 (1965): (b) C. Hansch and E. Coats, J. Pharm. Sci., 59, 731 (1970).
(11) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors," Wiley. New York, N. Y.. 1967.
(12) C. Hansch. S. Linger, and A. B. Forsythe. J. Med. Chem. 16. 1217 (1973)
(13) F. W. Baker. R. C. Parish, and L. M. Stock, J. Amer. Chem. Soc., 89, 5678(1967).
(14) (a) M, F. Lynch, J. M. Harrison. W. G. Towne, and J. E. Ash. "Computer Handling of Chemical Structure Information," Macdonald/American Elsevier. New York. N. Y.. 1971: (b) L. H. Campey, E. Hyde. and A. R. H. Jackson, Chem. Brit., 6, 427 (1970); (c) G. W. Gibson and C. E. Granito. Amer. Laborator., 4, 27 (1972): (d) E. G. Smith: "The Wiswesser Line-Formula Chemical Notation." McGraw-Hill. New York. N. Y.. 1968.
(15) C. Hansch. A. Leo, and D. Nikaitani. J. Org. Chem., 37. 3090 (1972).
(16) O. Exner, Collect. Czech. Chem. Commun.. 31, 3222 (1966).
(17) S. Kitahara E. Heinz, and C. Stahlmann. Nature (London). 208. 187 (1965).
(18) O. Exner and J. Lakomý, Collect. Czech. Chem. Commun., 35, 1371 (1970), and earlier references cited therein.
(19) R. W. Taft. E. Price. I. R. Fox. I. C. Lewis. K. K. Anderson. and G. T. Davis. J. Amer. Chem. Soc., 85, 3146 (1963).


[^0]:    †This work was supported by Grant CA 11110 from the National Institutes of Health and in part by Contract DRR-70-4115 from the National Institutes of Health
    $\ddagger$ C. G. Swain. S. H. Unger. P. Strong. and N. R. Rosenquist. unpublished results.
    §To avoid confusion in use of the term "system" in partitioning studies. the following symbolism will be followed in this and subsequent papers from this laboratory. (1) $\pi$ or $\log P$ is followed by a dash and the formula for the substituent or the solute, respectively. For $\pi$ values, the substituent formula can be followed by a slash (/) and then the solute name or formula. (2) The solvent system is given in parentheses following the solute, but only the organic phase need be specified. If no solvent is specified. it is assumed to be octanol-water. For example. $\pi \cdot 4-\mathrm{Cl} / \mathrm{phenol}$ (oleyl alcohol) $=0.82$ refers to the $\pi$ value for the chloro substituent in the para position from the phenol solute system measured in oleyl alcohol-water.

[^1]:    **M. Tichý and K. Boćek, private communication.
    $\dagger+$ Pom $\%$ na College Medicinal Chemistry Project. Claremont. Calif. 91711.

