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An equilibrium model is described for relationships between the biological activity and the physicochemical prop­
erties of compounds in a congeneric series. An equation derived from the model is of the form, log C = log (a + 
10-") + b, where C is the total molar concentration of drug to produce a standard response, a is a parameter of the 
form log K where K is an equilibrium constant, and a and b are coefficients. This equation provides a plausible fit 
to some nonlinear observations which have been studied. 

When quantitative biological data are available for a 
series of compounds, relationships between the physico-
chemical properties and observed biological activities of 
the molecules have frequently been sought. This approach 
is known as the method of physicochemical-activity rela­
tionships (the PAR method1). It is common practice to 
express the biological activity as the logarithm of the 
molar concentration of the compound which is needed to 
produce a standard effect. The physicochemical properties 
are selected both for their relevance to the biological sys­
tem and for more practical criteria. The partition parame­
ter2 v and Hammett 's constant3 a are the most commonly 
used physicochemical parameters. Bulk parameters have 
also been widely applied, as have the components of a 
which were derived by Swain and Lupton4 and called J 
and <R. All these parameters can be predicted for benze-
noid compounds, but measured physicochemical proper­
ties have also been used by some workers. 

Current practice1 entails the use of regression analysis 
to find an equation which relates biological activity to a 
linear or parabolic function of one or more physicochemi­
cal parameters. A typical PAR analysis would involve the 
testing for statistical significance of relationships such as 

logED 5 0 = aa + bir + ctr2 + d (1) 

where a, b, c, and d are coefficients determined by the 
method of least squares. 

It has been suggested that each linear term in such an 
equation may represent a process-limiting step to which 
the corresponding physicochemical parameter is relevant, 
while a specific justification for the use of square terms 
has been based on a diffusion argument.5 However, the 
general justification for seeking a relationship between 
any biological activity and these physicochemical parame­
ters is by no means obvious. 

A concise review of earlier theoretical work in this field 
was published by Higuchi and Davis6 who extended the 
approach by considering the influence of structural 
changes in a drug molecule upon its distributive tenden­
cies to compartments in the body other than the biologi­

cal receptor site itself. Their approach led to another 
function based on the equilibrium treatment of the bio-
system. The present approach is also based on an equilibri­
um model and leads to a simple equation which can be 
used to interpret both linear relationships and some non­
linear results which were previously interpreted by the use 
of square terms. Two forms of the model, both of which 
lead to the same conclusion, are described. 

Model 1. According to occupancy theory7 the interac­
tion of drug, D, and receptor, R, can be expressed as 

[DR] = K[n][n] 

where DR represents the complex between drug and re­
ceptor, and K is the equilibrium constant governing its 
formation. The biological response is assumed to be a 
function of the concentration of DR, which is determined 
by the mass action equation 

D + R * = F DR 

If the total molar concentration of drug is C = [D] + [DR] 
and the total concentration of receptors is R" = [R] + P R ] 
which is assumed constant for the system, it follows that 

[DR] = K(C - [DR])(fl' - [DR]) 

[DR] = KC(R' - [DR]) - K[DR](R' - [DR]) 

K(R' - [DR])C = [DR](1 + K(R' - [DR])) 

log C = log [DR] + log (1 + K(R' - [DR])) -

logK - log (R' - [DR]) 

The above hypothetical equilibrium constant, K, may 
be written as K = k X 10" where k is a constant for the 
series and a is a parameter which varies from compound 
to compound. The parameter a must be in the form log 
K' where K' is an equilibrium constant relating to a 
model physicochemical system. This constant K' may be 
measured or predicted. For example, a may be set equal 
to log P where P is a measured partition coefficient. If 
predicted physicochemical parameters are to be used, care 
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Figure 1. Plot of log C against a based on eq 4. Both axes are 
represented on the same scale. It can be seen that the gradient is 
initially equal to - 1 and is ultimately equal to zero as a becomes 
more positive. The scales are in logarithmic units, one division 
corresponding to one decade. 

must be taken to ensure that they are of the correct form. 
Thus, the Hammett equation would dictate the use of the 
product ap. The parameter -K is defined by an equation 
which does not involve any reaction constant but there is 
no evidence, theoretical or practical, to suggest that a se­
rious error would be introduced by setting a = x, i.e., by 
assuming a "reaction constant" of unity, provided that IT 
pertains to a series which is closely relevant to the drug 
molecules being studied. 

Substitution of K = k X 10' into the above equation 
now leads to 

log C = log [DRj - log (R' - [DR]) + 

log (1 + k(R' ~ [DR]) x 10*) - Log ft - a (2) 

The biological activity is defined as the logarithm of the 
total molar concentration C of drug which will produce a 
given effect, and it is assumed that, for any drug in the 
series, the standard effect will result from the same con­
centration of drug-receptor complex DR. The activity of 
each drug is therefore the value of log C which produces 
this concentration of the complex. Since R' and k remain 
constant for a series of drugs acting on a given receptor, 
the relationship between the biological activity and a sin­
gle physicochemical parameter reduces to the simple 
equation 

log C = constant + log (1 + « x 10a) - a (3) 

where a is a constant. This equation simplifies still fur­
ther to 

log C = constant + log (a + 10"a) (4) 

Figure 1 shows the general shape of the relationship be­
tween log C and a. When a real physicochemical parame­
ter such as log P is used, one may set a equal to +log P or 
-log P. Hence, the present treatment is equally applica­
ble to the case in which the curve slopes up or down. 

Model 2. Model 2 is an extension of model 1, in which 
it is assumed that the drug can exist in two unbound 
forms, A and D, but only D can interact with the recep­
tor. 

Hi 

A ^=* D 

D + R i DR 

K\ is the equilibrium constant relating concentrations of 
A and D and might be a partition coefficient, for example. 
In general it is concerned with the process by which drug 
reaches receptor and has often been cited as responsible 

for any observed relationship between biological and 
chemical properties. 

By the same arguments that were used in model 1, the 
following relationship may be obtained 

log C = constant + log (10" ( a t 6 > + « x 1CT11 + b) 

(5) 

where a = log K - log k and jS = log K\ - log k\ and o 
and b are both constants. Equation 5 can be regarded as 
the general form of the relationship between a biological 
activity and the two physicochemical parameters on this 
model. If K (the constant for formation of DR) is indepen­
dent of substituents in the series of compounds, eq 5 re­
duces to 

log C = constant + log {c + 10"6) (6) 

where c is a constant for the series. This is analogous to eq 
4 as derived for the first model. Hence, the same algebraic 
expression is obtained whether the crucial equilibrium 
constant is directly involved in the interaction of the drug 
with receptor or relates to an earlier stage such as access 
to the receptor. 

A review has been made of published results in order to 
see whether observations consistent with the predictions 
of this equilibrium model are commonly found. The gen­
eral form of the relationship which is now predicted be­
tween biological activity and a single physicochemical pa­
rameter, a, has been illustrated in Figure 1. However, 
with a limited number of compounds in any series, one 
would often find that observations were only available for 
a part of this curve. Whether a straight line of unit gradi­
ent or a nonlinear relationship was found would depend 
on the values of the coefficients in eq 4 and the experi­
mental range of the parameter, a. 

While no attempt is made to present a comprehensive 
survey of the practical use of this model, some examples 
showing the sort of fit that has been obtained using eq 4 
are quoted in Table I. The table is based on sets of data 
for which linear or parabolic relationships between biolog­
ical activity and the logarithm of a partition coefficient 
have previously been quoted8-13 since these are plentiful. 
A regression analysis program has been used to fit the 
function log (a + 10~ log p) + constant to the experimental 
values of log C for each example shown in Table I. The 
values of the coefficient a and of the constant have been 
chosen so as to minimize the sum of squares of the residu­
als. The multiple correlation coefficient (MCC) was ob­
tained from the following relationship 

( (total sum of squa re s - \ ^ 
sum of squa re s of res iduals ) J 

total sum of squares / 

The sum of squares of residuals is a measure of the 
squares of the differences between predicted and observed 
activity values summed over all the data points. For a sit­
uation such as this in which the number of degrees of 
freedom is known, comparison of MCC's can safely be un­
dertaken. However, in comparing the equations, allowance 
should be made for the fact that the old linear and the 
present equilibrium models require the determination of 
only two coefficients, whereas the old parabolic relation­
ship required the determination of three. Furthermore, 
the need to choose between the linear and parabolic equa­
tions is obviated when the present equilibrium model is 
applied. 

In a surprising number of cases the linear relationship 
published in the literature has a gradient which does not 
differ significantly from unity, and under these circum­
stances the present model can provide a comparable fit to 
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Table I.° Examples of Data Showing the Applicability of the Equation -Log (1/C) = Log (a + lO -") + Constant 
for Comparison with the Originally Published Equation 

Eq 
no. 

29* 
49" 
51= 

6" 
7" 

146 

41= 

42= 
56= 

57= 

60= 

Orig­
inal 
ref 

10 
9 

14 

9 
9 

12 

14 

15 
14 

14 

14 

Chemical type 

Phenols 
RCOO-
Phenyl meth-

acrylates 
RCOO" 
RCOO-
2,4-Bis(XC6H4NH)-

pyrimidines 
Phenyl meth-

acrylates 
Alkyl - /3-naphthols 
Phenyl meth-

acrylates 
Phenyl meth-

acrylates 
Phenyl meth-

acrylates 

No. of 
data 

Activity against points 

A. niger 
T. interdigitale 
Strep, faecalis 

A. niger 
T, interdigitale 
C. albicans 

S. aureus 

S. aureus 
B. subtilis 

B. cereus 

Sarcina lutea 

26 
14 
10 

8 
14 
8 

10 

22 
10 

10 

10 

= 

i 
i 
i 

ii 
ii 
ii 

ii 

ii 
ii 

ii 

ii 

Published eq: 
(i) log (1/C) 
air2 + bu + c; 

(ii) log (1/C) 
= air + 

Multiple 
correla­

tion 
coeff 

0.927 
0.972 
0.861 

0.974 
0.994 
0.957 

0.966 

0.898 
0.976 

0.815 

0.849 

c 

Deg 
of 

free­
dom 

23 
11 
7 

6 
12 
6 

8 

20 
8 

8 

8 

5.9 
5.6 
3.0 

3.9 
4.3 
2.4 

1.0 

5.0 
1.8 

1.4 

2.4 

Equilibrium model eq 
-log (1/C) = log (a + 10") 

a 

X 

X 

X 

X 

X 

X 

X 

X 

X 

lO"4 

10"4 

lO"1 

lO"2 

10"5 

lO"6 

10"5 

10"4 

io-3 

+ constant 

Constant 

-0.672 
^ . 4 1 7 
-0.514 

-2.738 
-2.854 
-3.973 

-0.305 

0.156 
-0.362 

-0.469 

-0.858 

Multiple 
correla­

tion 
coeff 

0.908 
0.970 
0.817 

0.990 
0.984 
0.932 

0.948 

0.908 
0.933 

0.847 

0.824 

Deg 
of 

free­
dom 

24 
12 
8 

6 
12 

6 

8 

20 
8 

8 

8 

"The symbol -ir in this table denotes the logarithm of a measured or predicted partition coefficient. The multiple correlation coefficients in 
the eleventh column are derived from values of proportion explained variation. 6 Refer to ref 8 in the text which contains the published equa­
tion. cRefer to ref 13 in the text which contains the published equation. 

the data. For some of these cases, the above fit to the data 
would not be observed if the assumption that a could be 
set directly equal to TT were not valid. Examples demon­
strating unit gradient have been omitted from Table I, 
which illustrates results where a less satisfactory fit might 
be expected using the equilibrium model, either because 
the originally calculated gradient was not unity or because 
the original fit included an extra square term. Although 
these few examples were therefore selected as being unfa­
vorable to the newly proposed equations, one may see that 
its performance in calculating multiple correlation coeffi­
cients is not greatly inferior to the traditional approach. 

A broader study of the literature shows that a parabolic 
function has often been fitted to results where the distri­
bution of the experimental points over the full curve is so 
limited that its form is ambiguous. For this reason the 
present function can also provide an adequate or better 
fit, which it could not do if the original observations had 
fully defined the parabolic form. It may be significant 
that such clearly demonstrated parabolas have not been 
commonly reported. 

There is an important implication of eq 4 which can be 
investigated by inspection of the literature.s '8-13 For 
straight line relationships between activity expressed as 
log (1/C) and the logarithm of partition coefficient, it is 
predicted that the gradient should not be significantly 
greater than unity under any circumstances. The evidence 
from the published equations so far studied thoroughly 
endorses this prediction. 

The present study has practical implications when re­
gression equations are to be used to predict the activity of 
further compounds in systems comprising one of the pres­
ent models. If the slope does not differ significantly from 

unity, it may be possible to extrapolate linearly out of the 
experimental range already studied. On the other hand, 
such an extrapolation would be risky if the slope was less 
than unity, since the present models predict that the gra­
dient should increase to unity in one direction and fall 
away to zero in the other. In such circumstances a linear 
extrapolation might have a poorer chance of success. 
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