$\min . \mathrm{ED}_{+300 \%}$ values are recorded in Table I. $\mathrm{ED}_{+300 \%}$ is defined as the dose at which the average sleeping time of the animals in a test group is increased by 300% in comparison to that of a control group.

References

(1) L. H. Sternbach, Angew. Chem., Int. Ed. Engl., 10, 34 (1971), and references cited therein.
(2) A. I. Rachlin, E. Reeder, and L. H. Sternbach, U. S. Patent 3,215,694 (1965).
(3) S. C. Bell, U. S. Patent $3,509,148$ (1970).
(4) Schering AG., German Patent $1,109,180$ (1953); Chem. Abstr., 56, $8726 b$ (1962).
(5) A. H. Nelson, Chem. Ind. (London), 653 (1965).
(6) S. C. Bell and P. H. L. Wei, J. Heterocycl. Chem., 6, 599 (1969).
(7) R. Pater, ibid., 7, 1113 (1970).
(8) M. E. Derieg, R. J. Fryer, S. S. Hillery, W. Metlesics, and G. Silvermann, J. Org. Chem., 36, 782 (1971).
(9) J. T. Litchfield and F. Wilcoxon, J. Pharmacol. Exp. Ther., 96, 99 (1949).
(10) S. Irwin, Psychopharmacologia, 13, 222 (1968).
(11) W. Wirth, Verh. Deut. Ges. Inn. Med., 60, 100 (1954).
(12) J. Buchel, Anesth. Analg., Reanim., 17, 289 (1960).
(13) L. A. Woodbury and V. D. Davenport, Arch. Int. Pharmacodyn., 92, 1 (1952).
(14) L. Ther, G. Vogel, and Ph. Werner, Arzneim.-Forsch., 9, 351 (1959).
(15) L. Ther, Deut. Apoth.-Z., 292 (1953).
(16) L. Ther and H. Schramm, Arch. Int. Pharmacodyn., 138, 302 (1962).

Structure and Anticoccidial Activity of a New Series of 4-Hydroxyquinoline-3-carboxylates

Bert K. F. Hermans, Marcel A. C. Janssen,* Hugo L. E. Verhoeven, Alfons G. Knaeps,

Theo T. J. M. Van Offenwert, Jozef H. Mostmans, Johan J. M. Willems, Bert Maes, and Oscar Vanparijs
Research Laboratoria, Janssen Pharmaceutica, N. V., Beerse, Belgium. Received November 28, 1972

A new group of broad-spectrum coccidiostats, the 4 -hydroxyquinoline-3-carboxylates (1), was first described by Spencer, et al. ${ }^{1}$ The activity of these compounds was later confirmed in several publications. ${ }^{2-4}$ Decoquinate ${ }^{3}$ (1a),

1
1a, decoquinate

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Et} \\
& \mathrm{R}_{1}=\mathrm{OC} \mathrm{C}_{10} \mathrm{H}_{21} \\
& \mathrm{R}_{2}=\mathrm{Et}
\end{aligned}
$$

1 b , nequinate
1c, buquinolate
$\mathrm{R}=\mathrm{Me}$
$\mathrm{R}_{1}=n-\mathrm{Bu}$
$\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{R}_{1}=\mathrm{Et}$
$\mathrm{R}_{1}=i \cdot \mathrm{BuO}$
$\mathrm{R}_{2}=i \cdot \mathrm{Bu}$
nequinate ${ }^{2}$ (1 b), and buquinolate ${ }^{1}$ (1 c) are among the most effective coccidiostats known at present. These compounds all have an alkoxy substituent in position 7 and an alkyl or alkoxy substituent in position 6 .
In contrast, the compounds 2 described here are ethyl 6 -alkoxy-4-hydroxyquinoline-3-carboxylates with an alkoxymethyl or an aralkoxymethyl substituent in the 7 position. These compounds are also potent coccidiostats.

Chemistry. Nitro compounds 3 were used to initiate the synthetic pathways leading to the formation of compounds
2. These nitro compounds themselves are synthesized as outlined in Scheme I. The reaction of p-nitrophenol with

Scheme I

an appropriate alkyl halide in the presence of a base, e.g., NaOH or NaOMe , yields the p-nitrophenoxyalkanes 4. These alkoxynitrobenzenes may be chloromethylated using paraform, ZnCl_{2}, and gaseous HCl to produce the benzyl chlorides 5 . The desired nitro compounds 3 may be formed by the reaction of sodium alcoholates with benzyl chlorides (method A) although various side products and tars are frequently obtained. Therefore, the more usual procedure is to have the chlorides react with NaI in acetone to obtain benzyl iodides 6 (method B). High yields of the desired benzyl ethers 3 may be readily obtained by addition of appropriate alcohols to the system. Most of the benzyl halides, summarized in Table I, are novel.

The pathway starting with benzyl ethers 3 , as outlined in Scheme II, is used for the final synthesis of compounds

Scheme II

2. The nitro compounds 3 may be reduced to their corresponding anilines 7 by two different methods: either catalytic reduction with PtO_{2} in ethanol (method C) or reduction with ammonium chloride and iron (method D). These anilines are condensed with diethyl methoxymethylenemalonate in boiling ethanol or 2-propanol.
Only a limited number of condensation products 8 were isolated, the majority being used in their crude form for the last stage of the synthesis. Ring closure of compounds 8 was effected by heating in diphenyl ether or diphenylmethane, both solvents being equally suitable (Table II).

Chemotherapy. For screening purposes, 18 -day-old male Hisex chickens weighing between 100 and 120 g were housec in individual cages for the duration of the experiment. Feed, known not to contain coccidiostat, was available at will. On day 0 , the chickens were divided into three groups: four noninfected, nontreated birds; four infected, nontreated birds; two infected, treated birds. Coccidiosis was induced by inoculation of the test animals with approximately two million sporulated oöcysts of Eimeria Acervulina. For 6 days, the treated birds were given the compounds 2 at will at a dose of 0.01% of their feed. On the seventh day, the medicated feed was replaced by normal feed for five subse-

Table I

Compd	R	X	Yield, purified, \%		Formula	Analyses ${ }^{\text {a }}$
9	Me	Cl	84	78.5	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{3}{ }^{\text {b }}$	Cl
10	Me	I	81	103	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{INO}_{3}{ }^{\text {c }}$	I, N
11	Et	Cl	73	69.5	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3}{ }^{\text {d }}$	Cl
12	Et	I	85	88	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{INO}_{3}$	I, C, H, N
13	n-Bu	Cl	87	170-173 (1)	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{3}$	$\mathrm{Cl}, \mathrm{C}, \mathrm{H}, \mathrm{N}$
14	$n-\mathrm{Bu}$	I	72	57	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{INO}_{3}$	I, C, H, N
15	$n-\mathrm{C}_{7} \mathrm{H}_{1}$ 5	Cl	63	215-219(2,5)	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClNO}_{3}{ }^{e}$	Cl
16	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	Cl	87	f	$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{ClNO}_{3}$	Cl
17	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	I	83	63	$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{INO}_{3}$	I, C, H, N

${ }^{a_{\mathrm{G}}}$ analysis gave a purity of at least 94% for all compounds. ${ }^{b_{\mathrm{R}}}$. Quelet and H. Coudanne, C. R. Acad. Sci., Paris, Ser. C, 252, 894 (1961). ${ }^{c} \mathrm{G}$. Bendz, et al., J. Chem. Soc., $1130(1950){ }^{\text {d M M Wakae, et al., Chem. Abstr., 54, } 10921 h(1960) .}{ }^{\text {e R }}$. Collins and M. Davis, J. Chem. Soc. C, 873 (1966). $f_{\text {Crude residue was used in the next step. }}$

Figure 1. Growth rate for noninfected ($0-0$) and for infected (*...) chicks.
quent days. During the experiment, all birds were weighed eight times, their fecal consistency was recorded three times, and a fecal count for oocysts was carried out once. All birds were sacrificed on the eleventh day of the experiment. Comparison of the growth rates of the control groups (Figure 1) shows a marked decrease in weight gain for the infected chickens. The main weight ratio (day $5 /$ day 0) for these birds is 1.02 . The anticoccidial activity of a compound can be determined by comparing the mean weight ratio (day $n /$ day 0) from day 3 to day 7 with that of the two control groups. The results obtained on day 5 are presented in Table III, together with those of three leading coccidiostats.

A more detailed investigation into the activity of different concentrations of compound 88 was conducted with the aid of three different strains of Eimeria. Administration of the active compound was initiated on the day of inoculation (i.e., simultaneous treatment) or two days before (i.e., prophylactic treatment). Apart from this, the experimental procedure was as previously described.

The mean weight ratios are given in Table IV together with data on compound $\mathbf{l b}$ (nequinate) for comparative
purposes. The results indicate that compound 88 is at least as effective as nequinate and has therefore been selected for further investigation

Experimental Section ${ }^{\dagger}$

2-Butoxy- α-chloro-5-nitrotoluene (13). Gaseous HCl was passed through a mixture of $50.7 \mathrm{~g}(0.26 \mathrm{~mol})$ of $4-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OBu}$, $28.2 \mathrm{~g}(0.94 \mathrm{~mol})$ of $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3}$, and $61.3 \mathrm{~g}(0.45 \mathrm{~mol})$ of anhydrous ZnCl_{2} for 3 hr at a temperature of 80°. The reaction mixture was cooled and poured into $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3}. The organic layer was separated, washed with NaHCO_{3} solution and with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was distilled giving 54 g (87%) of 13 , bp $170-173^{\circ}(1 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

2-Butoxy- α-iodo-5-nitrotoluene (14). A mixture of 24.3 g (0.1 mol) of $13,17 \mathrm{~g}(0.113 \mathrm{~mol})$ of NaI , and 125 ml of $\mathrm{Me}_{2} \mathrm{CO}$ was refluxed for 1 hr , after which time the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $i-\mathrm{Pr}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Crystallization from EtOH yielded 24 g (72%) of $14, \mathrm{mp} 57^{\circ}$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{INO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{I}$.

Method A. 2-Butoxy- α-heptyloxy-5-nitrotoluene (57). A solution of $4.2 \mathrm{~g}\left(0.18 \mathrm{~g}\right.$-atom) of Na in 120 ml of $n-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{OH}$ was added dropwise, at a temperature of 40°, to a mixture of $29.3 \mathrm{~g}(0.12 \mathrm{~mol})$ of 13 in 40 ml of $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{OH}$. The mixture was stirred for 72 hr at room temperature, after which time 200 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was distilled to give $25 \mathrm{~g}(64 \%)$ of $57, \mathrm{bp} 184-188^{\circ}(0.2$ mm). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Method B. 2-Ethoxy- α-undecyloxy-5-nitrotoluene (48). A solution of $6.9 \mathrm{~g}(0.3 \mathrm{~g}$-atom $)$ of Na in 160 g of $n-\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OH}$ was added dropwise, at a temperature between 45 and 50°, to a stirred mixture of $61 \mathrm{~g}(0.2 \mathrm{~mol})$ of 12 in 80 g of $n-\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OH}$. Stirring was continued for 2 days at room temperature. The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was dried (MgSO_{4}) and evaporated. The solid residue was crystallized from petroleum ether yielding $41.3 \mathrm{~g}(59 \%)$ of $48, \mathrm{mp} 50^{\circ}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Method C. 3-(Octyloxymethyl)-p-phenetidine (43). A mixture of $47 \mathrm{~g}(0.15 \mathrm{~mol})$ of $42,300 \mathrm{ml}$ of EtOH , and 1 g of PtO_{2} was hydrogenated at normal pressure and room temperature. After the calculated volume of H_{2} was taken up, the catalyst was removed by filtration and the filtrate concentrated. The residue was distilled to give $36.5 \mathrm{~g}(87 \%)$ of 43 , bp 164-168 $(0.15 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{1}, \mathrm{H}_{2} \mathrm{NO}_{2}\right)$ N .

Method D. 3-(Heptyloxymethyl)-p-phenetidine (40). 39 (101 g , 0.34 mol) was added gradually to a stirred and refluxing mixture of $65 \mathrm{~g}\left(1.16 \mathrm{~g}\right.$-atom) of Fe and $650 \mathrm{ml}(0.78 \mathrm{~N})$ of $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was refluxed for an additional 8 hr , cooled, and extracted with PhMe ; the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was distilled giving $70 \mathrm{~g}(79 \%)$ of $\mathbf{4 0}$, bp 155-158 $(0.4 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{2} 7 \mathrm{NO}_{2}\right) \mathrm{N}$.

[^0]Table II

${ }^{a}$ Methods refer to the Experimental Section. ${ }^{b}$ When no physical data are given, compounds were used in their crude form. ${ }^{c} \mathrm{R}$. Quelet and H. Coudanne, Bull. Soc. Chim. Fr., 2445 (1963).

Diethyl [3-(Heptyloxymethyl)-p-phenetidinomethylene]malonate (41). A solution of $13.3 \mathrm{~g}(0.05 \mathrm{~mol})$ of 40 and $11.9 \mathrm{~g}(0.055 \mathrm{~mol})$ of diethyl methoxymethylenemalonate in 100 ml of i - PrOH was refluxed for 24 hr . After evaporation of the reaction mixture, the residue was crystallized from petroleum ether to give 19.5 g (90%)
of $41, \mathrm{mp} 46.5^{\circ}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Ethyl 6.Ethoxy-7-heptyloxymethyl-4-hydroxy-3-quinolinecarboxylate (88). $41(13 \mathrm{~g}, 0.03 \mathrm{~mol})$ was added to 100 g of $\mathrm{Ph}_{2} \mathrm{O}$ preheated to 230°. The resulting mixture was heated at 245° for 15 min . After cooling to $70^{\circ} \mathrm{Me}_{2} \mathrm{CO}$ was added. The precipitate was

Table III

Compd	R_{1}	R_{2}	Yield purified, \%					$\begin{gathered} \text { Oocyst count } \\ \text { (day 7) }^{c} \\ \hline \end{gathered}$		Fecal score (day 5) ${ }^{d}$	
						$\begin{gathered} \text { Weight ratio } \\ (\text { day } 5 / \text { day } 0)^{b} \end{gathered}$					
				Mp, ${ }^{\circ} \mathrm{C}$	Formula ${ }^{\text {a }}$	0.01\%	0.001%	0.01%	0.001\%	0.01\%	0.001%
81	Me	Et	23	293.5	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$	1.18		1;1;0;0	1;1	1;1;1;1	3;3
82	Me	i-Bu	17	248	$\mathrm{C}_{18}^{18} \mathrm{H}_{23}^{19} \mathrm{NO}_{5}^{5}$	1.17		1;1;1;1		$2 ; 1 ; 2 ; 3$	
83	Me	$n-\mathrm{C}_{7} \mathrm{H}_{1} \mathrm{~s}$	27	+300	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5}$	1.25		1;1;1;1	2;2;2;2	0;1;1;1	2;2;3;2
84	Me	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	25	230	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}$	1.25		0;0;0	3;2;2	1;1;1;1	2;2:1;3
85	Me	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	29	231	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}$	1.17		1;2;1;2		2;2;1;2	
86	Et	i - Bu	17	246	$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5}$	1.24		1;2;2	2;2	1;1;1;0	1;2
87	Et	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	31	222	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5}$	1.20		1;1;1;1	1;1;3;3	1;1;1;1	3;2;3;3
88	Et	$n-\mathrm{C}_{7} \mathrm{H}_{1}$ S	47	227	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}$	1.24	1.23	0;0;1;1	0;0;2;2	1;0;1;1	1;1;1;1
89	Et	$n-\mathrm{C}_{8} \mathrm{H}_{1} 7$	31	226	$\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{5}$	1.26	1.23	0;0;0;0	0;0;1;1	0;1;1;1	1;1;2;1
90	Et	$n-\mathrm{C}_{9} \mathrm{H}_{19}$	12	225	$\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{5}$	1.22		1;1;0;0	0;0;2;2	1;1;0;0	1;1;3;3
91	Et	$n-\mathrm{C}_{11} \mathrm{H}_{23}$	31	222	$\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{5}$	1.21		1;1;1;1	1;1;1;1	1;1;1;1	1;1;1;2
92	Et	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	56	229	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{5}$	1.25		1;1;2;2	1;1;2;2	0;0;2;1	2;1;1;2
93	n - Bu	$n-\mathrm{Pr}$	33	227	$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{5}$	1.19		1;1;1;1	1;1;2;2	1;2;1;1	1;1;2;1
94	n-Bu	$n-\mathrm{C}_{7} \mathrm{H}_{1} \mathrm{~s}$	28	217	$\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{5}$	1.20		1;1;1;1	1;1;2;2	2;1;1;1	2;2;1;1
95	$n-\mathrm{Bu}$	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	32	215	$\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{5}$	1.20		0;0;1;1	1;1;1;1	0;1;1;0	1;1;1;3
96	$n-\mathrm{Bu}$	$n-\mathrm{C}_{9} \mathrm{H}_{19}$	25	213	$\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{5}$	1.17		0;0;1;1	1;1;2;2	1;1;1;1	1;1;1;1
97	$n-\mathrm{C}_{7} \mathrm{H}_{15}$	Et	32	221	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}$	1.18		1;2;2;2	$1: 1$	1;3;1;1	3;3
98	$n-\mathrm{C}_{7} \mathrm{H}_{15}$	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	27	219	$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{5}$	1.18		1;1;1;1	1;1;1;1	1;2;0;1	1;1;2;3
99 100	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	Et	31	217	$\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{5}$	1.30		1;1;1;1	1;1;1;1	0;0:1;1	1;1;1;1
100	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	$n-\mathrm{Pr}$	43	213	$\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{5}$	1.19		2;1	3;3	3;1	3;3
101	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	23	205	$\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NO}_{5}$	1.20		2;2;1;1	1;1;1;1	2;1;1;2	1;1;2;2
1 a	Decoquin carbox	(ethyl 6-n-dec e)	$x y-7-\text { ethoxy-4-h }$	ydroxy-3	uinoline-	1.24		0;0;0;0	0;0;1;1	1;0;1;1	1;1;1;0
1b	Nequinat carbox	nethyl 7-benzy e)	ky-6-n-butyl-4-hy	droxy-3-	inoline-	1.24	1.19	0;0;1;0	0;1;2;1	0;1;1;0	0;0;2;1
1c	Amquina quinoli	methyl 7-dieth arboxylate)	mino-4-hydroxy	$-6-n \text {-prop }$		1.22		0;1;1;1	1:1;3;1	0;0;1;0	1;2;3;1

 oocysts in feces; $1,0-5 \times 10^{4}$ oocyst/g of feces; $2,5 \times 10^{4}-1 \times 10^{5}$ oocyst/g of feces; $3,10^{5}-2 \times 10^{5}$ oocyst/g of feces; 4 , more than 2×10^{5} oocyst/g of feces. ${ }^{{ }^{c}} 0$, normal feces; 1 , soft to normal feces; 2 , fluid droppings with some mucous casts; 3 , slimy, greyish, mucoid diarrhea.

Table IV. Chemotherapeutical Results of

Eimeria strain	Treatment	Mean weight ratio				
		Noninfected chicks	Infected chicks	Infected chicks treated with 0.01% of 88	Infected chicks treated with 0.001% of 88	Infected chicks treated with 0.001% of 1 b
Acervulina ${ }^{\text {a }}$	Simultaneous	1.33	1.04	1.24	1.23	1.19
	Prophylactic	1.60	1.16	1.40	1.50	1.50
Brunetti ${ }^{\text {b }}$	Simultaneous	1.42	1.14		1.42	1.41
	Prophylactic	1.65	1.14		1.66	1.62
Tenella ${ }^{\text {c }}$	Simultaneous	1.34	1.19	1.53	1.51	1.49
	Prophylactic	1.78	1.33	1.79	1.74	1.72

$a_{\text {Results of the }} 5$ th day. ${ }^{b}$ Results of the 6 th day. ${ }^{c}$ Results of the 7 th day.
filtered and triturated with $\mathrm{Me}_{2} \mathrm{CO}$ for 1 hr . The precipitate was collected and dried in vacuo to give $5.5 \mathrm{~g}(47 \%)$ of $88, \mathrm{mp} 227^{\circ}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgment. The authors are indebted to Mr. F. Sels for the C, H, and N analyses and to Mr. P. Demoen for the other analyses. The work described in this publication is part of a program supported by a grant from the Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (IWONL).

References

(1) C. F. Spencer, A. Engle, Chia-Nien Yu, R. C. Finch, E. S. Watson, F. F. Ebetino, and C. A. Johnson, J. Med. Chem., 9, 934 (1966).
(2) R. A. Bowie, J. P. Cavins, M. S. Grant, A. Hayes, W. G. M. Jones, and J. F. Ryley, Nature (London), 214, 1349 (1967).
(3) S. J. Ball, M. Davies, J. N. Hodgson, J. M. S. Lucas, E. W.

Parnell, B. W. Sharp, and D. Warburton, Chem. Ind. (London), 56 (1968).
(4) R. H. Mizzoni, F. Goble, E. Konopka, J. Gelzer, J. Szanto, D. C. Maplesden, J. E. Brown, J. Boxer, G. Zaunius, J. B. Ziegler, and G. de Stevens, J. Med. Chem., 13, 870 (1970).

Synthesis and Antiviral Activity of Homologs of Noformycin

Guy D. Diana,* Urano J. Salvador, Ethel S. Zalay, and Francis Pancic

Sterling-Winthrop Research Institute, Rensselaer, New York 12144. Received February 28, 1973

In the past two decades, several papers have appeared on the antiviral activity of noformycin ${ }^{1-7}$ (1) obtained from a culture of Nocardia formica. Among the viruses reportedly

[^0]: \dagger All melting points were measured with a "Mettler FP 1 '" melting point apparatus and are uncorrected Where analyses are indicated by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values unless otherwise stated.

