7-[α-(4-Pyridylamino)acetamido]cephalosporanic Acid (9). (a) N-(4-Pyridyl)glycyl Chloride Dihydrochloride. A stirred suspension of $10 \mathrm{~g}(0.065 \mathrm{~mol})$ of N-(4-pyridyl)glycine ${ }^{15}$ in 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to -5° while being saturated with dry HCl gas. To this suspension was added $17.85 \mathrm{~g}(0.086 \mathrm{~mol})$ of PCl_{5} and the mixture stirred 1 hr at -5° and 2 hr at 0°. The solids were collected by filtration, washed well with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$. The yield was 9.3 g whose ir spectra had a carbonyl (acid chloride) at $1785 \mathrm{~cm}^{-1}$ as opposed to the carbonyl on the starting acid hydrochloride of $1710 \mathrm{~cm}^{-1}$. The crude acid chloride was used for the acylation.
(b) Coupling. To a suspension of $8.16 \mathrm{~g}(0.03 \mathrm{~mol})$ of $7-\mathrm{ACA}$ (2) in 150 ml of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $8.1 \mathrm{ml}(0.058 \mathrm{~mol})$ of TEA and 5.3 ml of N, N-dimethylaniline. The resulting solution was cooled to 0° and $7.6 \mathrm{ml}(0.06 \mathrm{~mol})$ of trimethylchlorosilane in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. After 5 min at 0° the solution was refluxed for 30 min and cooled to -5°, and the crude N-(4pyridyl)glycyl chloride hydrochloride added in portions over a $30-\mathrm{min}$ period. The cooling bath was then removed and the mixture allowed to come to room temperature over a 2 hr period. To this mixture was added 150 ml of water and the pH adjusted to 1.8 with $20 \% \mathrm{NaOH}$. The slurry was then filtered and the aqueous layer separated from the filtrate. The aqueous solution was stirred 15 min with 2 g of decolorizing carbon (Darko-KB) and filtered and the pH adjusted to 3 with $20 \% \mathrm{NaOH}$ under a layer of 150 ml of ether. The product crystallized and after 10 min stirring was cooled at 0° for 30 min . The product was collected by filtration, washed with water and then acetone, and air-dried. After drying 18 hr over $\mathrm{P}_{2} \mathrm{O}_{5}$ the yield was $7.01 \mathrm{~g}(59 \%)$, mp 192°. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{H}, \mathrm{N} ; \mathrm{C}$: calcd 48.11; found, C, 48.56.

7-[α-(1,3-Diethylformamidino-2-thio)acetamido]cephalospo-
ranic Acid (10). ${ }^{11}$ To a stirred solution of $3.93 \mathrm{~g}(0.01 \mathrm{~mol})$ of 3 and $1.4 \mathrm{ml}(0.01 \mathrm{~mol})$ of TEA in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 ml of acetone was added $1.32 \mathrm{~g}(0.01 \mathrm{~mol})$ of N, N^{\prime}-diethylthiourea (East$\mathrm{man})$. The slightly turbid solution was filtered and after stirring for 30 min the crystalline precipitate was collected by filtration, washed well with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, air-dried, and vacuum-dried over $\mathrm{P}_{2} \mathrm{O}_{5}$. The yield was $3.05 \mathrm{~g}(68 \%)$, mp 130°. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgments. The authors wish to thank Miss Delores Gibbs for valuable technical assistance. We also wish to thank Mr. R. M. Downing and Miss Elizabeth A. Ragan for the microanalyses, Mr. D. V. Whitehead and Mr. A. L. Vulcano for the spectral data, and Dr. M. Mis-
iek and Mr. K. L. DenBleyker for the microbiological data.

References

(1) E. P. Abraham and G. G. F. Newton, Biochem. J., 79, 377 (1961).
(2) D. C. Hodgkin and E. N. Maslem, ibid., 79, 393 (1961).
(3) R. B. Morin, B. G. Jackson, E. H. Flynn, and R. W. Roeske, J. Amer. Chem. Soc., 84, 3400 (1962).
(4) R. B. Morin, B. G. Jackson, E. H. Flynn, R. W. Roeske, and S. L. Andrews, ibid., 91, 1396 (1969).
(5) B. Fechtig, H. Peter, H. Bickel, and E. Vischer, Helv. Chim. Acta, 51, 1108 (1968).
(6) H. W. O. Weissenburger and M. G. van der Hoeven, U.. S. Patent $3,575,970$ (1971).
(7) E. H. Flynn, Ed., "Cephalosporins and Penicillins Chemistry and Biology," Academic Press, New York, N. Y., 1972.
(8) L. B. Crast, Jr., U. S. Patent $3,422,100$ (1969).
(9) L. B. Crast, Jr., South African Patent 6,707,783 (1968); Chem. Abstr., 70, 68389 (1969).
(10) L. B. Crast, Jr., U. S. Patent 3,647,789 (1972).
(11) L. B. Crast, Jr., U. S. Patent 3,646,025 (1972).
(12) L. B. Crast, Jr., U. S. Patent $3,631,027$ (1971).
(13) H. M. Wuest and E. H. Sakal, J. Amer. Chem. Soc., 73, 1210 (1951).
(14) H. H. Silvestri and D. A. Johnson, U. S. Patent $3,503,967$ (1970).
(15) H. Bickel, J. Mueller, R. Bosshardt, H. Peter, and B. Fechtig, German Offen. 2,048,436 (1971); Chem. Abstr., 75, 20417t (1971).
(16) D. Masaki and M. Mitsuo, Bull. Chem. Soc. Jap., 33, 1150 (1960).
(17) J. D. Cocker, B. R. Cowley, J. S. G. Cox, S. Eardley, G. I. Gregory, J. K. Lazenby, A. G. Long, J. C. P. Sly, and G. A. Somerfield, J. Chem. Soc., 5015 (1965).
(18) D. R. Chisholm, F. Leitner, M. Misiek, G. E. Wright, and K. E. Price, Antimicrob. Ag. Chemother., 244 (1970).
(19) R. E. Buck, F. Leitner, and K. E. Price, ibid., 1, 67 (1972).
(20) M. Misiek, T. A. Pursiano, L. B. Crast, F, Leitner, and K. E. Price, ibid., 1, 54 (1972).
(21) R. R. Chauvette, E. H. Flynn, B. G. Jackson, E. R. Lavagnino, R. B. Morin, R. A. Mueller, R. P. Pioch, R. W. Roeske, C. W. Ryan, J. C. Spencer, and E. Van Heyninge, J. Amer. Chem. Soc., 84, 3402 (1962).
(22) E. H. Flynn, U. S. Patent $3,218,318$ (1965).

Additions and Corrections

1972, Volume 15

Raymond D. Kimbrough, Jr.: Synthesis and Oral Hypoglycemic Activity of N-(p-Deuteriomethylbenzene-sulfonyl)- $N^{\prime}-n$-butylurea, Deuterium-Substituted Tolbutamide.

Page 409. Reference to prior work on this subject by R. U. Lemieux, K. F. Sporek, I. O'Reilly, and E. Nelson, Biochem. Pharmacol., 7, 31 (1961), was omitted. The results published are in agreement with the prior definitive work of Lemieux, et al.
T. Kametani, M. Ihara, T. Suzuki, T. Takahashi, R. Iwaki, H. Takei, N. Miyake, M. Yoshida, Y. Hasegawa, and H. Kitagawa: Studies on the Syntheses of Heterocyclic Compounds. 459. Synthesis of RescinnamineLike Compounds as Antihypertensive Agents.

Page 686. In Table I, R_{2} of compound 12 and R_{3} of compound 13 should be $\mathrm{OCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$.

Kenneth E. Fahrenholtz, Kenneth P. Meyers, and R. W. Kierstead: Cycloprop [16 $\alpha, 17 \alpha]$ androstanes.

Page 1057. Structure 23 should be corrected to read

Page 1058. Footnote a in Table II should be changed from $p<0.0001$ to $p<0.001$.

