Antiradiation Agents

The height of the reduction wave is proportional to the concentration of the nitrofuran compound. The logarithm of the heights was plotted against the time in a diagram of the type presented in Figure 1, from which per cent reduced compound after 1 hr reaction could be calculated. The values in Table II are the mean values with calculated 95% confidence limits assuming the same variation in measurements with all compounds.

Acknowledgments. The authors wish to acknowledge the skilled technical assistance of Miss Å. Notrman and Mr. O. Hall (Chemistry), Mr. E. Johansson (Pharmacology), and Mrs. E. Olsson and Mrs. A. Enqvist (Microbiology). We also thank Dr. M. Ceska for help with the enzyme preparations and Messrs. R. Andersson and R. Löfstedt for performing the metabolic studies. We are grateful to Mr. Å. Lanner for the administration of the clinical trials and to Mr. Göran Nilsson for help with the statistical calculations.

References

H. E. Paul and M. F. Paul, Exp. Chemother., 2, 322 (1964).
 (a) K. Hayes, J. Med. Chem., 7, 819 (1964); (b) H. R. Snyder, Jr.,

and F. F. Ebetino, *ibid.*, 13, 756 (1970); (c) H. Burch, *ibid.*, 13, 288 (1970).

- (3) E. Akerblom, Acta Chem. Scand., 19, 1135 (1965).
- (4) V. L. Nirenburg, I. L. Shegal, and I. Ya. Postovskii, Khim. Geterotsikl. Soedin., 3, 470 (1965); Chem. Abstr., 63, 13243 (1965).
- (5) K. Skagius and B. Zetterberg, Antibiot. Chemother., 11, 37 (1961).
- (6) F. Banci, E. Tubaro, and M. Ferappi, J. Med. Chem., 7, 564 (1964).
- (7) H. Wunderlich, Pharmazie, 13, 202 (1958).
- (8) K. A. Brownlee, P. K. Loraine, and J. Stephens, J. Gen. Microbiol., 3, 347 (1949).
- (9) K. Beyer, H. Russo, E. Tillson, K. Miller, W. Verwey, and R. Gass, Amer. J. Physiol., 166, 625 (1951).
- (10) D. Campbell and W. Richter, Acta Pharmacol. Toxicol., 25, 345 (1967).
- (11) V. Prat, L. Konickova, and A. Hammaström, *ibid.*, 27, 445 (1969).
- (12) H. Ericsson, C. Högman, and K. Wickman, Scand. J. Clin. Lab. Invest., Suppl., 11, 25 (1954).
- (13) P. Lubbers, Deut. Med. Wochenschr., 94, 1922 (1969).

Antiradiation Agents. Substituted 2-Pyridyloxy and 2-Quinolyloxy Derivatives of S-2-(Alkylamino)ethyl Hydrogen Thiosulfates and 3-Alkylthiazolidines and Substituted 2-Pyridyloxy Derivatives of 2-(Alkylamino)ethanethiols and Corresponding Disulfides[†]

Roger D. Westland,* Richard A. Cooley, Jr., Joyce L. Holmes, Jean S. Hong, May H. Lin, Martin L. Zwiesler, Chemistry Department, Research and Development Division, Parke, Davis and Company, Ann Arbor, Michigan 48106

and Marie M. Grenan

Division of Medicinal Chemistry, Walter Reed Army Institute of Research, Washington, D. C. 20012. Received June 22, 1972

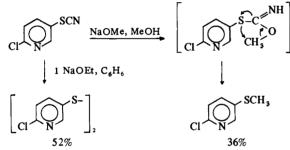
Substituted 2-pyridyloxy and 2-quinolyloxy derivatives of S-2-(alkylamino)ethyl hydrogen thiosulfates (Table II), 3-alkylthiazolidines (Table V), and substituted 2-pyridyloxy derivatives of 2-(alkylamino)ethanethiols (Table III) and corresponding disulfides (Table IV) were synthesized as antiradiation agents by the appropriate aziridine ring-opening reactions of substituted 2-{[(1-aziridinyl)alkyl]oxy}pyridines and -quinolines. 5-Substituted 2-chloropyridines and substituted 2-chloroquinolines were prepared for heterocyclic ether-forming reactions by treatment with the Na salts of 1-aziridinealkanols to give the aziridinylalkyloxy derivatives. 5-Halo-2-pyridyl ethers resulted in the highest antiradiation activity regardless of route of administration or type of sulfur-covering group. S-2-({5-[(5-Chloro-2-pyridyl)oxy]pentyl}amino)ethyl hydrogen thiosulfate (15) and S-2-{ $\{5-[(3,5-dichloro-2-pyridyl)oxy]-$ pentyl}amino)ethyl hydrogen thiosulfate (11) afforded 87% survival of mice in the 30-day test at 19 ($^{1}_{12}$ of LD₅₀ dose) and 12.5 mg/kg ip ($^{1}_{14}$ of LD₅₀ dose), respectively. In view of the dearth of agents effective perorally, remarkable good radioprotection was found on oral administration of thiazolidines substituted in the 3 position with 5-halo-2-pyridyloxypentyl or -hexyl groups; 5-chloro- (102) and 5-iodo-2-{ $\{6-(3-thiazol$ $idinyl)hexyl]oxy\}$ pyridine (103) hydrochlorides resulted in survival rates of 73% at 150 mg/kg po (0.25 of LD₅₀ dose) and 93% at 300 mg/kg po (0.5 of LD₅₀ dose), respectively.

Expansion of several series of antiradiation agents¹⁻³ of the substituted 2-aminoethanethiol type led to derivatives of 2-pyridyl and 2-quinolyl ethers as highly effective antiradiation compounds. Thiols, disulfides, thiazolidines, and Bunte salts were compared to determine which sulfurcovering group would result in optimum activity. An objective of the antiradiation program has been to produce a drug which is effective when administered orally. Extensive development of the present series was undertaken because several compounds, thiazolidines in particular, showed remarkably good activity in the peroral test.

N-Substituted aziridines (Table I) were key intermediates leading to Bunte salts 1-54 (Table II) by reaction^{3,4} with

 $(NH_4)_2S_2O_3$ and to thiols 55-69 (Table III) by reaction^{3,5} with H₂S. Thiols were oxidized³ to disulfides 70-80 (Table IV) and treated^{3,6} with sodium formaldehyde bisulfite to give thiazolidines 81-134 (Table V). The required 1-aziridinealkanols $[HO(CH_2)_n N(CH_2)_2]$ were conveniently prepared from polymethylene chlorohydrins using the displacement reaction previously described³ for simpler 1-alkylaziridines. Substituted 2-chloro- or 2-bromopyridines and -quinolines were treated with the Na salt of 1-aziridinealkanols in refluxing THF to synthesize the heterocyclic ethers Het-O-(CH₂)_n N(CH₂)₂. No attempt was made to rigorously purify the new 1-substituted aziridines given in Table I.

Several novel 2-chloropyridines were prepared, although not all were used successfully in the displacement reaction. Reductive methylation of 3,3'-(methylenediimino)bis(6chloropyridine) gave 2-chloro-5-(dimethylamino)pyridine;


[†]This investigation was supported by the U. S. Army Medical Research and Development Command, Contract No. DA-49-193-MD-2306.

Intermediate for			V:-14 <i>m</i>	Bp (mm) or mp,	<u> </u>
compd no.	<u>A</u>	<u>n</u>	Yield, %	°C	Glc, %
		A f	4		
			$D(CH_2)_n N$		
98	Н	5	62	68-84 (0.001)	
12, 75, 91	3-Br	5	72	106-108 (0.1)	99
4 10, 5 9, 73, 89	3-Cl 3,5-Br ₂	3 5	76 60	86-89 (0.3) 150-160 (0.2)	99 94
18,99	3,5-Br ₂	6	50	144-155 (0.05)	97
11. 60, 74, 90	3,5-Cl ₂	5	66	118-132 (0.1)	82
1, 55, 70, 81	5-Br	2 3	55	95-97 (0.2)	99
3, 56, 71, 83 8, 57, 86	5-Br 5-Br	5 4	65 67	91-102 (0.01) 100-105 (0.08)	96
13, 61, 62, 76, 92, 93	5-Br	5	72	109–118 (0.01)	98
22, 65, 78, 100	5-Br	6	60	120-133 (0.5)	98
24, 106 110	5-Br 5-Br	7 8	76 48	125-130 (0.1) 157-162 (0.3)	97 99
26, 69, 80, 111	5-Br 5-Br	10	45	167-169 (0.1)	, , ,
14,94	6-Br	5	75	118-119 (0.01)	94
2,82	5-Cl	2	80	95-100 (0.2)	99
5, 72, 84 9, 58, 87	5-Cl 5-Cl	3 4	72 68	92-97 (0.3) 97 (0.1)	96 95
15, 63, 77, 95, 96	5-Cl	5	83	114-117 (0.1)	98
23, 66, 79, 102	5-Cl	6	71	114-117 (0.05)	9 9
107 8 5	5-Cl 5-I	7 3	73 40	122-125 (0.2) 105-110 (0.05)	94
88	5-I 5-I	4	40	115-120 (0.06)	93 99
16, 64, 97	5-I	5	32	135-140 (0.2)	91
103	5-I	6	30	157-160 (0.05)	94
25 , 108 2 1	5-I 5-CN	7 5	68 43	4145 133-143 (0.1)	100 75
19,67	4-CH ₃	5	48	113-118 (0.2)	99
20, 68, 104	5-CH ₃	5	58	112-122 (0.3)	93
109 105	5-CH₃ 5-CH₃S	6 5	19 48	104 (0.02)	75 94
6	3-NO ₂	3	21	126-132 (0.3) 122-124 (0.2)	94 99
7	5-NO ₂	3	31	122-126 (0.2)	99
28	a	5	67	132-135 (0.7)	97
115 29	ь с	5	62 7	98-100 (0.1) 164-174 (0.01)	8 9 95
113	d	5	38	103–108 (0.1)	88
27	е	5	50	140-150 (0.1)	75
112	f	3	25	94-100 (0.1)	100
			1		
			O(CH ₂) _n N		
30, 11 6	4-CH ₃	2	65	138-148 (0.2)	92
31, 117	Н	3	63	130-134 (0.3)	100
32, 118 33, 119	4-CF3 6-Cl, 4-CH3	3 3	31 60	104-107 (0.05)	83 92
34, 1 2 0	8-Cl, 4-CH ₃	3	65	100–134 (0.2) 149–159 (0.3)	92
35, 122	4-CH ₄	3	81	128-134 (0.01)	60
36	6-CH ₃ O, 4-CH ₃	2	42	56-62	0 <i>E</i>
37, 1 2 1 38, 1 2 3	4-CH₃ 4-Cl	3 5	58 46	154–174 (0.05) 165–174 (0.1)	85
39 , 1 2 6	Н	5	64	136-143 (0.2)	100
40, 1 24	4,6-(CH ₃) ₂	3	57	140-150 (0.05)	92
41, 125	4-CH ₃ 6-CH ₃ O, 4-CH ₃	4 3	67 43	139-145 (0.2)	92
42, 127 43, 128	6-CH ₃ O, 4-CH ₃ 4-CF ₃	5 5	43 57	178-194 (0.1) 135-147 (0.2)	88
44, 129	6-Cl, 4-CH ₃	5	66	66-68	
45,130	8-Cl, 4-CH ₃	5 5	62 85	52-54	04
46, 131 47	4-CH ₃ 4-(CH ₂) ₂ CH ₃	5 3	85 44	126-142 (0.01) 156-163 (0.2)	96 92
48, 132	4-CH ₃	5	45	165-186 (0.05)	97
49 , 134	4-CH ₃	6	47	163-168 (0.05)	9 9
5 0, 133 51	4,6-(CH ₃) ₂ 4-(CH ₂) ₂ CH ₃	5 5	65 57	150–165 (0.05) 145–157 (0.2)	94 97
5 2	7-C1 ^g	5		10-10/ (0.4)	
53	\mathbf{H}^{h}	3	45	110-114 (0.1)	94
54	H ⁱ	5	80	144-150 (0.1)	85

 $\frac{d_{3}}{d_{5}-Br-2-pyridyl-O(CH_{4})_{5}-N[CH_{2}CH(CH_{3})]} \cdot \frac{b_{5}-Cl-2-pyridyl-O(CH_{4})_{2}C(CH_{3})_{1}H(CH_{4})_{2}-N(CH_{2})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{2})_{2}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{2}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{2}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}}{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}} \cdot \frac{d_{4}-Pyridyl-O(CH_{4})_{5}-N(CH_{4})_{5}}{d_{4}-Pyridy$

the bis compound, [(6-Cl-3-Py)NH]₂CH₂, was precipitated immediately on mixing 5-amino-2-chloropyridine with formalin. Nitrosation of 5-amino-2-chloropyridine using a variety of conditions resulted in new derivatives potentially useful for 2-(1-aziridinylalkoxy)pyridines. However, wellestablished Schiemann reaction procedures failed to vield 2-chloro-5-fluoropyridine. In one case decomposition of 2chloro-5-pyridinediazonium tetrafluoroborate in (Me₂N)₃PO gave in low yield only 2-chloro-5-(3,3-dimethyl-1-triazeno)pyridine [5-(2-Cl-Py)N=NNMe₂], indicating either reaction with the solvent or with Me₂NH contained in the solvent. This appears to be the first reported example of a diazoamino derivative of pyridine. 2-Chloro-5-hydroxypyridine was formed by decomposing 2-chloro-5-pyridinediazonium sulfate in the presence of Cu^{2+} , and 5-azido-2-chloropyridine was prepared by nitrosating 2-chloro-5-hydrazinopyridine. A synthetic method⁷ for thioanisole was extended to 2chloro-5-pyridyl thiocyanate to give 2-chloro-5-(methylthio)pyridine (Scheme I). Reaction of the thiocyanate with only 1 molar equiv of NaOEt in C_6H_6 gave a disulfide rather than a thioether (Scheme I). Diphenyl disulfide was prepared similarly by Ross.⁷

Scheme I

Compounds were tested⁸ for antiradiation activity in mice. In this study Bunte salts substituted with pyridine and quinoline ethers (Table II) resulted in no compound active in the po test, but potential drugs for parenteral use were found. In the pyridine series 5-halo-2-pyridyl ethers were most active. The effect of chain length and halogen substitution on antiradiation activity of Bunte salts is shown in Figure 1. Activities given in Figures 1 and 2 are protective index[‡] values, and ratings shown in Tables II-V are based on these values. Dose-response and therapeutic index factors are incorporated in the protective index. Pentyl ethers resulted in maximum activity. The 5-chloro-2-pyridyl ether 15 afforded 87% survival of mice in the 30-day test at 19 mg/kg ($\frac{1}{12}$ of LD₅₀ dose) ip, and the same survival rate was obtained from the corresponding 3,5-dichloro derivative 11 at 12.5 mg/kg ($^{1}/_{14}$ of LD₅₀ dose) ip. Propyl ethers 31, 35, an 40 were most active in the analogous quinoline series (Table II).

Compounds representing different structural types have been selected for po administration in the antiradiation test, but few examples have been reported $^{1-3,9}$ to be highly active when given orally. No relationship correlating high ip activity

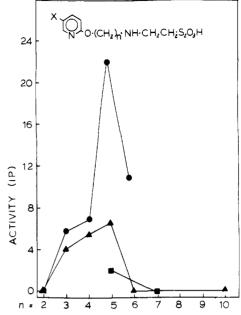


Figure 1. Effect of halogen substitution and chain length on antiradiation activity (expressed as protective index values[‡]) of S-2-({[(5-halo-2-pyridyl)oxy]alkyl}amino)ethyl hydrogen thiosulfates given intraperitoneally: $(\bullet - \bullet) X = Cl; (\bullet - \bullet) X = Br; (\bullet - \bullet) X = I.$

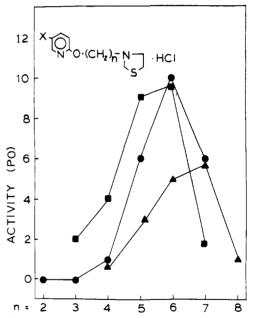


Figure 2. Effect of halogen substitution and chain length on antiradiation activity (expressed as protective index values[‡]) of 5-halo-2-[(3-thiazolidinylalkyl)oxy]pyridines given perorally: $(\bullet - \bullet) X = Cl$; $(\bullet - \bullet) X = Br$; $(\bullet - \bullet) X = I$.

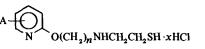
with even slight po activity is apparent from published data. Furthermore, generalizations correlating ip and po data for a given sulfur-covering group may not apply to other groups. Thiazolidines (Table V) corresponding to the Bunte salts substituted with 2-pyridyl ethers were only moderately active when given ip, based on standards established for the ip test. However, in the po test 79-90% survival rates were obtained with some of these compounds at 150-300 mg/kg (0.25-0.5 of LD₅₀ dose). Again, 5-halo-2-pyridyl ethers were most active, and in this case hexyl ethers rather than pentyl ethers resulted in maximum activity perorally (Figure 2). The 5-iodo-2-pyridyl ethers 97 and 103 compared favorably with the 5-Cl compounds (*e.g.*, 102). Also, within this

^{‡&}quot;Protective index" is a term used by the Division of Medicinal Chemistry, Walter Reed Army Institute of Research. Protective index = (protection factor) × (LD_{50} /min effective dose), where doses are in mg/kg and the protection factor is 1.4 for 40% survival, 1.5 for 50% survival, etc. Antiradiation results can be compared with the activity of 2-aminoethanethiol (MEA). At 150 mg/kg ip (LD_{50} ca. 250 mg/kg ip) of MEA 87% survival of mice in the 30-day test can be obtained. It is rated ++ in the ip test. The po LD_{50} for MEA is ca. 625 mg/kg. At 300 mg/kg 73% survival can be obtained in the po test, giving MEA a rating of ++. Ratings in Tables II-IV are based on the following ranges of protective indices: 0, 0-1; +, 2-5; ++, 6-10; +++, 11-14; ++++, 15-26.

						<u> </u>				Antiradiation	activity ^b			
								Intraperiton	eal data			Peroral d	lata	
No.	А	n	Recrystn solvents	Yield, %	Mp,°C dec	Formula ^a	LD _{so} , <i>ca.</i> mg/kg	Drug dose, mg/kg	Survival, %	Rating	LD _{so} , <i>ca.</i> mg/kg	Drug dose, mg/kg (min preirrad)	Survival, %	Rating
						A O								
						$N^{\prime} O(CH_2)_n NH$	ICH ₂ CH ₂ S ₂ O	,H						
1	5-Br	2	95% EtOH, MeCN	30	150-157	C ₉ H ₁₃ BrN ₂ O ₄ S ₂	175	100	0	0				
2	5-Cl	2	MeCN, EtOH	23	145-147	$C_9H_{13}CIN_2O_4S_2$	150	75	0	0				
3	5-Br	3	H ₂ O, EtOH	38	181-183	$C_{10}H_{15}BrN_2O_4S_2$	125	80	73	+	>900	500 (30)	0	0
4 5	3-Cl 5-Cl	3 3	H ₂ O, EtOH	50	171-175	$C_{10}H_{15}CIN_2O_4S_2$	160	80	0	0 +	000	400 ((0)	20	0
6	3-NO	3	MeOH, H ₂ O MeCN	55 7	171–173 162–165	$C_{10}H_{15}CIN_{2}O_{4}S_{2}$	150 175	45 80	67 0	0	800	400 (60)	20	0
7	5-NO ₂	3	H,O	18	196-198	C ₁₀ H ₁₅ N ₃ O ₆ S ₂ C ₁₀ H ₁₅ N ₃ O ₆ S ₂	180	90	21	ŏ				
8	5-Br	4	EtOH, H ₂ O	53	185-188	$C_{11}H_{17}BrN_2O_4S_2$	180	100, 50	93, 60	+++	>900	500 (30)	0	0
9	5-Cl	4	H ₂ O, MeOH	54	178-180	$C_{11}H_{12}CIN_2O_4S_2$	190	100, 50	100, 73	++	>1200	600 (30)	Ō	Ŏ
10	3,5-Br ₂	5	20% EtOH	42	204-209	$C_{12}H_{18}Br_{2}N_{2}O_{4}S_{2}$	163	50, 25	93, 67	++++	>1200	800 (30)	0	0
11	3,5-Cl ₂	5	EtOH	56	209-210	$C_{12}H_{18}C_{12}N_{2}O_{4}S_{2}$	175	12.5	93	++++				
12	3-Br	5	EtOH	49	178-183	$C_{12}H_{19}BrN_2O_4S_2$	170	45	47	+				
13	5-Br	5	DMF-H ₂ O, HMPA-EtOH	25	186-187	$C_{12}H_{19}BrN_2O_4S_2$	90	25	73	+++				
14	6-Br	5	DMF-EtOH, DMF-H ₂ O, DMF DMSO, DMSO-H ₂ O, HMPA-EtOH	, 33	184–185	$C_{12}H_{19}BrN_2O_4S_2^{C}$	140	100	0	0				
15	5-C1	5	H ₂ O	63	164-168	C ₁₂ H ₁₉ ClN ₂ O ₄ S ₂	225	19	87	++++	>1000	800 (30)	7	0
16	5-I	5	DMF-EtOH	28	187-193	$C_{12}H_{15}IN_2O_4S_2$	100	50	27	0				
17	5-NO ₂	5	MeCN, H ₂ O	9	150-156	C ₁₂ H ₁₉ N ₃ O ₆ S ₂	150	80	53	+				
18	3,5-Br ₂	6	EtOH	29	206-210	$C_{13}H_{20}Br_2N_2O_4S_2$	250	15	20	0				
19	4-CH ₃	5 5	EtOH EtOH	25	135-139	$C_{13}H_{22}N_2O_4S_2$	185	100	0 80	0 ++	>900	(00 (20)	7	0
20 21	5-CH₃ 5-CN	5	EtOH	26 34	134-139 158-160	C ₁ ₃ H ₂₂ N ₂ O ₄ S ₂ C ₁ ₃ H ₁₉ N ₃ O ₄ S ₂	125 175	35 80	13	0	>900	600 (30)	/	0
22	5-Br	6	DMF-EtOH, H,O	46	175-187	$C_{13}H_{21}BrN_2O_4S_2$ $C_{13}H_{21}BrN_2O_4S_2$	225	50	0	Ő				
23	5-C1	ĕ	H ₂ O, MeOH	28	196-198	$C_{13}H_{21}CIN_2O_4S_2$	120	30	67	+++	>800	600 (30)	0	0
24	5-Br	7	MeOH	36	180-182	$C_{14}H_{23}BrN_{2}O_{4}S_{2}$	50	20	13	0				-
25	5-I	7	MeOH, 95% EtOH	50	169-177	$C_{14}H_{23}IN_2O_4S_2$	100	20	0	0				
26	5-Br	10	EtOH, DMF-H ₂ O, MeOH	33	147-189	$C_{17}H_{29}BrN_2O_4S_2$	160	80	0	0				
27	d	5	$MeOH-Et_2O, H_2O$	35	168-174	$C_{12}H_{19}BrN_2O_4S_2$	450	25	7	0				
28 29	e	-	EtOH	80	175-177	$C_{13}H_{21}BrN_2O_4S_2$	>400	200	0	0				
29	f	5	H₂O	29	175-177	C ₁₉ H ₃₅ N ₃ O ₈ S ₄	150	50	7	0				
					ł									
						✓ `N ⁻ `O(CH	a) _n NHCH ₂ CH	I₂S₂O₃H						
30	4-CH ₄	2	MeCN, H ₂ O	39	205-208	$C_{14}H_{18}N_2O_4S_2$		140	0	0				
31	H	3	H ₂ O, DMF-H ₂ O, EtOH	24	186-187	$C_{14}H_{18}N_2O_4S_2$	220	25	93	++++				
32	4-CF ₃	3	95% EtOH	33	203-205	$C_{15}H_{17}F_{3}N_{2}O_{4}S_{2}$	160	30	33	0				
33	6-Cl, 4-CH ₃	3	95% EtOH	40	195-197	$C_{15}H_{19}CIN_2O_4S_2$	75	30, 15	86, 27	++	>600	600 (30)	0	0
34 35	8-Cl, 4-CH ₃	3 3	DMSO-H₂O MeOH-H₂O	45 32	214-215 200-201	$C_{15}H_{19}CIN_2O_4S_2$	300	10	0	0	000	400 (20)	0	0
-35 36	4-CH₃ 6-CH₃O, 4-CH₃	-	EtOH, MeOH-Et ₂ O	32 7	189-191	C ₁₅ H ₂₀ N ₂ O ₄ S ₂ C ₁₅ H ₂₀ N ₂ O ₅ S ₂	180 100	25, 12.5 12	86,27 73	++++ +++	900	400 (30)	0	0
37	4-CH ₃ O, 4-CH ₃	3	EtOH, 95% EtOH	28	185-186	$C_{15}H_{20}N_{2}O_{5}S_{2}$ $C_{15}H_{20}N_{2}O_{5}S_{2}$	175	80	33	0				
57	101130	5	2.51, 2070 2.011	20	100-100	~15"20° 2°5°2	115		55	0				

Table II. S-2-(Substituted amino)ethyl Hydrogen Thiosulfates

Westland, et al.


0 0		

Antiradiation Agents

38	4-C1	5	МеОН	30	178-185	C16H21CIN2O4S2	275	10	0	0				
39	Н	5	DMF-EtOH	54	173-175	$C_{16}H_{22}N_2O_4S_2$	25	12.5	27	0				
40	4,6-(CH ₃) ₂	3	EtOH	37	192-194	$C_{16}H_{22}N_2O_4S_2$	125	19	93	++++	>900	600 (60)	7	0
41	4-CH ₃	4	EtOH	17	130-138	$C_{16}H_{22}N_2O_4S_2$	225	50, 25	93, 47	+++	>750	500 (30)	0	0
42	6-CH ₃ O, 4-CH ₃	3	MeCN	42	189-195	$C_{16}H_{22}N_2O_1S_2$	130	25, 12.5	80, 33	++				
43	4-CF ₃	5	EtOH, MeCN	41	186-188	$C_{17}H_{21}F_{3}N_{2}O_{4}S_{2}$	250	5	0	0				
44	6-C1, 4-CH ₃	5	EtOH	39	192-194	$C_{17}H_{23}CIN_2O_4S_2$	175	35	7	0				
45	8-C1, 4-CH ₃	5	DMF-H ₂ O, EtOH	15	193-194	C ₁₇ H ₂₃ ClN ₂ O ₄ S ₂	325	20	0	0				
46	4-CH,	5	95% EtÕH, DMF-H₂O,	20	167-169	$C_{17}H_{24}N_{2}O_{4}S_{2}$	740	560	0	0				
			DMF-Et ₂ O			-								
47	4-C₃H,	3	MeCN, EtOH	25	146-148	$C_{17}H_{24}N_{2}O_{4}S_{2}$	125	30	53	+	>600	400 (60)	7	0
48	4-CH ₃ O	5	MeCN, 95% EtOH	34	154-156	$C_{17}H_{24}N_{2}O_{5}S_{2}$	225	100, 50	93, 47	++	>900	600 (60)	0	0
49	4-CH ₃	6	EtOH	27	180-183	$C_{18}H_{26}N_2O_4S_2$	90	7.5	7	0				
50	4,6-(CH ₃) ₂	5	EtOH	47	178-179	$C_{18}H_{26}N_2O_4S_2$	115	30	0	0				
51	4-C ₃ H ₇	5	EtOH	29	170-172	$C_{19}H_{28}N_2O_4S_2$	120	30	0	0				
5 2	g	5	EtOH, EtOH-H ₂ O, MeOH	22	172-176	$C_{16}H_{21}CIN_2O_4S_2$	250	150	0	0				
53	h	3	DMF-H ₂ O, 95% EtOH	36	185-189	$C_{14}H_{18}N_2O_4S_2$	175	80	13	0				
54	h	5	EtOH	50	159-161	$C_{16}H_{22}N_{2}O_{4}S_{2}$	175	30	0	0				

^aAll compounds were analyzed for C, H, N, and S. ^bData are given for ip and po administration of the compounds. The antiradiation data generally represent the lowest dose of drug for which a high rate of survival was obtained. The per cent survival (30 days) of the test animals is given for the dose specified. For each test, usually 15 mice were treated with drug and irradiated either 15 or 30 min later with ip dosing, and 15, 30, or 60 min perorally. Preirradiation peroral dosage schedules are given in the table. The radiation dose was 950 rads (30-50 rads/min) of γ radiation from a Cobalt 60 source. Exceptions are noted. Ratings are described in footnote \pm of the text. ^cC: calcd, 36.09; found, 36.62. S: calcd, 16.06; found, 15.55. ^d3-Br-4-pyridyl-O(CH₂)₅NHCH₂CH₂S₂O₃H. ^e5-Br-2-pyridyl-O(CH₂)₅NHCH₂CH₂S₂O₃H. ^f6-[HO₃S₂(CH₂)₂NH(CH₂)₅O]-2-pyridyl-O(CH₂)₅NHCH₂CH₂S₂O₃H. ^g7-Cl-4-quinolyl-O(CH₂)₅NHCH₂CH₂S₂O₃H. ^h1-Isoquinolyl-O(CH₂)_nNHCH₂CH₂S₂O₃H.

Table III. 2-({ [(Substituted pyridyl)oxy]alkyl}amino)ethanethiols

										Antiradiation	n activity ^ø			
								Intraperiton	eal data			Peroral d	ata	
<u>No.</u>	A	n	Recrystn solvents	Yield, %	Mp,°C	Formula ^a	LD ₅₀ , <i>ca</i> . mg/kg	Drug dose, mg/kg	Survival, %	Rating	LD 50, <i>ca.</i> mg/kg	Drug dose, mg/kg (min preirrad)	Survival, %	Rating
55	5-Br	2	EtOH	36	167-170	C₂H₁₃BrN₂OS · HCl	110	50	0	0				
5 6	5-Br	3	MeCN	54	152-165	C10H15BrN2OS·HC1	150	50	7	0				
5 7	5-Br	4	EtOH	37	145-150	C ₁₁ H ₁₂ BrN ₂ OS · HCl	125	50	0	0				
58	5-C1	4	MeCN	42	148-160	C ₁₁ H ₁₇ ClN ₂ OS · HCl	100	35	7	0	250	100 (30)	7	0
59	3,5-Br,	5	EtOH	35	163-166	C ₁₂ H ₁₈ Br ₂ N ₂ OS HCl	150	40	7	0				
6 0	3,5-Cl	5	EtOH	57	162-166	C ₁₂ H ₁₈ Cl ₂ N ₂ OS · HCl	130	70	30	0	510	250 (30)	0	0
61	5-Br	5	MeCN	46	159-164	C ₁₂ H ₁₉ BrN ₂ OS · HCl	240	90	40	+				
62	5-Br	5	MeCN	40	126-132	C ₁₂ H ₁₉ BrN ₂ OS · 2HCl	240	90	67 ^c	+	>550	300 (30)	7	0
63	5-Cl	5	EtOH	49	144-156	C ₁₂ H ₁₂ ClN ₂ OS·HCl	110	60	80	+	700	300 (15)	47	+
64	5-I	5	EtOH	28	140-152	C ₁₂ H ₁₉ IN ₂ OS·HC1	150	25	20	0	400	150 (30)	0	0
65	5-Br	6	MeCN, EtOH	30	160-166	C ₁₃ H ₂₁ BrN ₂ OS · HCl	140	60	87	++	350	200 (30)	47	+
66	5-C1	6	MeCN-EtOH, MeCN	69	143-148	$C_{13}H_{21}CIN_2OS \cdot HCl^d$	140	60	53	+	350	150 (15)	40	+
6 7	4-CH3	5	MeCN	90	112-124	C ₁₃ H ₂₂ N ₂ OS·HCl	97	40	0	0				
68	5-CH ₃	5	MeCN	52	102-110	C ₁₃ H ₂₂ N ₂ OS · HCl ^e	80	45	0	0				
69	5-Br	10	EtOH, MeCN	30	173-183	C ₁₇ H ₂₉ BrN ₂ OS · HCl	52	30	20	0				

^aAll compounds were analyzed for C, H, N, and SH. ^bSee Table II, footnote b. ^cThe mice were challenged with 825 rads supplied by X-rays. ^dSH: calcd, 10.17; found, 9.72. ^eSH: calcd, 11.37; found, 10.39.

						A (CH ₂)	nNHCH₂CH₂S-	·2HC1						
						L				Antiradiation	n activity ^b			
								Intraperiton	eal data			Peroral d	ata	
<u>No.</u>	А	n	Recrystn solvents	Yield, %	Mp, °C dec	Formula ^a	LD _{so} , <i>ca.</i> mg/kg	Drug dose, mg/kg	Survival, %	Rating	LD ₅₀ , <i>ca.</i> mg/kg	Drug dose, mg/kg (min preirrad)	Survival, %	Rating
70	5-Br	2		45	223-230	C ₁₈ H ₂₄ Br ₂ N ₄ O ₂ S ₂ ·2HCl	140	35	7	0				
71	5-Br	3	MeOH	14	248-250	C ₂₀ H ₂₈ Br ₂ N ₄ O ₂ S ₂ ·2HCl	150	80	40	+				
72	5-Cl	3	MeOH	65	248-250	C ₂₀ H ₂₈ Cl ₂ N ₄ O ₂ S ₂ ·2HCl	100	50	13	0				
73	3,5-Br ₂	5	MeOH	23	230-234	C ₂₄ H ₃₄ Br ₄ N ₄ O ₂ S ₂ ·2HCl	40	20	0	0				
74	3,5-CL	5	MeOH	47	239-241	C ₂₄ H ₃₄ Cl ₄ N ₄ O ₂ S ₂ ·2HCl	70	40	0	0	>1500	1500 (30)	7	0
75	3-Br	5	EtOH	52	199-202	C ₂₄ H ₃₆ Br ₂ N ₄ O ₂ S ₂ ·2HCl	60	40	0	0				-
76	5-Br	5	MeOH	68	244-246	C ₂ H ₃₆ Br ₂ N ₄ O ₂ S ₂ ·2HCl	320	90	47	+	>750	600 (30)	7	0
77	5-C1	5	MeOH	77	240-242	C ₂₄ H ₃₆ Cl ₂ N ₄ O ₂ S ₂ · 2HCl	80	50	79	+	>900	420 (60)	7	Ó
78	5-Br	6	MeOH	58	236-242	C ₂₆ H ₄₀ Br ₂ N ₄ O ₂ S ₂ ·2HCl	78	20	20	0				-
79	5-C1	6	MeOH	35	243-246	C ₂₆ H ₄₀ Cl ₂ N ₄ O ₂ S ₂ ·2HCl	75	35	7	0				
80	5-Br	10	MeOH	43	239-242	C ₃₄ H ₅₆ Br ₂ N ₄ O ₂ S ₂ ·2HCl	50	7.5	0	0				

^aAll compounds were analyzed for C, H, N, and S. ^bSee Table II, footnote b.

Table V. 3-Substituted Thiazolidines

$N \to O(CH_2)_n - N \to xHCl$	
81-115 ⁽ S)	

~~	
Afria	
\sim N \sim O(CH ₂) _n -N \sim	·xHC1
116-134 ⁽ S)	
110-154 5	

						5		110 15	-	Antiradiatior	activity ^b			
								Intraperiton	eal data			Peroral d	ata	
No. A 81 5-Br 82 5-Cl 83 5-Br 84 5-Cl 85 5-I 86 5-Br 87 5-Cl 88 5-I 89 3,5-Br ₂ 90 3,5-Cl ₂ 91 3-Br 92 5-Br 93 5-Br	n	Recrystn solvent	Yield, %	Mp, °C	Formula ^a	LD ₅₀ , <i>ca.</i> mg/kg	Drug dose, mg/kg	Survival, %	Rating	LD _{so} , <i>ca</i> . mg/kg	Drug dose, mg/kg (min preirrad)	Survival, %	Rating	
81	5-Br	2	EtOH	54	179-183	C ₁₀ H ₁₃ BrN ₂ OS·HCl	150	80	0	0				
82	5-C1	2	MeCN, EtOH	49	176-178	C ₁₀ H ₁₃ ClN ₂ OS · HC1	150	75	0	0	400	200 (30)	0	0
83	5-Br	3	MeCN	41	177-180	C ₁₁ H ₁₅ BrN ₂ OS HCl	250	100	33	0				
84	5-Cl	3	MeCN, EtOH	60	168-171	C ₁₁ H ₁₅ ClN ₂ OS · HCl	125	60	0	0				
85	5-I	3	MeCN	18	168-170	C ₁₁ H ₁₅ IN ₂ OS · HCl	175	80	13	0	>900	600	40	+
86	5-Br	4	MeCN	45	151-153	C ₁₂ H ₁₇ BrN ₂ OS·HCl	250	100	80	+	600	250 (60)	27	0
87	5-C1	4	MeCN	43	110-115	C ₁₂ H ₁₇ ClN ₂ OS HCl	275	120	47	+	750	300 (60)	33	0
88	5-I	4	i-PrOH	33	165-167	C ₁₂ H ₁₇ IN ₂ OS · HCl	>300	100	20	0	>1000	400 (30)	53	+
89	3,5-Br,	5	MeCN	39	170-172	C ₁₃ H ₁₈ Br ₂ N ₂ OS·HC1	>320	200	13	0				
90		5	EtOH	62	173-175	C ₁₃ H ₁₈ Cl ₂ N ₂ OS · HCl	150	50	0	0	>900	450 (30)	53	+
91		5	MeCN	37	150-153	C ₁₃ H ₁₉ BrN ₂ OS·HCl	280	100	0	0				
92	5-Br	5	MeCN	23	138-140	C ₁₃ H ₁₉ BrN ₂ OS · HCl	240	100	67	+	900	500 (15)	60	+
93	5-Br	5	Me ₂ CO	60	104-106	$C_{13}H_{10}BrN_2OS \cdot C_6H_8O_7 c$	300	100	87	++	>400	400 (15)	67	+
94	6-Br	5	MeCN	37	116-118	C ₁₃ H ₁₉ BrN ₂ OS·HCl	240	180	67 ^d	+				
95	5-C1	5	MeOH-Et ₂ O	40	122-125	C ₁₃ H ₁₉ CIN ₂ OS HCl	160	80	87	+				
96	5-C1	5	EtOH	63	143-145	C ₁₃ H ₁₉ ClN ₂ OS · 2HCl	160	80	93	+	650	300 (30)	73	++

Westland, et al.

97	5-1	5	EtOH	45	173-175	C ₁₉ H ₁₉ IN ₂ OS· HCl ^e	230	100	93	+	>900	300 (30), 150 (30)	80 53	++
98	Н	5	MeCN	46	141-144	C ₁₃ H ₂₀ N ₂ OS · 2HCl	>200	50	7	0				
99	3,5-Br ₂	6	MeCN	17	152-154	C ₁₄ H ₂₀ Br ₂ N ₂ OS·HC1	274	130	0	0				
100	5-Br	6	MeCN	40	124-126	C ₁₄ H ₂₁ BrN ₂ OS HCl	200	100	73	+	>525	300 (30), 150 (30)	93 47	+
101	5-Br	f	MeCN	59	172-175	C14H21BrN2OS·HC1	220	80	0	0	690	250 (30)	7	0
102	5-C1	6	MeCN	30	132-135	$C_{14}H_{21}CIN_2OS \cdot HCl$	220	100	93	+	>600	150 (30),	73	+++
102	J-C1	0	Mech	50	152-155	$C_{14}H_{21}CH_{2}OS$ HCI	220	100	33	-	2000	75 (30)	33	
103	5-I	6	EtOH	42	149-152		1.25	75	47		> (00		93	+++
105	3-1	6	LIOH	43	149-152	C14H21IN2OS HCl	125	75	47	+	>600	300 (30),	93 47	TTT
104	5-CH3	F	MaCN EXOL	25	164 167		100	70	22	0	700	150 (30)		0
104		5	MeCN, EtOH	25	164-167	$C_{14}H_{22}N_2OS \cdot 2HC1$	190	70	33	0	700	375 (15)	20	
103	5-CH₃S	5	MeCN, EtOH-	30	128-130	C14H22N2OS2·2HCI	200	60	0	0	550	300 (15)	0	0
1 06	5-Br	7	Et ₂ O		122 126		225	150	47		000	400 (20)	(7	
100	Э-ВГ	'	MeCN	55	133-136	C ₁₅ H ₂₃ BrN ₂ OS [·] HCl	225	150	47	+	800	400 (30),	67	++
107	5.01	-	M-ON		110 100		100	-0	0		-00	200 (30)	47	
107	5-C1	7	MeCN	56	119-123	C ₁₅ H ₂₃ ClN ₂ OS · HCl	100	50	0	0	500	200 (30)	79	+
108	5-I	7	i-PrOH	36	160-163	C ₁₅ H ₂₃ IN ₂ OS · HCl	200	100	47	+	>750	600 (30)	73	+
109	5-CH₃	6	MeCN	9	149-151	C ₁₅ H ₂₄ N ₂ OS · 2HCl	200	60	0	0	500	150 (15)	53	+
110	5-Br	8	Me ₂ CO, EtOAc	24	135-137	C ₁₆ H ₂₅ BrN ₂ OS HCl	230	50	20	0	>600	150 (15)	40	+
111	5-Br	10	Me ₂ CO, EtOAc	28	145-147	C18H29BrN2OS HCl	50	12.5	7	0				
12	3-Pyridy1-O(CH ₂)3	EtOH	26	168-171	C ₁₁ H ₁₆ N ₂ OS · 2HCl	150	75	0	0				
13	4-Pyridyl-O(CH ₂) _{,s}	MeCN	12	140-146	C1 3H20N2OS · 2HCl	150	80	0	0	500	200 (30)	0	0
14	5-Br	g	CHCl3-EtOH	14	167-170	$C_{14}H_{22}BrN_2OSX (X = CI)$	15	8	0	0				
15	5-C1	ĥ	Me ₂ CO, MeCN	16	142-146	C14H21CIN2OS HCl								
16	4-CH	2	95% EtOH, EtOH	15	167-171	C ₁₅ H ₁₈ N ₂ OS · HCl	250	50	13	0				
17	Н	3	EtOH	26	124-130	$C_{15}H_{18}N_2OS \cdot 2HC1$	120	60	20	ŏ	375	150 (30)	0	0
18	4-CF ₃	3	<i>i</i> -PrOH, EtOH	32	96-97	$C_{16}H_{17}F_{3}N_{2}OS$	>360	40	20	ŏ	>900	600 (60)	7	ŏ
19	6-Cl, 4-CH ₃	3	EtOH	43	175-178	$C_{16}H_{19}CIN_2OS$ HCl	350	70	33	0	>900	600 (60)	7	ŏ
20	8-Cl, 4-CH,	3	EtOH	62	195-196	C ₁₆ H ₁₉ ClN ₂ OS·HCl	>400	50	33	0	>900	500 (30)	33	0
											2 200	500 (50)	55	Ũ
21	4-CH₃O	3	EtOH	48	70-71	$C_{16}H_{20}N_{2}O_{2}S$	225	100	7	0				
2 2	4-CH3	3	EtOH	32	158-161	C16H20N2OS · 2HCl	320	180	0	0	>900	500 (30)	42	+
23	4-C1	5	MeCN	10	154-156	C ₁₇ H ₂₁ ClN ₂ OS · HCl	350	75	7	0	>900	500 (30)	0	0
24	4,6-(CH ₃) ₂	3	EtOH	41	63-65	$C_{17}H_{22}N_2OS$	500	50	53	++	>500	500 (60)	40	+
25	4-CH,	4	EtOH	41	158-160	C ₁₇ H ₂₂ N ₂ OS · 2HC1	260	110	0	0	600	300 (15)	7	0
26	Н	5	EtOH	34	131-133	C ₁₇ H ₂₂ N ₂ OS · 2HC1	225	100	40	+	400	200 (30)	73	+
27	6-CH ₃ O, 4-CH ₃	3	EtOH	3	103-105	$C_{17}H_{22}N_2O_2S$	200	100	0	0				
28	4-CF ₃	5	EtOH	42	156-157	C ₁₈ H ₂₁ F ₃ N ₂ OS · HCl	200	50	7	0	800	400 (60)	20	0
29	6-CI, 4-CH,	5	EtOH	57	149-151	C18H23CIN2OS · HCl	>375	300	27	0	>450	400 (30)	0	Ō
	,3	-		-			-			-		×/	-	
30	8-Cl, 4-CH ₃	5	EtOH	39	177-178	C ₁₈ H ₂ GIN ₂ OS·HCl	180	60	0	0				
31	4-CH ₃	5	EtOH	45	151-153	C18H24N2OS · 2HCl	430	320	7	0	>600	300 (30)	0	0
32	4-CH ₃ O	5	<i>i</i> -PrOH, EtOH	53	77-78	C18H24N2O2S	>450	50	0	0				
33	4,6-(ČH ₃) ₂	5	<i>i</i> -PrOH, EtOH	28	58-60	$C_{19}H_{26}N_2OS$	500	6	0	0				
134	4-CH ₃	6	MeCN-EtOH, MeCN	24	144-146	C ₁₉ H ₂₆ N ₂ OS · 2HCl	200	100	7	0				

^{*a*}All compounds were analyzed for C, H, N, and S. ^{*b*}See Table II, footnote *b*. ^{*c*}Citric acid salt prepared from the free base of 92. ^{*d*}The mice were challenged with 825 rads supplied by X-rays. ^{*e*}S: calcd, 7.73; found, 7.26. ^{*f*}5-Br-2-pyridyl-O(CH₂)₅-N CH₃· HCl. ^{*g*}5-Br-2-pyridyl-O(CH₂)₅-(Me)⁺N Cl⁻. ^{*h*}5-Cl-2-pyridyl-O(CH₂)₂C(CH₃)H(CH₂)₂-N Cl⁻. ^{*h*}5-Cl-2-pyridyl-O(CH₂)₅-N CH₃· HCl.

Antiradiation Agents

series of thiazolidines, **90**, **107**, and **109** were active when given orally but inactive parenterally. Inactivity in the ip test for compounds active in the po test is very unusual.

The thiols and disulfides listed in Tables III and IV were only moderately active when given ip and even less active in the po test. Quinoline ethers as thiazolidines **116-134** (Table V) showed some activity in the po test but were more active generally when given intraperitoneally.

5-Chloro-2-{[5-(3-thiazolidinyl)pentyl]oxy}pyridine hydrochloride (95) was administered iv to anesthetized dogs to check for activity on the autonomic nervous and cardiovascular systems.[§] A cumulative dose of 63 mg/kg (iv) resulted in no adrenergic or ganglionic blockade, no anticholinergic or antibradykinin effects, and no major respiratory effects. Only a slight hypotensive effect was observed.

N-Substituted [(5-halo-2-pyridyl)oxy] alkyl derivatives of S-2-aminoethyl hydrogen thiosulfate are potential antiradiation agents for parenteral use. The corresponding Nsubstituted thiazolidines are effective perorally. A longsought goal to increase the number of radioprotective compounds effective by oral administration has been realized.

Experimental Section#

Substituted 2-Bromo- and 2-Chloropyridines. The following compounds were obtained from Aldrich Chemical Co.: 2-bromo-4methylpyridine, 2-chloro-3-nitropyridine, 2-chloro-5-nitropyridine, 4-chloropyridine, 2,5-dibromopyridine, 2,6-dibromopyridine, and 2,3-dichloropyridine, 2,5-Dichloropyridine was obtained from Olin Corp. The following compounds were prepared according to published methods: 3-bromo-2-chloropyridine,¹⁰ 2-bromo-3,5-dichloropyridine,¹¹ 2-bromo-5-iodopyridine,¹² 2-bromo-5-methylpyridine,¹¹ 2-chloro-5-cyanopyridine,¹³ 3,4-dibromopyridine,¹⁴ and 2,3,5-tribromopyridine.¹⁵

5-Amino-2-chloropyridine. The catalytic method described here is an improvement over known¹⁶ methods. A solution of 168 g (1.04 mol) of 2-chloro-5-nitropyridine in 1.61. of MeOH containing 5 g of Raney Ni was treated with H₂ at 50 psi for 13.5 hr at room temperature. The catalyst was removed, the filtrate was concentrated under reduced pressure, and the solid residue was recrystallized from H₂O (charcoal) to give 117 g (87%) of 5-amino-2-chloropyridine, mp 78-81° (lit^{1.6} mp 83°). The benzylidene derivative [5-(benzylideneamino)-2-chloropyridine] had mp 69-70°. *Anal.* (C₁₂H₉ClN₂) C, H, N. 2-Chloro-5-(3,3-dimethyl-1-triazeno)pyridine. Nitrosation of

2-Chloro-5-(3,3-dimethyl-1-triazeno)pyridine. Nitrosation of 5-amino-2-chloropyridine in 95% EtOH-40% HBF₄ was effected using EtONO.¹⁷ A suspension of 12 g of the brilliant yellow solid diazonium tetrafluoroborate in 100 ml of Et₂O and 10 ml of (Me₂N)₃PO was stirred at room temperature for 2 days (deep red coloration and gas evolution). The supernatant was decanted and the insoluble solid complex was decomposed with 1.0 N NaOH and extracted with Et₂O. The extract was dried (MgSO₄) and concentrated giving acid-soluble solid. Recrystallization from H₂O and then 50% EtOH gave 200 mg of the title compound, mp 54-56°, and characteristic nmr and mass spectra. Anal. (C₇H₂ClN₄) C, H, Cl, N.

3,3'-(Methylenediimino)bis(6-chloropyridine). A mixture of 25 g (0.2 mol) of 5-amino-2-chloropyridine, 31 g of 37% formalin, and 250 ml of EtOH was stirred for 1 hr at room temperature giving 20 g of a precipitated solid, mp 206-208°. Recrystallization from 1.5 l. of MeCN gave 11.4 g (32%) of the bis derivative, mp 208-210°, characterized by ir and nmr spectra. Anal. $(C_{11}H_{10}Cl_2N_4)$ C, H, N.

3,3'-(Methylenediimino)bis(6-chloropyridine) in alcoholic dry HCl for 1 hr at 25° gave 5-amino-2-chloropyridine HCl, mp 184–187° dec, identical with an authentic sample.

2-Chloro-5-(dimethylamino)pyridine. Reductive methylation of 100 g (0.8 mol) of 5-amino-2-chloropyridine was effected in 1 1. of absolute EtOH using 138 g of 37% formalin (immediate precipitation of the bis derivative), 2×10 g of 10% Pt/C, and H₂ pressure of 50 psi. Concentration of the filtered mixture and distillation of the residue gave 90.4 g (72%) of the dimethylamino derivative, bp 100-110° (0.5 mm), mp 45-46.5°, and characteristic nmr spectrum. Anal. (C₇H₉ClN₂) C, H, N.

5-Azido-2-chloropyridine. HNO₂ diazotization of 13.8 g (0.096 mol) of 2-chloro-5-hydrazinopyridine¹⁸ (prepared here in 43% yield by $SnCl_2$ -HCl reduction of 2-chloro-5-pyridinediazonium chloride) gave 6.2 g (42%) of 5-azido-2-chloropyridine, bp 54° (0.3 mm) and mp (2,2,3-trimethylpentane) 34-35°. Anal. (C₅H₃ClN₄) C, H. N.

2-Chloro-5-pyridyl thiocyanate was prepared from 5-amino-2chloropyridine using conditions reported¹⁹ for 2-chloro-3-pyridyl thiocyanate. Crystallization from cyclohexane gave 72% of the thiocyanate product, mp 75-77°. *Anal.* (C₆H₃ClN₂S) C, H, N.

2-Chloro-5-(methylthio)pyridine. A solution of 25 g (0.15 mol) of 2-chloro-5-pyridyl thiocyanate in 450 ml of absolute MeOH was added rapidly to cold NaOMe in MeOH (from 6 g, 0.15 mol, of 57% NaH and 150 ml of MeOH). The mixture was stirred for 24 hr at room temperature and then concentrated under reduced pressure. The residue was extracted with several portions of Et_2O , totaling ca. 1 l. The combined extracts were filtered and concentrated to give 13.3 g of oily product. Distillation resulted in a 36% yield, bp 56-58° (0.05 mm). Anal. (C₆H₆CINS) C, H, Cl, N.

3,3'-Dithiobis(6-chloropyridine). To a cold oily emulsion containing NaOEt (from 6.4 g, 0.27 mol, of 57% NaH and 15.7 ml, 0.27 mol, of absolute EtOH) was slowly added below 10° a solution of 46.1 g (0.27 mol) of 2-chloro-5-pyridyl thiocyanate in 300 ml of C₆H₆. The mixture was stirred without cooling for 1 hr; filtration through Celite, concentration under reduced pressure, and recrystallization from Et₂O gave 20.3 g (52%) of crystalline disulfide, mp 118-120°. Anal. (C₁₀H₆Cl₂N₂S₂) C, H, N.

2-Chloro-5-hydroxypyridine. A suspension of 2-chloro-5pyridinediazonium sulfate (from 5 g, 0.039 mol, of 5-amino-2chloropyridine in 125 ml of 2 N H₂SO₄) was added over 20 min to a vigorously stirred solution at 85-98° of 9.7 g (0.039 mol) of CuSO₄·SH₂O in 125 ml of 2 N H₂SO₄. The mixture was made nearly neutral with cold 50% NaOH and then slightly basic by the addition of solid K₂CO₃. The slurry was continuously extracted for 16 hr with Et₂O, and the nearly colorless extract was dried (MgSO₄) and concentrated to give 2.8 g of pale yellow solid. Recrystallization from C₆H₆ resulted in 1 g (20%) of product: mp 152-159° dec; uv max (MeOH) 289 nm (ϵ 3930), 226 (9900); uv max (MeOH– KOH) 313 nm (ϵ 4000), 247 (13,950). Anal. (C₅H₄CINO) C, H, N.

Substituted 2-chloroquinolines: 2,4-dichloroquinoline,²⁰ 2,6dichlorolepidine [68%, mp 150-151°. Anal. (C₁₀H₇Cl₂N) C, H] from 6-chloro-2-hydroxylepidine²¹ using the general procedure of Buchmann and Hamilton;²⁰ 2,8-dichlorolepidine;²² 2-chloro-6-methoxylepidine;²³ 2-chloro-4-methoxyquinoline [55%, mp 75-76°. Anal. (C₁₀H₈ClNO) C, H, N] from 4-methoxyquinoline 1-oxide²⁴ using the general method of Bachman and Cooper;⁴⁵ 2-chloro-4,6-dimethylquinoline [80%, mp 97-98°. Anal. (C₁₁H₁₀ClN) C, H, N] from POCl₃ and 4,6-dimethyl-2-hydroxyquinoline; 2-chloro-4-propylquinoline (80% crude yield, mp 74-75°) from POCl₃ and 2-hydroxy-4-propylquinoline; 2-chloro-4-(trifluoromethyl)quinoline [74%, mp 39-41° Anal. (C₁₀H₅ClF₃N) C, H, N] from POCl₃ and 2-hydroxy-4-(trifluoromethyl)quinoline; 1-chloroisoquinoline.²⁶

The three carbostyrils immediately preceding were prepared from the required β -keto ester (see ref 23) and substituted aniline. These two reactants were heated together at 220-240° for 3-4 min, cooled, and mixed with 40 ml of concentrated H₂SO₄ for each 0.1-mol run; the resulting mixture was heated for 1 hr at 95°: 4,6-dimethyl-2hydroxyquinoline [30%, mp 254-255°. Anal. (C₁H₁₁NO) C, H, N]; 2-hydroxy-4-propylquinoline [30%, mp 172-174°. Anal. (C₁₂H₁₃NO) C, H, N]; 2-hydroxy-4-(trifluoromethyl)quinoline [11%, mp 244-246°. Anal. (C₁₀H₆F₃NO) C, H, N].

1-Aziridinealkanols were prepared as previously described³ in refluxing EtOH from chlorohydrins, ethylenimine, and powdered anhydrous K_2CO_3 . Crude products were distilled through Vigreux columns (10-25 cm) to give 2-3 fractions which were subjected to nmr and glc analysis to determine purity: 1-aziridinepropanol, 70% yield, bp 70-82° (8 mm), glc 99%; 1-aziridinebutanol, 27%, bp 87-95° (8 mm), glc 62%; 1-aziridinepentanol, 52%, bp 130-140° (22 mm), glc 97%; 1-aziridinehexanol, 90%, bp 125-136° (14 mm), glc 96%; 1-aziridineheztanol, 60%, bp 82-85° (0.2 mm), glc 95%; 1-aziridineoctanol, 60%, bp 81-97° (0.4 mm), glc 97%; 1-aziridinedecanol, 80%, bp 117-122° (0.5 mm), glc 93%; 2-methyl-1-aziridinepentanol (from 2-methylaziridine), 81%, bp 120-123° (12 mm), glc 100%.

Substituted 2-[(1-Aziridinylalkyl)oxy]pyridines. 2-{[5-(1-Azir-

 $[\]ensuremath{\S We}$ are grateful to Dr. Duncan A. McCarthy of Parke-Davis for this study.

[#]Melting points (uncorrected) were determined using a Thomas-Hoover melting point apparatus. Where analyses are indicated only by symbols of the elements or functions, analytical results obtained for those elements or functions are within $\pm 0.4\%$ of the theoretical values. Nmr and/or ir spectra were used in making structural assignments of new compounds.

idinyl)pentyl]oxy]-5-chloropyridine. To a slurry containing 18.5 g (0.46 mol) of 60% NaH dispersion in 560 ml of THF was added slowly at reflux temperature 59.8 g (0.46 mol) of 1-aziridinepentanol. The mixture was stirred and heated under reflux for 2 hr, cooled, and then treated with 68.5 g (0.46 mol) of 2,5-dichloropyridine. The resulting mixture was heated under reflux for 4 hr and stirred overnight at room temperature. The mixture was cooled, diluted with Et₂O, and filtered through Celite. The filtrate was concentrated to give 117 g of residue; distillation gave 92.6 g (83%) of liquid product, bp 114-117° (0.01 mm) and glc 98%.

The reflux period was different for some of the other substituted pyridines: 3,4-dibromopyridine, 18 hr; 2,3,5-tribromopyridine, 9 hr; 2,6-dibromopyridine, stirred at 25° for 18 hr before being refluxed for 3 hr; 2,3-dichloropyridine, 8 hr; 2-chloro-5-methylpyridine, 18-64 hr; 2-chloro-4-methylpyridine, 40 hr; 2-chloro-5-(methylthio)pyridine, 11 hr; and 2-chloro-3- and -5-nitropyridines, reaction started in Dry Ice-Me₂CO bath and allowed to warm to room temperature over several hours.

Substituted 2-[(1-Aziridinylalkyl)oxy]quinolines. Substituted 2-chloroquinolines and 1-aziridinealkoxides were heated in refluxing THF for 16-24 hr, except for the following: 2-chlorolepidine, 4 hr; 4,7-dichloroquinoline, 3 hr; and 2-chloro-4-(trifluoromethyl)quinoline was allowed to react only at room temperature for 16 hr.

3-[3-(1-Aziridiny]) propoxy] pyridine. A mixture of 39 g (0.41 mol) of 3-hydroxy pyridine, 128 g (0.82 mol) of 1-bromo-3-chloropropane, 69 g (0.50 mol) of anhydrous K_2CO_3 , and 500 ml of Me_2CO was heated under reflux for 2.5 hr. The dark mixture was filtered and the filtrate was concentrated under reduced pressure. Tars were separated by treatment with H_2O and extraction with several portions of Et_2O . The combined light brown extracts were dried (MgSO₄) and concentrated to give 36 g of crude 3-(3-chloropropoxy) pyridine which was used promptly to prepare 3-[3-(1-aziridiny]) propoxy] pyridine by reaction³ with ethylenimine.

S-2-({[(Substituted 2-pyridyl- and 2-quinolyl) $oxy]alkyl}amino)$ ethyl hydrogen thiosulfates were prepared^{3,4} in MeOH from(NH₄)₂S₂O₃ and the 1-substituted aziridines.

 $2-\{\{[(Substituted 2-pyridy])oxy]alkyl\}amino)ethanethiols were prepared^{3,5} in EtOH from H₂S and the 1-substituted aziridines.$

2,2'-[Dithiobis(ethyleneiminoalkyleneoxy)]bis(substituted pyridines) were prepared³ in MeOH by I_2 oxidation of the corresponding aziridines.

2-[(3-Thiazolidinylalkyl)oxy]substituted pyridines and quinolines were prepared^{3,6} from the corresponding thiols and HOCH₂SO₃Na.

3-{5-[(5-Bromo-2-pyridy])oxy]pentyl}-3-methylthiazolidinium Chloride (91). A mixture of 20 g (0.06 mol) of 5-bromo-2-{[5-(3thiazolidinyl])pentyl]oxy} pyridine (free base) and 8.6 ml (0.14 mol) of MeI was heated under reflux for 2 hr. The excess MeI was removed under reduced pressure, and the residue was crystallized from EtOH-EtOAc (50:12) to give 18.5 g of the quaternary salt. Recrystallization from the same solvent gave 14.8 g, mp 157-159°, which was dissolved in MeOH and passed through a column (diameter, 2 cm) packed with 300 ml of Dowex-1 resin (chloride form) in MeOH. The effluent (450 ml) was concentrated and the 15 g of residue was recrystallized twice from CHCl₃-EtOH to give 3.2 g (14%) of the thiazolidinium chloride (91), mp 167-170°. Acknowledgments. We are grateful to Dr. John R. Dice, Dr. E. A. Steck, and Dr. D. L. Klayman for encouragement and many helpful discussions. We are indebted to Mr. C. E. Childs and coworkers for microanalytical data, to Dr. J. M. Vandenbelt and associates for spectral studies, and to Mr. W. M. Pearlman for the catalytic hydrogenations.

References

- R. D. Westland, J. L. Holmes, M. L. Mouk, D. D. Marsh, R. A. Cooley, Jr., and J. R. Dice, J. Med. Chem., 11, 1190 (1968).
- (2) R. D. Westland and J. L. Holmes, *ibid.*, 15, 976 (1972).
- (3) R. D. Westland, M. L. Mouk, J. L. Holmes, R. A. Cooley, Jr., J. S. Hong, and M. M. Grenan, *ibid.*, 15, 968 (1972).
- (4) D. L. Klayman, W. F. Gilmore, and T. R. Sweeney, Chem. Ind. (London), 1632 (1965).
- (5) D. Rosenthal, G. Brandrup, K. H. Davis, Jr., and M. E. Wall, J. Org. Chem., 30, 3689 (1969).
- (6) T. Takatori, M. Kojima, and T. Taguchi, Yakugaku Zasshi, 88, 360 (1968).
- (7) J. Ross, J. Amer. Chem. Soc., 56, 727 (1934).
- (8) D. L. Klayman, M. M. Grenan, and D. P. Jacobus, J. Med. Chem., 12, 723 (1969).
- (9) J. R. Piper, C. R. Stringfellow, Jr., and T. P. Johnston, *ibid.*, 14, 350 (1971).
- (10) H. J. den Hertog and N. A. I. M. Boelrijk, Recl. Trav. Chim. Pays-Bas, 70, 578 (1950).
- (11) F. H. Case, J. Amer. Chem. Soc., 68, 2574 (1946).
- (12) J. P. Wibaut and G. La Bastide, Kon. Ned. Akad. Wetensch. Versh. Gerwone Vergad. Afd. Natuurk., 36, 514 (1927); Chem. Abstr., 21, 3619 (1927).
- (13) H. S. Forrest and J. Walker, J. Chem. Soc., 1939 (1948).
- (14) Z. Talik and T. Talik, Rocz. Chem., 36, 417 (1962); Chem. Abstr., 58, 5627 (1963).
- (15) H. J. den Hertog, Recl. Trav. Chim. Pays-Bas, 64, 85 (1945).
- (16) A. Binz and O. von Schickh, *Chem. Ber.*, 68, 315 (1935).
 (17) W. L. Semon and V. R. Damerell, "Organic Syntheses,"
- (17) W. L. Semon and V. R. Damerell, "Organic Syntheses," Collect. Vol. II, Wiley, New York, N. Y., 1943, p 204.
- (18) A. Pieroni, Atti. A ccad. Naz. Lincei, Cl. Sci. Fis., Mat. Natur., Rend., 2, 125 (1925); Chem. Abstr., 20, 764 (1926).
- (19) F. Friedrich and R. Pohloudek-Fabini, Arch. Pharm. (Weinheim), 298, 162 (1965); Chem. Abstr., 63, 6972 (1965).
- (20) F. J. Buchmann and C. S. Hamilton, J. Amer. Chem. Soc., 64, 1357 (1942).
- (21) L. Monti and V. Cirelli, Gazz. Chim. Ital., 66, 723 (1936); Chem. Abstr., 31, 3487 (1937).
- (22) O. H. Johnson and C. S. Hamilton, J. Amer. Chem. Soc., 63, 2867 (1941).
- (23) K. N. Campbell, R. S. Tipson, R. C. Elderfield, B. K. Campbell, M. A. Clapp, W. J. Gensler, D. Morrison, and W. J. Moran, J. Org. Chem., 11, 803 (1946).
- (24) Y. Tanaka, Bull. Chem. Soc. Jap., 29, 44 (1956).
- (25) G. B. Bachman and D. E. Cooper, J. Org. Chem., 9, 302 (1944).
- (26) N. I. Fisher and F. M. Hamer, J. Chem. Soc., 1905 (1934).