- (6) J. A. Marshall and S. F. Brady, J. Org. Chem., 35, 4068 (1970).
- (7) E. A. Steck, R. P. Brundage, and L. T. Fletcher, J. Amer. Chem. Soc., 73, 1117 (1953).
- (8) G. Bachmann, British Patent 1,168,291 (Oct 22, 1969).
- (9) J. R. Cummings, A. M. Welter, J. L. Grace, Jr., and L. M. Lipchuck, J. Pharmacol. Exp. Ther., 161, 88 (1968).
- (10) (a) G. Bachmann and A. Amann, U. S. Patent 3,475,431
   (Oct 28, 1969); (b) G. Bachmann and A. Amann, British

Patent 1,164,139 (Sept 17, 1969).

- (11) J. P. English, R. C. Clapp, Q. P. Cole, and J. Krapcho, J. Amer. Chem. Soc., 67, 2263 (1945).
- (12) E. A. Steck and F. C. Nachod., J. Amer. Chem. Soc., 79, 4408 (1957).
- (13) R. E. Lutz, P. S. Bailey, C.-K. Dien, and J. W. Rinker, J. Amer. Chem. Soc., 75, 5039 (1953).
- (14) H. M. Holava, Jr., and R. A. Partyka, J. Med. Chem., 14, 262 (1971).

## 6-(Substituted phenyl)-5-substituted-4,5-dihydro-3(2H)-pyridazinones. Antihypertensive Agents

Francis J. McEvoy and George R. Allen, Jr.\*

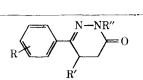
Lederle Laboratories, A Division of American Cyanamid Company, Pearl River, New York 10965. Received July 19, 1973

The preparation and antihypertensive properties of a series of 6-(substituted phenyl)-5-substituted-4,5-dihydro-3(2H)-pyridazinones are described. The structure-activity relationship in this series is discussed further. The consistent antihypertensive activity of the 6-(alkylaminophenyl) compounds and their acyl derivatives is noteworthy.

Previous reports from these laboratories have described the preparation and antihypertensive effects of a series of 6-(substituted phenyl)-4,5-dihydro-3(2H)-pyridazinones (I).<sup>1</sup> These studies indicated that the compounds having amino, acylamino, cyano, and halogen substituents on the phenyl ring were among those having the more interesting antihypertensive activity. Moreover, this action persisted for a longer duration in those compounds also possessing a 5-methyl substituent. In the present paper we describe the preparation and biological properties of additional members of this series. Specifically, we have prepared those compounds of structure I in which the phenyl substituent is alkylamino, N-alkylacylamino, and dimethylamino. Moreover, the effect of other 5 substituents on activity was investigated. A cursory examination of the effect on activity caused by alteration of substituents at the 2 position was made, † and certain 6-(o-substituted phenyl) derivatives also were prepared.

Chemistry. Most of the compounds of type I (see Table I) having 6-(alkylaminophenyl) (1-12), 6-(dimethylaminophenyl) (13-18), 6-(ortho-substituted phenyl) (30, 32, 33), and 5-alkyl and aryl (41-51) substituents were prepared by treatment of the appropriate  $\gamma$ -keto acid or  $\gamma$ -keto ester with hydrazine (eq 1).<sup>2</sup> The 6-(dimethylaminophenyl) compounds also could be prepared by Eschweiler-Clarke alkylation of the corresponding 6-(aminophenyl)-4,5-dihydropyridazinone, but this procedure is limited to those compounds with a 2 substituent, and the yield is poor (cf. 16).

$$R \xrightarrow{\text{COCHCH}_2\text{CO}_2\text{Z}}_{\text{R'}} + R''\text{NHNH}_2 \longrightarrow R'$$


$$R \xrightarrow{\text{N-NR''}}_{\text{R'}} 0 + ZOH \quad (1)$$

$$I$$

The yields for those dihydropyridazinones prepared by the procedure of eq 1 (methods A and  $A_1$ ) generally were excellent, but the 6-(ortho-substituted phenyl) derivatives 30, 32, and 33 were exceptions. Moderate yields were observed in the preparation of those dihydropyridazinones

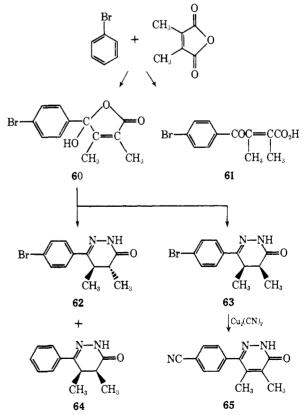
<sup>†</sup>A more comprehensive study of this parameter was made by Drs. Goldman, Lin, and Stodja in these laboratories. lacking a 5 substituent (30 and 33). However, the yield declined precipitously in the instance of the 6-(o-nitrophenyl)-5-methyl derivative 32, and the isopropylidene hydrazide 58 was a more significant product. Presumably 58 arises by interaction of 59 with acetone utilized in the experimental procedure, and isolation of 58 suggests that formation of the dihydropyridazinone nucleus proceeds in this instance *via* intramolecular condensation of the acyl hydrazide onto the carbonyl function. Moreover, the presence of only end absorption in the electronic spectrum of 58 indicates preference for an "out-of-plane" conformation with respect to the carbonyl function and the aryl system. This preference is the apparent result of limitations on the degrees of freedom imposed by the steric requirements of the nitro and methyl substituents, and these constrictions make the tetrahedral intermediate in the conversion of 59 into 32 less attainable.

Modification of appropriate dihydropyridazinones afforded other members of the series. Thus, catalytic reduction of certain 6-(nitrophenyl) compounds gave excellent yields of the corresponding 6-(aminophenyl) derivatives 31 and 35. The preparation of the 6-(o-aminophenyl)dihydropyridazinone (31) had been achieved earlier by treatment of  $\beta$ -(o-aminobenzoyl)propionic acid with hydrazine.<sup>3</sup> Acetylation of the requisite compounds gave the 6-(acylaminophenyl) derivatives 19-29, 48, and 49. The Sandmeyer procedure was used to prepare the m-hydroxy (39) and *m*-bromo (40) derivatives, and displacement<sup>4</sup> of bromide in the 6-bromophenyl derivatives 40 and 41 constituted an efficient alternative synthesis of the interesting m- (43) and p-cyanophenyl (44) compounds. Acid hydrolysis of 43 and 44 gave the carboxamides 55 and 56, respectively, which were converted into their carboxylic acids by treatment with nitrosonium hexafluorophosphate. The carboxamide and carboxylic acid derivatives were of particular interest, inasmuch as they are possible metabolites of the more interesting carbonitriles. In addition to these transformations, 6-(p-aminophenyl)-4,5-dihydro-5-methyl-3-(2H)-pyridazinone<sup>1</sup> was converted into the sulfamoyl



| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                  | 4 hr     | 24 hr         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |          |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | · + +    | +             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | + +      |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | +++      | +             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          | _             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | ++++     |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | ++       |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | + + +    | +             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | N        | _             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | ++       | +             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          | - 760         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | + + +    |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | ++       | +             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          | _             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | +        | +             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    |          |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                    | + + + +  |               |
| <b>22</b> $p-N(CH_3)COCH_3$ H H G 82 Acetone-hexane 184–186 $C_{13}H_{15}N_3O_2 \cdot 0.5H_2O$ C, H, N <b>23</b> $p-N(CH_3)COCF_3$ CH <sub>3</sub> H M 94 Acetone-petr ether 160–161 $C_{14}H_{14}F_3N_3O_2$ C, H, F, I | -<br>-   |               |
| <b>23</b> $p$ -N (CH <sub>3</sub> ) COCF <sub>3</sub> CH <sub>3</sub> H M 94 Acetone -petr ether 160–161 C <sub>14</sub> H <sub>14</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub> C, H, F, I                        | í ++++   | ++            |
|                                                                                                                                                                                                                         | +++++    |               |
| <b>24</b> $p$ -CF <sub>3</sub> CONH CH <sub>3</sub> CH <sub>3</sub> M 80 Acetone-hexane 174–176 C <sub>14</sub> H <sub>14</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub> C, H, F, I                                 | 1 +++    | -t-           |
|                                                                                                                                                                                                                         |          | - <b>  </b> - |
| <b>25</b> $p$ -N(CH <sub>3</sub> )COCH <sub>3</sub> CH <sub>3</sub> H G 84 CH <sub>2</sub> Cl <sub>2</sub> -petr ether 218-220 C <sub>14</sub> H <sub>17</sub> N <sub>3</sub> O <sub>2</sub> H, N; C <sup>c</sup>       | •+ + + + | ++            |
| <b>26</b> $p-N(CH_3)COC_2H_5$ H H G 89 EtOH-H <sub>2</sub> O 108-110 $C_{14}H_{17}N_3O_2 \cdot H_2O$ C, H, N                                                                                                            | + + + +  |               |
| <b>27</b> $p-N(C_2H_3)COCH_3$ H H G 83 Acetone-hexane 167–168 $C_{14}H_{17}N_3O_2$ C, H, N                                                                                                                              | + + + +  | +             |
| <b>28</b> $p$ -N (CH <sub>3</sub> )COCH <sub>3</sub> CH <sub>3</sub> CH <sub>4</sub> G 83 Et <sub>2</sub> O-petr ether 110-112 C <sub>15</sub> H <sub>15</sub> N <sub>3</sub> O <sub>2</sub> H, N; C <sup>d</sup>       | ++++     |               |
| <b>29</b> $p-N(C_2H_5)COCH_3$ CH <sub>3</sub> H G 64 Acetone-hexane 148–150 $C_{15}H_{19}N_3O_2$ C, H, N                                                                                                                | + + + +  | +             |
| D. (o-Substituted phenyl) Derivatives                                                                                                                                                                                   |          |               |
| <b>30</b> $o-NO_2$ H H A <sub>1</sub> 47 Acetone-hexane 164-165 $C_{10}H_9N_3O_3$ C, H, N                                                                                                                               | +        |               |
| <b>31</b> o-NH <sub>2</sub> H H I 82 EtOH 171–173 $C_{10}H_{11}N_{3}O$ C, H, N                                                                                                                                          |          |               |
| <b>32</b> $o-NO_2$ CH <sub>3</sub> H A <sub>1</sub> 5 Acetone-hexane 159–161 C <sub>11</sub> H <sub>11</sub> N <sub>3</sub> O <sub>3</sub> C, H, N                                                                      | ++       |               |
| <b>33</b> <i>o</i> -NHCOCH <sub>3</sub> H H A <sub>1</sub> 40 MeOH 257–258 $C_{12}H_{13}N_3O_2$ C, H, N                                                                                                                 |          |               |
| E. 2-Alkyl Derivatives                                                                                                                                                                                                  |          |               |
| <b>34</b> <i>m</i> -NO <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> A 69 MeOH-H <sub>2</sub> O 196–197 C <sub>12</sub> H <sub>13</sub> N <sub>3</sub> O <sub>3</sub> C, H, N                                            | + + + +  | +             |
| <b>35</b> <i>m</i> -NH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> I 93 H <sub>2</sub> O 123-124 C <sub>12</sub> H <sub>15</sub> N <sub>3</sub> O C, H, N                                                              |          |               |
| <b>36</b> <i>m</i> -CN CH <sub>3</sub> CH <sub>3</sub> B 74 Et <sub>2</sub> O-petr ether 80-81 C <sub>13</sub> H <sub>13</sub> N <sub>3</sub> O C, H, N                                                                 | ┼ ┼ ┽ ╺┽ | +             |

McEvoy, Allen


| CH2Cl2-petr ether<br>Acetone-hexane 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 172–174<br>)2.5–93.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>13</sub> H <sub>13</sub> N <sub>3</sub> O<br>C <sub>14</sub> H <sub>15</sub> N <sub>3</sub> O | C, H, N<br>C, H, N                   | ++<br>++<br>++                               | ++<br>+<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F. 5-Alkyl and 5-Phenyl I<br>Acetone-C,H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jerivatives<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_{11}H_{13}N_2O_2$                                                                                 | C, H, N                              | ŀ                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Acetone-hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 162-164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>11</sub> H <sub>11</sub> BrN <sub>2</sub> O                                                   | C, H, Br, N                          | +++++                                        | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 196 - 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>11</sub> H <sub>11</sub> BrN <sub>2</sub> O                                                   | C, H, Br, N                          | +<br>+                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170 - 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{11}H_{11}FN_2O$                                                                                  | C, H, F, N                           |                                              | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 184188*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_{12}H_{11}N_{3}O$                                                                                 |                                      |                                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CH2Cl2-C,H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 196198/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_{12}H_{11}N_3O$                                                                                   |                                      | +++++++++++++++++++++++++++++++++++++++      | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153 - 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>13</sub> H <sub>13</sub> FN <sub>2</sub> O                                                    | C, H, F, N                           | I                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 155 - 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>12</sub> H <sub>15</sub> N <sub>3</sub> O                                                     | C, H, N                              | +++++++++++++++++++++++++++++++++++++++      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171-173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_{13}H_{17}N_3O$                                                                                   | C, H, N                              | I                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Acetone-petr ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 239-240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_{14}H_{17}N_{3}O$                                                                                 | C, H, N                              | +                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Acetone-hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 217 - 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>15</sub> H <sub>19</sub> N <sub>3</sub> O                                                     | C, H, N                              | ļ                                            | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 245-247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>16</sub> H <sub>13</sub> FN <sub>2</sub> O                                                    | C, H, F, N                           | ļ                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 225-227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>16</sub> H <sub>14</sub> N <sub>2</sub> O                                                     | C, H, N                              | I                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Et <sub>2</sub> 0-petr ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137 - 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>11</sub> H <sub>12</sub> N <sub>6</sub> O <sub>3</sub> S                                      | C, H, N, S                           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Acetone-C_6H_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 238 - 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{12}H_{12}N_2O_3$                                                                                 | C, H, N                              | ļ                                            | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Acetone-H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 270-273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_{12}H_{12}N_2O_3$                                                                                 | C, H, N                              | +                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Acetone-H_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 218 - 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>12</sub> H <sub>13</sub> N <sub>3</sub> O <sub>2</sub>                                        | C, H, N                              | ++++++                                       | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 216-218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>12</sub> H <sub>13</sub> N <sub>3</sub> O <sub>2</sub> · CH <sub>3</sub> OH                   | C, H, N                              | +<br>+<br>+                                  | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $DMF-H_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 246-248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_{22}H_{22}N_4O_4S_2$                                                                              | C, H, N, S                           | I                                            | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 86-95 mm; +<br>bent with 6% ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= 96-105 \text{ mm}; - \ge$ etone in CH <sub>2</sub> Cl <sub>2</sub> . °C: ca                       | 106 mm. Hydral<br>lcd, 64.84; found, | azine (25 mg/<br>, 64.40. <sup>4</sup> C: ca | kg) lowers<br>lcd, 65.91;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\$ | 37 $p$ -CN         CH <sub>3</sub> B         100         CH <sub>2</sub> Cl <sub>2</sub> -petr ether         9           38 $p$ -CN         CH <sub>3</sub> H         C         37         Acetone-Dexane         9           40 $m$ -Br         CH <sub>3</sub> H         C         37         Acetone-C <sub>4</sub> H <sub>4</sub> 41 $p$ -Br         CH <sub>3</sub> H         C         37         Acetone-Dexane           43 $m$ -ON         CH <sub>3</sub> H         C         37         Acetone-Dexane           44 $p$ -Fr         CH <sub>3</sub> H         A         92         BtOH           45 $p$ -NH         CH <sub>3</sub> H         A         83         CH <sub>3</sub> Cl <sub>4</sub> -C <sub>4</sub> H <sub>4</sub> 46 $p$ -NH         CN         CH <sub>3</sub> H         A         83         BtOH           47 $p$ -NH         CH <sub>3</sub> H         A         83         BtOH           48 $p$ -NHCOCH <sub>3</sub> $n$ -C <sub>3</sub> H <sub>4</sub> H         A         87         BtOH           48 $p$ -NHCOCH <sub>3</sub> <td< th=""><th></th><th></th><th></th><th><math display="block"> \begin{array}{cccc} CH_2CI_2-\text{petr ether} &amp; 172-174 \\ \text{Acctone-hexane} &amp; 92.5-93.0 \\ \text{Ci,H}_{13}N_4O &amp; \text{C,H,} N \\ \text{Acctone-hexane} &amp; 92.5-93.0 \\ \text{Ci,H}_{13}N_4O &amp; \text{C,H,} N \\ \text{Acctone-hexane} &amp; 92.5-93.0 \\ \text{Acctone-hexane} &amp; 92.5-93.0 \\ \text{Acctone-hexane} &amp; 92.5-93.0 \\ \text{Acctone-hexane} &amp; 162-164 \\ \text{Acctone-hexane} &amp; 162-164 \\ \text{Ci,H}_{11}BN_2O &amp; \text{C,H,} Br, N \\ \text{Acctone-hexane} &amp; 162-164 \\ \text{Ci,H}_{11}BN_4O &amp; \text{C,H,} Br, N \\ \text{Acctone-hexane} &amp; 196-197 \\ \text{EtOH} &amp; 170-172 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} R, N \\ \text{H}_{11}+1+1 \\ \text{CH}_{21}C_{12}C_{4}H_{6} &amp; 153-154 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} R, N \\ \text{H}_{11}+1+1 \\ \text{CH}_{21}C_{12}C_{4}H_{6} &amp; 153-154 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} R, N \\ \text{Acctone-hexane} &amp; 217-2173 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-hexane} &amp; 217-227 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-hexane} &amp; 217-227 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,H,} N \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,} H, N \\ \text{Acctone-Hex} &amp; 228-227 \\ \text{Acctone-Hexane} &amp; 217-228 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,} H, N \\ \text{Acctone-Hex} &amp; 216-248 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,} H, N \\ \text{Acctone-Hex} &amp; 216-248 \\ \text{Ci,H}_{11}N_{10}O &amp; \text{C,} H, N \\ \text{Acctone-He} &amp; 216-248 \\ \text{Ci,H}_{12}N_{10}O &amp; \text{C,} H, N \\ \text{Acctone-He} &amp; 216-248 \\ \text{Ci,H}_{12}N_{10}O &amp; \text{C,} H, N \\ \text{Acctone-He} &amp;</math></th></td<> |                                                                                                      |                                      |                                              | $ \begin{array}{cccc} CH_2CI_2-\text{petr ether} & 172-174 \\ \text{Acctone-hexane} & 92.5-93.0 \\ \text{Ci,H}_{13}N_4O & \text{C,H,} N \\ \text{Acctone-hexane} & 92.5-93.0 \\ \text{Ci,H}_{13}N_4O & \text{C,H,} N \\ \text{Acctone-hexane} & 92.5-93.0 \\ \text{Acctone-hexane} & 92.5-93.0 \\ \text{Acctone-hexane} & 92.5-93.0 \\ \text{Acctone-hexane} & 162-164 \\ \text{Acctone-hexane} & 162-164 \\ \text{Ci,H}_{11}BN_2O & \text{C,H,} Br, N \\ \text{Acctone-hexane} & 162-164 \\ \text{Ci,H}_{11}BN_4O & \text{C,H,} Br, N \\ \text{Acctone-hexane} & 196-197 \\ \text{EtOH} & 170-172 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} R, N \\ \text{H}_{11}+1+1 \\ \text{CH}_{21}C_{12}C_{4}H_{6} & 153-154 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} R, N \\ \text{H}_{11}+1+1 \\ \text{CH}_{21}C_{12}C_{4}H_{6} & 153-154 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} R, N \\ \text{Acctone-hexane} & 217-2173 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-hexane} & 217-227 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-hexane} & 217-227 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,H,} N \\ \text{Acctone-Hexane} & 217-228 \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,} H, N \\ \text{Acctone-Hex} & 228-227 \\ \text{Acctone-Hexane} & 217-228 \\ \text{Ci,H}_{11}N_{10}O & \text{C,} H, N \\ \text{Acctone-Hex} & 216-248 \\ \text{Ci,H}_{11}N_{10}O & \text{C,} H, N \\ \text{Acctone-Hex} & 216-248 \\ \text{Ci,H}_{11}N_{10}O & \text{C,} H, N \\ \text{Acctone-He} & 216-248 \\ \text{Ci,H}_{12}N_{10}O & \text{C,} H, N \\ \text{Acctone-He} & 216-248 \\ \text{Ci,H}_{12}N_{10}O & \text{C,} H, N \\ \text{Acctone-He} &$ |

Substituted 4,5-Dihydro-3(2H)-pyridazinones

azide 52 since previous reports indicate potent hypotensive properties among organic sulfamoyl azides.<sup>5</sup> The sulfone derivative 57 was a major side product in the synthesis of 52. The preparation of the 2-alkyl derivatives 34-38 was accomplished by procedures requiring no comment.

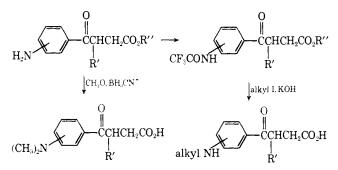
The earlier studies in these laboratories with the dihydropyridazinones indicated that while a 5-methyl substituent had a desirable effect on activity, placement of a methyl group at the 4 position gave substances with weaker antihypertensive properties. Nevertheless, it was of interest to prepare a 4,5-dimethyl-4,5-dihydropyridazinone for testing. Since the 6-(p-cvanophenvl) derivative 44 was one of the most interesting members, the preparation of its 4-methyl derivative was undertaken. Our attempted synthesis of this substance began with the reported Friedel-Crafts acylation of bromobenzene with dimethylmaleic anhydride, which in this laboratory gave lactol 60, mp 102-103°, rather than the reported crotonic acid 61, mp 120-121° (see Scheme I).<sup>6</sup> Reduction of the olefinic center in 60 was accomplished with zinc in acetic acid. However, the extended reaction time required for efficient reduction caused partial hydrogenolysis of the bromo substituent. The crude reduction products were treated with hydrazine and liquid-liquid partition chromatography resolved the mixture of dihydropyridazinones 62-64. The composition of this mixture indicated that cis addition of the elements of hydrogen to 60 predominated by a ratio of 5:1. Surprisingly, the displacement of bromide in 63 by cyanide was accompanied by dehydrogenation to give pyridazinone 65. This dehydrogenation in the 4,5-dimethyl series on treatment with cuprous cvanide contrasts sharply with the smooth conversion of 41 into 44 by this reagent in the 5-methyl series (see above), and the ferric chloride used to destroy the cuprous halide-nitrile adduct<sup>4</sup> apparently functions as the oxidizing agent.

Scheme I



Two procedures were used to prepare the  $\gamma$ -keto acids required as intermediates for the preparation of dihydropyridazinones 1-29. The monoalkylaminophenyl-

Table II. 4,5-Dihydro-3(2H)-pyridazinone Intermediates


|       |                                    |                   |                             |              | <sub>R</sub> ≮ | COCHCH <u>-</u> CO <u>-</u> R"        |                 |                           |            |
|-------|------------------------------------|-------------------|-----------------------------|--------------|----------------|---------------------------------------|-----------------|---------------------------|------------|
| a ,   |                                    |                   |                             |              | Yield,         |                                       |                 | <b>—</b> ,                |            |
| Compd | R                                  | R′                | $\mathbf{R}^{\prime\prime}$ | od           | %              | Recrystn solvent                      | Mp, °C          | Formula                   | Analyses   |
| 66    | $p-NH_2$                           | Н                 | CH <sub>3</sub>             | J            | 87             | Acetone-C <sub>6</sub> H <sub>6</sub> | 164-167         | $C_{11}H_{13}NO_3$        | C, H, N    |
| 67    | $p$ -NH $_2$                       | $CH_3$            | $CH_3$                      | J            | 66             | MeOH-H <sub>2</sub> O                 | 118 - 120       | $C_{12}H_{15}NO_3$        | C, H, N    |
| 68    | $p$ -NH $_2$                       | $C_2H_5$          | $CH_3$                      | J            | 67             | $Et_2O$ -petr ether                   | 68-69           | $C_{13}H_{17}NO_{3}$      | C, H, N    |
| 69    | $m$ -NH $_2$                       | $CH_3$            | $C_2H_5$                    | I            | 86             | Acetone- $H_2O$                       | 65-67           | $C_{13}H_{17}NO_{3}$      | C, H, N    |
| 70    | p-CF <sub>3</sub> CONH             | Н                 | $CH_3$                      | Μ            | 95             | Acetone-hexane                        | 183-184         | $C_{13}H_{12}F_3NO_4$     | C, H, F, N |
| 71    | p-CF <sub>3</sub> CONH             | $CH_3$            | $CH_3$                      | Μ            | 100            | $Et_2O$ -petr ether                   | 67-70           | $C_{14}H_{14}F_3NO_4$     | C, H, F, N |
| 72    | p-CF <sub>3</sub> CONH             | $C_2H_5$          | $CH_3$                      | Μ            | 86             | $Et_2O$ -petr ether                   | <b>68-7</b> 0   | $C_{15}H_{16}F_{3}NO_{4}$ | C, H, F, N |
| 73    | m-CF <sub>3</sub> CONH             | $CH_3$            | $C_2H_5$                    | Μ            | 80             | $Et_2O$ -petr ether                   | 70-73           | $C_{16}H_{18}F_{3}NO_{4}$ | C, H, F, N |
| 74    | p-CH₃NH                            | Ĥ                 | Н                           | Ν            | 93             | MeOH                                  | 203–205 dec     | $C_{11}H_{13}NO_3$        | C, H, N    |
| 75    | $p-C_2H_5NH$                       | Н                 | Н                           | Ν            | 35             | Acetone-hexane                        | 189–190 dec     | $C_{12}H_{15}NO_3$        | C, H, N    |
| 76    | $p$ - $n$ - $C_{3}H_{7}NH$         | н                 | Н                           | Ν            | 12             | $MeOH-H_2O$                           | 196–198 dec     | $C_{13}H_{17}NO_3$        | C, H, N    |
| 77    | p-CH <sub>3</sub> NH               | $\mathbf{CH}_{3}$ | н                           | Ν            | 76             | $Acetone-C_6H_6$                      | 172 - 174       | $C_{12}H_{15}NO_3$        | C, H, N    |
| 78    | p-C <sub>2</sub> H <sub>5</sub> NH | $CH_3$            | Н                           | Ν            | <b>54</b>      | MeOH–H <sub>2</sub> O                 | 162–165 dec     | $C_{13}H_{17}NO_3$        | C, H, N    |
| 79    | m-CH <sub>3</sub> NH               | $CH_3$            | Н                           | Ν            | 98             |                                       | ${ m Oil}^a$    | $C_{12}H_{15}NO_3$        |            |
| 80    | p-CH <sub>3</sub> NH               | $C_2H_5$          | н                           | Ν            | 80             | $Et_2O$ -petr ether                   | 90-92           | $C_{13}H_{17}NO_3$        | C, H, N    |
| 81    | $p-(CH_3)_2N$                      | н                 | н                           | $\mathbf{K}$ | 100            | Acetone-hexane                        | 178 - 179       | $C_{12}H_{15}NO_3$        | C, H, N    |
| 82    | $p-(CH_3)_2N$                      | $CH_3$            | н                           | $\mathbf{K}$ | 59             | Acetone-hexane                        | <b>129–13</b> 0 | $C_{13}H_{17}NO_3$        | C, H, N    |
| 83    | $m-(CH_3)_2N$                      | $CH_3$            | н                           | K            | 96             |                                       | $Oil^a$         | $C_{13}H_{17}NO_3$        |            |
| 84    | $m$ -NH $_2$                       | $\mathbf{CH}_3$   | н                           | I            | 96             |                                       | $91 - 95^{a}$   | $C_{11}H_{13}NO_3$        |            |

*\_\_\_\_* 

<sup>a</sup>This substance could not be purified; the yield cited is for material that was used in a subsequent transformation.

 $\gamma$ -keto acids 74-80 were prepared by the method of Johnstone and his coworkers (see Scheme II).<sup>7</sup> Thus, the aminobenzoyl esters 66-69 were converted into the trifluoroacetamides 70-73. Alkylation of these last substances with the appropriate alkyl iodide in the presence of potassium hydroxide and subsequent saponification of the ester function furnished the required acids. The dimethylaminophenyl- $\gamma$ -keto acids 81-83 were prepared by saponification of the corresponding crude esters which were obtained by treatment of the aminobenzoyl esters 66, 67, and 69 with formalin and cyanoborohydride as described by Borch and Hassid.<sup>8</sup> The synthesis of the remaining  $\gamma$ keto acids required for the preparation of other dihydropyridazinones of Table II has been described elsewhere.<sup>9</sup>

Scheme II



Finally, the preparation of two 6-amino-4,5-dihydropyridazines 85 was accomplished by treatment of a  $\gamma$ -keto nitrile with hydrazine (eq 2). Spectral data for the prod-

$$R \xrightarrow{COCHCH_2CN} + H_2NNH_2 \longrightarrow H_2CH_3$$

$$R \xrightarrow{I}_{CH_3} NH_2 + H_2O \quad (2)$$

$$R \xrightarrow{I}_{CH_3} NH_2 + H_2O \quad (2)$$

$$R \xrightarrow{I}_{CH_3} NH_2 + H_2O \quad (2)$$

series **a**, 
$$\mathbf{R} = p \cdot \operatorname{AcNH}; \mathbf{b}, \mathbf{R} = m \cdot \operatorname{NO}_2$$

ucts clearly exclude the alternate 6-imino structure.

**Biology.** The effect of the dihydropyridazinones on blood pressure was determined in normotensive rats of the Wistar strain as described by Cummings and his coworkers.<sup>10</sup> Mean arterial blood pressure (MABP, mm) was measured at 4 and 24 hr following a single oral dose of 100 mg/kg of the candidate agent. The data are summarized in Table I; comparable data for the highly interesting m-(43) and p-cyano (44) derivatives<sup>1</sup> are included. 2-Alkyl derivatives 36-38 of these compounds also cause dramatic lowering of blood pressure and possess a long duration (24 hr) of action following administration of a single dose.

The results expressed in Table I in conjunction with those obtained earlier for members of the series<sup>1</sup> indicate that among the 5-substituted derivatives the greatest lowering of the blood pressure is seen with the 5-methyl derivatives. Representative 5-ethyl (9, 12, 45, 46, 48), propyl (47, 49), and phenyl (50, 51) members were also examined.

Consistent, highly effective antihypertensive activity was found in 6-(alkylaminophenyl) derivatives 1-4, 6-8, and 11. Substitution at the 2 position in this series (5, 9,12) by an alkyl group reduced their effectiveness, but acylation of the amino function gave compounds 19-29 generally possessing equal or greater effectiveness. The acetyl derivatives usually proved more active than the corresponding trifluoroacetyl compounds.

Our studies indicate that 6-(halophenyl) and 6-(hydroxyphenyl) derivatives are less interesting with respect to their antihypertensive properties. The potent antihypertensive effect of the carboxamido derivatives 55 and 56 is of interest, since these compounds represent potential metabolites of the benzonitriles 43 and 44, respectively. The activity of the carboxamides may account, in part, for the sustained effect of the nitriles. Interestingly, the corresponding carboxylic acids 53 and 54 have little effect as antihypertensive agents.

## **Experimental Section**

General. Melting points were determined in open capillary tubes on a Mel-Temp apparatus and are uncorrected. Solutions were dried and concentrated under reduced pressure on a rotary evaporator. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within  $\pm 0.4\%$  of the theoretical values. The petroleum ether used was that fraction with bp  $30-60^{\circ}$ .

Preparation of the 6-(Substituted phenyl)-4,5-dihydro-3(2H)-pyridazinones (I). Method A. A solution of 34.85 g (0.128 mol) of  $\beta$ -(p-bromobenzoyl)butyric acid<sup>9</sup> and 10.0 g (0.21 mol, 10 ml) of hydrazine hydrate in 300 ml of EtOH was stirred at reflux temperature for 3 hr. A solid began separating after 5 min. The mixture was chilled and filtered to give 31.57 g (92%) of 6-(p-bromophenyl)-4,5-dihydro-5-methyl-3(2H)-pyridazinone (41) as white crystals, mp 197-199°. The characterization of this substance and others prepared in a similar manner is given in Table I.

Method A<sub>1</sub>. A solution of 4.68 g (20 mmol) of methyl 3-(o-nitrobenzoyl)propionate, 2.1 ml (40.5 mmol) of hydrazine hydrate, and 1.65 ml of HOAc in 25 ml of EtOH was heated at reflux temperature for 18 hr. Removal of the solvent gave a residue that was distributed between  $CH_2Cl_2$  and  $H_2O$ . The material in the organic layer crystallized from  $CH_2Cl_2$ -petroleum ether to give 2.03 g (46%) of 4,5-dihydro-6-(o-nitrophenyl)-3(2H)-pyridazinone (30) as yellow crystals, mp 162-165°.

Method B. A stirred mixture of 1.00 g (4.65 mmol) of 6-(p-cyanophenyl)-4,5-dihydro-5-methyl-3(2H)-pyridazinone (44) and 1.29 g of powdered KOH in 30 ml of acetone was treated with 3.0 ml of MeI. The mixture was heated at reflux temperature for 40 min, and the solvent was removed. The residue was triturated with H<sub>2</sub>O and filtered to give 6-(p-cyanophenyl)-4,5-dihydro-2,5-dimethyl-3(2H)-pyridazinone (37), mp 172-174°. The characterization of this substance is given in Table I.

**Method B<sub>1</sub>.** Application of method B to 670 mg (2.14 mmol) of 4,5-dihydro-2,5-dimethyl-6-(p-2,2,2-trifluoroacetamidophenyl)-

3(2H)-pyridazinone (24), 0.60 ml (8.5 mmol) of CH<sub>3</sub>I, and 475 mg (8.5 mmol) of powdered KOH in 12 ml of acetone afforded 490 mg of 4,5-dihydro-2,5-dimethyl-6-(*p*-methylaminophenyl)-3(2H)-pyr-idazinone (7). See Table I for its characterization.

Method C. A solution of 5.22 g (25.8 mmol) of 6-(m-anilino)-4,5-dihydro-5-methyl-3(2H)-pyridazinone<sup>1</sup> in 18 ml of H<sub>2</sub>O and 11 ml of 48% HBr was stirred at 0°. A solid separated, and 1.79 g (26 mmol) of NaNO<sub>2</sub> was added in portions to the slurry, the temperature being maintained at 0-3°. Solution occurs, and then a solid separates. The slurry was added dropwise to a cold solution of 4.05 g (14 mmol) of Cu<sub>2</sub>Br<sub>2</sub> in 13 ml of 48% HBr. The mixture was stirred at 0° for 30 min, allowed to warm to 20°, and then stirred at  $40^{\circ}$  for 1 hr. The mixture was cooled and diluted with 90 ml of A2O. The precipitate was collected, dried, and extracted with two 100-ml portions of CH<sub>2</sub>Cl<sub>2</sub>. Evaporation of the solvent gave a glass which was dissolved in 5% acetone in CH<sub>2</sub>Cl<sub>2</sub> and filtered through a synthetic magnesia-silica adsorbent. The solid was washed liberally with the same solvent mixture. Evaporation of the solvent from the filtrate gave a solid which was recrystallized from acetone-hexane to give 1.75 g of 6-(m-bromophenvl)-4,5-dihydro-5-methyl-3(2H)-pyridazinone (40) as white crystals, mp 160-163°. See Table I for its characterization.

Method D. A mixture of 20.43 g (76.5 mmol) of 6-(p-bromophenyl)-4,5-dihydro-5- methyl-3(2H)-pyridazinone (41) and 9.10 g (51 mmol) of  $Cu_2(CN)_2$  in 70 ml of DMF was stirred at reflux temperature for 5.5 hr. The hot mixture was poured into a stirred solution of 46 ml of ethylenediamine in 230 ml of H<sub>2</sub>O; stirring was continued for 20 min, whereafter the mixture was filtered to give 14.20 g (87%) of 6-(p-cyanophenyl)-4,5-dihydro-5-methyl-3(2H)-pyridazinone (44), mp 194-197°. See Table I for other compounds prepared similarly.

Method E. A solution of 500 mg (2.35 mmol) of p-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)benzonitrile (41) in 5 ml of concentrated H<sub>2</sub>SO<sub>4</sub> was allowed to stand at room temperature for 18 hr and then was diluted with 45 ml of iced H<sub>2</sub>O to afford 460 mg (85%) of p-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3pyridazinyl)benzamide (56) as a white solid, mp 215-216°. See Table I for the characterization of this substance.

Method F. To a solution of 360 mg (2.06 mmol) of nitrosonium hexafluorophosphate in 10 ml of acetonitrile cooled to ice-bath temperature was added with stirring 395 mg (1.71 mmol) of p-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)benzamide (56). The solution was stirred at 0° for 10 min, at 25° for 20 min, and at 50° for 30 min. Water (0.3 ml) was added to the reaction, and the solid was collected to give 250 mg (63%) of p-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)benzoic acid (54) as white crystals, mp 266-270°.

Method G. A mixture of 500 mg (2.2 mmol) of 6-(p-ethylaminophenyl)-4,5-dihydro-3(2H)-pyridazinone (2) and 1 ml of acetic anhydride was stirred at room temperature for 1 hr. Water was added to destroy the excess anhydride, after which time the solid N-ethyl-4'-(1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)acetanilide (27) (470 mg, 83%) was collected to give white crystals, mp 167-168°. See Table I for its characterization.

Method G<sub>1</sub>. A mixture of 400 mg (1.97 mmol) of 4,5-dihydro-6-(p-methylaminophenyl)- 3(2H)-pyridazinone (1) and 1 ml of 97% HCO<sub>2</sub>H in 10 ml of toluene was heated at reflux temperature for 17 hr; separated H<sub>2</sub>O was collected in a modified Dean-Stark H<sub>2</sub>O trap. The solvent was removed, and the product, N-methyl-4'-(1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)formanilide (19), was purified as indicated in Table I.

Method H. A solution of 1.71 g (8.4 mmol) of 6-(p-anilino)-4,5dihydro-2-methyl-3(2H)-pyridazinone, 0.55 g (18.5 mmol, 1.4 ml) of 37% formalin, and 1.83 g (42 mmol, 1.5 ml) of 97% HCO<sub>2</sub>H was heated on a steam bath for 17 hr. The volatile material was removed, and the residue was distributed between CH<sub>2</sub>Cl<sub>2</sub> and H<sub>2</sub>O. The material in the organic layer was chromatographed on a synthetic magnesia-silica adsorbent. The fractions eluted by CH<sub>2</sub>Cl<sub>2</sub> contained the product, the characterization of which is given in Table I.

Method I. A mixture of 2.56 g (10.4 mmol) of 4,5-dihydro-2,5dimethyl-6-(m-nitrophenyl)-3(2H)-pyridazinone (34) and 250 mg of 10% Pd/C in 50 ml of EtOH was shaken under hydrogen until the pressure became constant (13 min). The solution was filtered and evaporated to furnish a gum which crystallized from  $Et_2O$ petroleum ether to give 2.10 g (93%) of 6-(m-anilino)-4,5-dihydro-2,5-dimethyl-3(2H)-pyridazinone (35) as white crystals, mp 120-122°.

Preparation of Esters of 3-(Substituted benzoyl)alkanoic Acids. Method J. A solution of 3.00 g (13.5 mmol) of 3-(*p*-aminobenzoyl)butyric acid<sup>9</sup> and 0.12 ml of H<sub>2</sub>SO<sub>4</sub> in 60 ml of MeOH was heated at reflux temperature for 18 hr. The solution was cooled and added to 1.0 g of anhydrous NaOAc and diluted with 60 ml of H<sub>2</sub>O, and the MeOH was removed until crystals separated. The mixture was cooled in an ice bath, and the solid was collected, affording 2.20 g (66%) of methyl 3-(*p*-aminobenzoyl)butyrate (67) as crystals, mp 116-118°. The characterization of this substance and the preparation of other esters by this procedure are given in Table II.

Method K. To a mixture of 1.49 g (7.20 mmol) of methyl 3-(paminobenzoyl)propionate (66) and 6.2 ml of 37% formalin in 30 ml of MeCN was added 1.37 g (23.2 mmol) of sodium cyanoborohydride. To the stirred mixture was added 0.77 ml of HOAc over a period of 7 min. Stirring was continued for 2 hr, and an additional 0.77 ml of HOAc added. After stirring for an additional 30 min, the solution was diluted with 100 ml of Et<sub>2</sub>O and washed with 1 N NaOH solution. The organic solution was dried and evaporated leaving 1.69 g of amber gum. This material was heated at reflux temperature for 90 min with 20 ml of 6 N HCl solution, and the hot solution was filtered through diatomaceous earth. Evaporation of the filtrate gave a residue that was triturated with 25 ml of acetone to give 1.62 g (100%) of crude 3-(pdimethylaminobenzoyl)propionic acid (81) as a white solid, mp 172-175°. See Table II for the characterization of this substance and those prepared in similar fashion.

Method L. A solution of 4.08 g (20 mmol) of 3-(o-nitrobenzoyl)propionitrile<sup>9</sup> in 100 ml of methanol saturated with hydrogen chloride at 0° was heated at reflux temperature for 3 hr. Most of the solvent was removed, and the residue was distributed between methylene chloride and water. The dried organic solution was evaporated to give 4.68 g (99%) of yellow liquid: ir max 5.75-5.81, 6.60, 7.45  $\mu$ ; tlc in EtOAc-heptane (1:1)  $R_f$  0.65. The esters prepared in this manner were used for the preparation of the dihydropyridazinones without further purification.

Method M. A mixture of 11.80 g (53.4 mmol) of methyl 3-(paminobenzoyl)butyrate (66) and 25 ml of trifluoroacetic anhydride was stirred for 1 hr, diluted with 370 ml of ice-water, and stirred for an additional 1 hr. The mixture was extracted with  $CH_2Cl_2$ , and the extracts were washed successively with 1 N HCl, saline, saturated NaHCO<sub>3</sub> solution, and saline. The dried solution was evaporated to give 15.97 g (100%) of methyl 3-(p-2,2,2trifluoroacetamidobenzoyl)butyrate (71) as a gum that crystallized on trituration with  $Et_2O$ -petroleum ether to give a white solid, mp 67-70°. See Table II for its characterization.

Preparation of the 3-(Alkylaminobenzoyl)alkanoic Acids. Method N. The following preparation of 3-(p-methylaminobenzoyl)butyric acid (77) illustrates the general procedure. To a stirred solution of 15.0 g (47.4 mmol) of methyl 3-(p-2,2,2-trifluoroacetamidobenzoyl)butyrate (71) and 30.8 g (13.5 ml, 0.21 mol) of iodomethane in 300 ml of acetone was added 14.2 g (0.25 mol) of powdered KOH. The mixture was stirred at reflux temperature for 5 min and then the solvent was removed. Water (200 ml) was added to the residue, and the mixture was heated at reflux temperature for 10 min. The mixture was cooled and washed with CH<sub>2</sub>Cl<sub>2</sub>. The alkaline solution was stirred in an ice bath and rendered acidic (pH  $\sim$ 4) by the dropwise addition of 1 N HCl. The product was collected as tan crystals, mp 170-172°. The characterization of this acid and others prepared in a similar manner is described in Table II.

3-(p-Bromobenzoyl)-2-methylcrotonic Acid Lactone (60). A solution of 13.75 g (9.2 ml, 87.5 mmol) of bromobenzene in 10 ml of  $CS_2$  was added dropwise over a period of 60 min to a stirred mixture of 49.7 g (0.186 mol) of AlBr<sub>3</sub> and 9.80 g (78 mmol) of 2,3-dimethylmaleic anhydride. The mixture was heated at reflux for 4 hr and then poured onto iced 37% HCl. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the extracts were washed with saline solution, dried, and evaporated. The residue was subjected to steam distillation, collecting 350 ml of distillate. The pot residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the extracts were washed, dried, and evaporated. The residual gum was triturated with heptane to give 11.10 g (50%) of white solid, mp 92-96°. One crystallization from CH<sub>2</sub>Cl<sub>2</sub>-heptane gave 9.45 g of white crystals: mp 100-102°; uv max 228 mμ (ε 14,300); ir max 2.95, 5.73, 5.90, 6.25 μ; δ<sup>TMS</sup> (CDCl<sub>3</sub>) 1.76 (s, 6, CH<sub>3</sub>), 3.42 (s, 1, OH), 7.27, 7.48 (d, 2 each, aryl A<sub>2</sub>B<sub>2</sub>), exchange with CD<sub>3</sub>OD erased the 3.42 signal.

cis- and trans-6-(p-Bromophenyl)-4,5-dihydro-4,5-dimethyl-3(2H)-pyridazinone. A hot solution of 5.50 g (19.5 mmol) of 3-(p-bromobenzoyl)-2-methylcrotonic acid lactone (60) in 75 ml of HOAc and 30 ml of H<sub>2</sub>O was treated with 2.73 g (41.8 mg-atoms) of Zn dust. The mixture was stirred at reflux temperature for 30 min. An additional 2.73 g of Zn dust was added and the heating continued for 3.5 hr. The mixture was cooled, and the supernatant was decanted from the Zn and concentrated. The concentrate was diluted with H<sub>2</sub>O, and the mixture was extracted with  $CH_2Cl_2$ . The extracts were washed with saline, dried, and evaporated. Toluene was added to the residue and removed under reduced pressure to give 5.18 g of crude 3-(p-bromobenzoyl)-2methylbutyric acids which were converted into the pyridazinones by method A.

The crude product (5.20 g) was subjected to partition chromatography on diatomaceous silica using a heptane-MeCN-H<sub>2</sub>O (200:55:45) system and monitoring the effluent for material with uv absorption at 292 mµ. The material with peak hold-back volume 4.4 ( $V_{\rm m}/V_{\rm s}$  = 3.46) was crystallized from Et<sub>2</sub>O-petroleum ether to give 840 mg (15%) of cis isomer 63: mp 174-176°;  $\delta^{\rm TMS}$  (CDCl<sub>3</sub>) 1.10 (d, 3, J = 8.0 Hz, 4-CH<sub>3</sub>), 1.30 (d, 3, J = 8.0 Hz, 5-CH<sub>3</sub>), 2.78 (d of q, 1,  $J({\rm H_a-H_b}) \sim 7$  Hz,  $J({\rm H_a-CH_3}) = 8.0$  Hz, 4-H), 3.16 (d of q, 1,  $J({\rm H_a-H_b}) \sim 7$  Hz,  $J({\rm H_b-CH_3}) = 8.0$  Hz, 5-H), 7.57, 7.62 (each d, 1 each, J = 10 Hz, aryl A<sub>2</sub>B<sub>2</sub>), 9.15 (s, 1, NH). Anal. (C<sub>12</sub>H<sub>13</sub>BrN<sub>2</sub>O) C, H, Br, N.

The material eluted at peak hold-back volume 6.3 crystallized from Et<sub>2</sub>O-petroleum ether to give 280 mg (5%) of trans isomer 62: mp 174-175°;  $\delta^{TMS}$  (CDCl<sub>3</sub>) 1.19, 1.22 (overlapping d, 3 each, J = 8 Hz, CH<sub>3</sub>), 2.54 (d of q, 1,  $J(H_a-CH_3) = 8$  Hz,  $J(H_a-H_b) \sim 1.5$  Hz, 4-H), 3.02 (d of q, 1, 5-H), 7.56, 7.61 (aryl-A<sub>2</sub>B<sub>2</sub>, 4), 9.11 (s, 1, NH). Anal. (C<sub>12</sub>H<sub>13</sub>BrN<sub>2</sub>O) C, H, N; Br: calcd, 28.43; found; 28.94.

cis-4,5-Dihydro-4,5-dimethyl-6-phenyl-3(2H)-pyridazinone (64) was eluted at peak hold-back volume 10.0. Recrystallization from acetone-hexane gave 421 mg (11%) of white crystals; mp 124-125°;  $\delta^{TMS}$  (CDCl<sub>3</sub>) 1.12, 1.30 (each d, 3,  $J \sim 7$  Hz, CH<sub>3</sub>), 2.78 (d of q, 1,  $J(H_a-CH_3) = J(H_a-H_b) \sim 7$  Hz, 4-H) , 3.22 (d of q, 1, 5-H), 7.42 (m, 3, *m*- and *p*-H of Ph), 7.77 (m, 2, *o*-H of Ph), 9.09 (s, 1, NH). *Anal.* (C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>O) C, H, N.

6-(p-Cyanophenyl)-4,5-dimethyl-3(2H)-pyridazinone (65). A mixture of 1.28 g (4.55 mmol) of cis-6-(p-bromophenyl)-4,5-dihydro-4,5-dimethyl-3(2H)-pyridazinone (63) and 1.72 g (9.6 mmol) of Cu<sub>2</sub>(CN)<sub>2</sub> in 5 ml of DMF was stirred and heated at reflux temperature for 5 hr. The hot solution was poured into a solution of 4.4 g of FeCl<sub>3</sub> and 3.4 ml of 37% HCl in 12 ml of water and heated on the steam bath for 30 min. The solution was cooled, diluted with H<sub>2</sub>O, and filtered to give 1.30 g of brown solid. This solid was extracted with CH<sub>2</sub>Cl<sub>2</sub>, and the extracts were evaporated. The residual solid was recrystallized from acetone to give 270 mg (26%) of white crystals: mp 258-262°; uv max 242 mµ ( $\epsilon$  23,900). Anal. (C<sub>13</sub>H<sub>11</sub>N<sub>3</sub>O) C, H, N.

4'-(6-Amino-4,5-dihydro-4-methyl-3-pyridazinyl)acetanilide (82a). A mixture of 1.28 g (5.6 mmol) of 4'-(3-cyano-2-methylpropionyl)acetanilide,<sup>9</sup> 0.58 ml of hydrazine hydrate, and 0.47 ml of HOAc in 7 ml of EtOH was stirred and heated at reflux temperature for 1 hr. The mixture was cooled, and the yellow crystals were collected and washed successively with methanol, methylene chloride, and acetone to give 635 mg (46%) of yellow crystals, mp 254-256°. Anal. (C<sub>13</sub>H<sub>16</sub>N<sub>4</sub>O) C, H, N.

6-Amino-4,5-dihydro-4-methyl-3-(m-nitrophenyl)pyridazine (82b). In the manner described above a mixture of 920 mg (4.2 mmol) of 3-m-nitrobenzoylbutyronitrile,<sup>9</sup> 0.44 ml of hydrazine hydrate, and 0.35 ml of HOAc in 10 ml of EtOH gave 500 mg (51%) of crystals, mp 200-210°. A sample recrystallized from acetone-hexane had mp 200-208°. Anal. (C<sub>11</sub>H<sub>12</sub>N<sub>4</sub>O<sub>2</sub>) C, H, N.

3-(o-Nitrobenzoyl)butyric Acid Isopropylidenehydrazide (58). Using method A, 7.32 g (29.5 mmol) of methyl 3-(o-nitrobenzoyl)butyrate and 7 ml of hydrazine hydrate in 75 ml of MeOH gave 6.87 g of a gum after solvent removal. An acetone-ether solution of this material deposited 1.68 g (20%) of the hydrazide as yellow crystals, mp 140-143°, on standing at room temperature. Recrystallization of a sample from CH<sub>2</sub>Cl<sub>2</sub>-petroleum ether gave yellow crystals, mp 143-144°. Anal. (C<sub>14</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>) C, H, N. The filtrate was evaporated to give 4.57 g of a residue from which 32 was isolated by partition chromatography.

Reaction of Chlorosulfonyl Azide with 6-(*p*-Aminophenyl)-4,5-dihydro-2,5-dimethyl-3(2*H*)-pyridazinone. A stirred, icecooled solution of 2.17 g (10 mmol) of 6-(*p*-aminophenyl)-4,5-dihydro-2,5-dimethyl-3(2*H*)-pyridazinone (crude material prepared from 3-(*p*-aminobenzoyl)butyric acid<sup>9</sup> and methylhydrazine using procedure A) and 1.4 ml (10.2 mmol) of triethylamine in 20 ml of CH<sub>3</sub>CN was treated with a solution of chlorosulfonyl azide<sup>11</sup> in acetonitrile (prepared as described by Griffiths<sup>12</sup> from 5.0 mmol of sulfuryl chloride and 5.0 mmol of sodium azide). The reaction was concentrated to a volume of 5 ml, and the products were isolated with EtOAc in the usual manner. After removal of the solvent, the residue was crystallized from acetone-hexane to give 57 as tan crystals.

Evaporation of the filtrate gave a residue that was chromatographed on a synthetic magnesia-silica adsorbent. The material eluted by 8% acetone in methylene chloride crystallized from  $Et_2O$ -petroleum ether to give 52. Characterization of 52 and 57 is given in Table I.

Acknowledgment. We are indebted to Messrs. L. Brancone and W. Fulmor and their staffs for microanalyses and spectral data. Partition chromatography was performed by Mr. J. Baker with the cooperation of Dr. A. Streuli. The determination of the antihypertensive activity of candidate agents was performed by Miss L. Lipchuck and Mr. F. Beyer with the cooperation of Dr. R. Z. Gussin.

## References

- (1) W. V. Curran and A. Ross, J. Med. Chem., 17, 273 (1974).
- (2) E. A. Steck, R. P. Brundage, and L. T. Fletcher, J. Amer. Chem. Soc., 75, 1117 (1953), and references cited therein.
- (3) M. Morishita and F. Sakiyama, Bull. Chem. Soc. Jap., 43, 524 (1970).
- (4) (a) L. Friedman and H. Shechter, J. Org. Chem., 26, 2522 (1961);
   (b) M. S. Newman and H. Boden, *ibid.*, 26, 2525 (1961).
- (5) W. L. Matier, W. T. Comer, and D. Deitchman, J. Med. Chem., 15, 538 (1972), and references cited therein.
- (6) R. E. Lutz and M. Couper, J. Org. Chem., 6, 77 (1941).
- (7) R. A. W. Johnstone, D. W. Payling, and C. Thomas, J. Chem. Soc. C, 2223 (1969).
- (8) R. F. Borch and A. I. Hassid, J. Org. Chem., 37, 1673 (1972).
- (9) F. J. McEvoy and G. R. Allen, Jr., ibid., 38, 4044 (1973).
- (10) J. R. Cummings, A. N. Welter, J. L. Grace, Jr., and L. M. Lipchuck, J. Pharmacol. Exp. Ther., 161, 88 (1968).
- (11) R. J. Shozda and J. A. Vernon, J. Org. Chem., 32, 2876 (1967).
- (12) J. Griffiths, J. Chem. Soc. C. 3191 (1971).