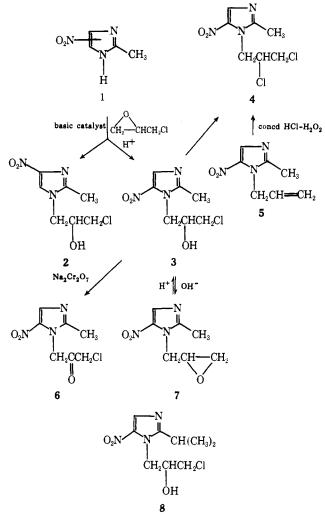
- (9) M. Monahan, W. Vale, J. Rivier, G. Grant, and R. Guillemin, Proc. Meet. Endocrine Soc., 55th, 194 (1973).
- (10) R. Guillemin, M. Amoss, R. Blackwell, R. Burgus, G. Grant, N. Ling, M. Monahan, J. Rivier, and W. Vale, J. Reprod. Fert., Suppl., 18, 23 (1973).
- (11) D. H. Coy, E. J. Coy, Y. Hirotsu, and A. V. Schally, J. Med. Chem., 17, 140 (1974).
- (12) R. B. Merrifield, J. Amer. Chem. Soc., 85, 2149 (1963).
- (13) P. G. Pietta and G. R. Marshall, Chem. Commun., 650 (1970).
- (14) M. W. Monahan and J. Rivier, Biochem. Biophys. Res. Commun., 48, 1100 (1972).
- (15) W. Vale, G. Grant, M. Amoss, R. Blackwell, and R. Guillemin, Endocrinology, 91, 562 (1972).
- (16) N. H. Grant, D. E. Clark, and E. I. Rosanoff, Biochem. Biophys. Res. Commun., 51, 100 (1973).
- (17) D. H. Coy, J. A. Vilchez-Martinez, E. J. Coy, Y. Hirotsu, N. Nishi, and A. V. Schally, Proc. Meet. Endocrine Soc., 56th, 48 (1974).

Synthesis and Antiprotozoal Activity of 1-(3-Chloro-2-hydroxypropyl)-Substituted Nitroimidazoles

Max Hoffer and Emanuel Grunberg*


Chemical and Biological Research Departments, Hoffmann-La Roche Inc., Nutley, New Jersey 07110. Received April 12, 1974

Nitroimidazoles are chemotherapeutically important as antiprotozoal and antibacterial agents.¹ For example, metronidazole[†] [1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole] is both an amebicide² and trichomonacide³ while azomycin (2-nitroimidazole) exhibits antibiotic properties.⁴ Other compounds of this type are effective against a variety of protozoan infections.^{1,5} A partial list includes dimetridazole (1,2-dimethyl-5-nitroimidazole) which is used against trichomonas in cows and H. meleagridis infections in fowl, ronidazole (1-methyl-2-carbamylmethyl-5-nitroimidazole) and ipronidazole (1-methyl-2-isopropyl-5-nitroimidazole) which are potent histomonastats, some 2-styryl-5nitroimidazoleswhich are effective against trichomonas, and flunidazole [1-(2-hydroxyethyl)-2-(p-fluorophenyl)-5nitroimidazole], a trichomonacide which is also an active local and oral amebicide in test animals. In view of this wide continued interest in this class of compounds,⁵ we now wish to report the synthesis and antiprotozoal activity of a number of 1-(3-chloro-2-hydroxypropyl)-substituted nitroimidazoles and related compounds.

Chemistry. Treatment of 2-methyl-4- (or 5-) nitroimizole (1) with epichlorohydrin in the presence of a base furnished 1-(3-chloro-2-hydroxypropyl)-2-methyl-4-nitroimidazole (2) while the reactants under acidic conditions formed the 5-nitro-substituted isomer 3. The structure of 3, readily assigned by uv spectroscopy and pK measurements,⁶ was confirmed by conversion with POCl₃ and PCl₅ into the dichloro derivative 4 which was also obtained by chlorination of the known⁷ 1-allyl-2-methyl-5-nitroimidazole (5). The 5-nitro isomer 3 was also transformed by oxidation into the chloro ketone 6 and by aqueous alkali into the epoxide 7 which regenerated 3 upon treatment with HCl. Using a procedure similar to that for 3, the 2-isopropyl homolog 8 was also prepared (Scheme I).

Alternatively, treatment of 2-methyl-4- (or 5-) iodo-5-(or 4-) nitroimidazole⁶ with epichlorohydrin in refluxing ethanol afforded a separable mixture of the iodinated isomers 9 and 10 while azomycin⁸ was converted under these conditions to the chlorohydroxy derivative 11.

Biological Results. Compounds 2-4 and 7-11 were tested in vivo and compared with metronidazole for their activity against the Trichomonas vaginalis and T. foetus infections in mice and the intracecal Endamoeba histolyticd infection in rats according to previously cited test methodologies.⁹ The desired concentrations of the compound were administered in 1.0-ml volumes in water or 1% methylcellulose as follows: T. vaginalis, sc by infiltration at the site of infection 2 and 24 hr after infection or po 1, 24, 48, and 72 hr after infection; T. foetus, po 1, 24, and 72 hr after infection; E. histolytica, po once daily for 3 days. The results of treatment were evaluated as follows: T. vaginalis, the presence or absence of subcutaneous lesions 24 hr after the last treatment; T. foetus, survival of the mice for 14 days after infection; E. histolytica, the presence or absence of organisms in the cecum 6 days after infection. The CD₅₀ and LD_{50} values were calculated by the method of Reed and Muench.¹⁰

From the results shown in Table I, it can be seen that the compounds exhibited varying degrees of activity against

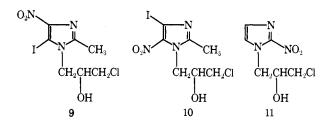


 Table I. Antiprotozoal Activity of 1-(3-Chloro-2-hydroxypropyl)nitroimidazoles and Derivatives

	T. vaginalis		T. foet u s,	E.histo lvtica.	LD_{50} (mouse)	
Compd no.	$\mu g/ml$ sc	mg/kg po	mg/kg po	· /	mg/kg ip	mg/kg po
2	>1000	>250	85	>300	>500	>500
3	86	37	3	10	>2000	>2000
4	211	75	13	433	707	>2000
7	21	76	46	29	1000	1414
8	37	21	9	137	354	595
9	>1000	>250	>250	>300	354	901
10	>1000	>250	>250	>300	420	707
11	0.4	17	6	25	158	330
Metro- nidazole	100	16	17	49	>2000	>2000

the various protozoal infections. Compound 3, previously reported,¹¹ showed the same spectrum of activity as metronidazole and was as well tolerated. Compounds 4, 7, 8, and 11, while showing the same spectrum of activity as compound 3 and metronidazole, were overall more toxic. Compounds 2, 9, and 10 were without antiprotozoal activity except that 2 exerted an effect against *T. foetus*.

Experimental Section[‡]

1-(3-Chloro-2-hydroxypropyl)-2-methyl-4-nitroimidazole (2). A mixture of 15 g (0.12 mol) of 2-methyl-4- (or 5-) nitroimidazole (1) and 0.5 g of anhydrous K_2CO_3 in 100 ml of epichlorohydrin was stirred and refluxed for 10-15 min and cooled. The crystals were collected and recrystallized from EtOH to give 12.5-15 g (50-60%) of 2: mp 151°; uv λ_{max} 300 nm (ϵ 7120); $pK_a = 0.3 \pm 0.1$. Anal. (C₇H₁₀ClN₃O₃) C, H, Cl, N.

1-(3-Chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (3). To a solution of 127 g (1.0 mol) of 1 in 1.17 l. of 85% HCO₂H at 5-10° was added 460 ml of epichlorohydrin over 5 hr. The mixture was stored at 5-10° for 48 hr and 20-25° for 24 hr, and the volatiles were evaporated under reduced pressure. To the residual oil 200 g of ice-water was added and the solution adjusted to pH 7-7.5 with concentrated NH₄OH. After addition of 100 g of (NH₄)₂SO₄, the mixture was repeatedly extracted with C₆H₆. The crystals that formed in the aqueous layer were filtered to give 25 g of 1. The benzene layers were extracted with 10 N H₂SO₄ and saturated with (NH₄)₂SO₄ and the resulting aqueous layer was then neutralized with NH₄OH to give an oil which slowly crystallized upon seeding. Recrystallization from toluene gave 92 g (42%) of 3: mp 78°; uv λ_{max} 228 nm (ϵ 3720), 312 (9150); pK_a = 2.4 \pm 0.1. Anal. (C₇H₁₀ClN₃O₆) C, H, Cl, N.

1-(2,3-Dichloropropyl)-2-methyl-5-nitroimidazole (4). Addition of 5 g (0.022 mol) of 3 to 2 g (0.013 mol) of POCl₃ and 6 g (0.024 mol) of PCl₅ generated heat and HCl and the mixture liquified. The reaction was cooled; ice-water was slowly added and neutralized with aqueous NaOH. The resulting precipitate was filtered, dried, and crystallized from EtOH to give 4.1 g (75%) of 4: mp 123-124°. Anal. (C₇H₉Cl₂N₃O₂) C, H, Cl, N.

Alternatively, to a solution of 20 g (0.12 mol) of 1-allyl-2-methyl-5-nitroimidazole⁷ (5) in concentrated HCl at 50–70° was slowly added 30% H_2O_2 . The reaction mixture was diluted with H_2O , charcoaled, and neutralized to give 15 g of 4, identical in mixture melting point with 4 obtained from 3.

1-(3-Chloroacetonyl)-2-methyl-5-nitroimidazole (6). To a stirred solution of 12 g (0.055 mol) of 3 in 60 ml of 10 N H₂SO₄ was added dropwise a warm solution of 15 g (0.057 mol) of Na₂Cr₂O₇ in 50 ml of H₂O. The reaction mixture was extracted with EtOAc, the extracts were evaporated, and the residue was crystallized from EtOH to give 5 g (42%) of 6: mp 111°; uv λ_{max} 228 nm (ϵ 3350), 311 (9000); pK_a = 1.9 ± 0.1. Anal. (C₇H₈ClN₃O₃) C, H, Cl.

1-(2,3-Epoxypropyl)-2-methyl-5-nitroimidazole (7). A solution of 5 g (0.22 mol) of 3 in 3 N NaOH was heated at 60-70° for 10-15 min and cooled, and the crystals were collected and recrystallized from EtOAc to give 3.4-3.6 g (80-85%) of 7: mp 111°. Anal. ($C_7H_9N_3O_3$) C, H, N.

1-(3-Chloro-2-hydroxypropyl)-2-isopropyl-5-nitroimida-

zole (8). In a manner similar to the procedure given for 3, 15.5 g (0.1 mol) of 2-isopropyl-4- (or 5-) nitroimidazole¹² and 50 g of epichlorohydrin in 140 ml of 85% HCO₂H afforded 12.4 g (50%) of 8: mp 103° (from H₂O); uv λ_{max} 230 nm (ϵ 3400), 314 (9180); pK_a = 2.1 \pm 0.1. Anal. (C₉H₁₄ClN₃O₃) C, H, Cl, N.

1-(3-Chloro-2-hydroxypropyl)-5-iodo-2-methyl-4-nitroimidazole (9) and 1-(3-Chloro-2-hydroxypropyl)-4-iodo-2methyl-5-nitroimidazole (10). A mixture of 4- (or 5-) iodo-2methyl-5- (or 4-) nitroimidazole⁶ (101 g, 0.4 mol) and 80 ml of epichlorohydrin in 100 ml of EtOH was refluxed for 12 hr, cooled, and diluted with 1.5 l. of H₂O. The semicrystalline precipitate was collected, slurried with a mixture of EtOAc and Et₂O, filtered, and dried to give 44 g (32%) of 9: mp 142°; uv λ_{max} (H₂O) 307 nm (ϵ 7400); pK_a = 0.7 ± 0.1. Anal. (C₇H₉ClIN₃O₃) C, H, N.

The above aqueous mother liquor was extracted with EtOAc and the combined organic layers were evaporated. The residual syrup was dissolved in 100 ml of MeOH and addition of 100 ml of concentrated HCl precipitated 12 g of **9** as the hydrochloride. The filtrate was neutralized with NH₄OH, and the crystals were filtered and recrystallized from EtOH to give 22 g (16%) of **10**: mp 136– 137°; uv λ_{max} (H₂O) 272 nm (ϵ 4320), 340 (7800); p K_a = 0.8 \pm 0.1. Anal. (C₇H₉ClIN₃O₃) C, H, N.

1-(3-Chloro-2-hydroxypropyl)-2-nitroimidazole (11). By the procedure given for the preparation of 10 and 11, 11.3 g (0.1 mol) of azomycin⁸ and epichlorohydrin in ethanol gave 13.3 g (65%) of 11: mp 158° (EtOH).[§] Anal. ($C_6H_8CIN_3O_3$) C, H, Cl, N.

Acknowledgments. We wish to thank Dr. A. Brossi for his interest and valuable advice and are grateful to the following members of our Physical Chemistry Department (Director R. P. W. Scott): Drs. F. Scheidl and A. Steyermark for the microanalyses and Dr. V. Toome for the uv and pK determinations.

References

- M. Hoffer and A. I. Rachlin, Annu. Rep. Med. Chem., 7, 147 (1972).
- (2) S. J. Powell, J. MacLeod, A. J. Wilmot, and R. Elsdon-Dew, Lancet, 1329 (1966).
- (3) C. Cosar, J. Julou, and M. Bénazet, Ann. Inst. Pasteur, Paris, 96, 238 (1959).
- (4) K. Maeda, T. Osato, and H. Umezawa, J. Antibiot., Ser. A, 6, 182 (1953).
- (5) M. Hoffer and C. W. Perry, Annu. Rep. Med. Chem., 8, 141 (1973).
- (6) M. Hoffer, V. Toome, and A. Brossi, J. Heterocycl. Chem., 3, 454 (1966).
- (7) C. Cosar, C. Crisan, R. Horclois, R. M. Jacob, J. Robert, S. Tchelitcheff, and R. Vaupré, Arzneim. Forsch., 16, 23 (1966).
- (8) A. G. Beaman, W. Tautz, T. Gabriel, and R. Duschinsky, J. Amer. Chem. Soc., 87, 389 (1965).
- (9) E. Grunberg, H. N. Prince, E. Titsworth, G. Beskid, and M. D. Tendler, *Chemotherapia*, 11, 249 (1966).
- (10) L. J. Reed and H. A. Muench, Amer. J. Hyg., 27, 493 (1938).
- (11) E. Grunberg, R. Cleeland, H. N. Prince, and E. Titsworth, Proc. Soc. Exp. Biol. Med., 133, 490 (1970).
- (12) K. Butler, H. L. Howes, J. E. Lynch, and D. K. Pirie, J. Med. Chem., 10, 891 (1967).

 $\ensuremath{^{\$}\text{First}}$ prepared in these laboratories by Drs. A. G. Beaman and R. Duschinsky.

$\label{eq:conformationally Restricted Analogs of Histamine H_1 \\ Receptor Antagonists. 2-Phenyl- and 2-Benzyl-1,2,3,4- \\ tetrahydro-4-dimethylaminoisoquinoline$

Patrick E. Hanna,* Vernon R. Grund, and M. W. Anders

Departments of Pharmacology and Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455. Received April 16, 1974

Previous reports from this laboratory have described the use of conformationally restricted analogs of ethylenediamine histamine antagonists as model compounds for as-

^tAll new compounds gave acceptable analytical data. The ultraviolet spectra were measured in 2-propanol unless otherwise noted.