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This paper reports the application of pattern recognition and substructural analysis to the problem of predicting the 
antineoplastic activity of 24 test compounds in an experimental mouse brain tumor system based on 138 structurally 
diverse compounds tested in this tumor system. The molecules were represented by three types of substructural frag
ments, the augmented atom, the heteropath, and the ring fragments. Of the two pattern recognition methods used to 
predict the activity of the test compounds the nearest neighbor method predicted 83% correctly while the learning 
machine method predicted 92% correctly. The test structures and the important substructural fragments used in this 
study are given and the implications of these results are discussed. 

Predicting the activity of a compound has been a pri
mary goal of structure-activity relationship (SAR) studies 
for many years.2 When the SAR problem involves correlat
ing congeners such as finding the most active compound in 
a series and quantitative biological data are available then 
quantitative structure-activity relationship (QSAR) meth
ods, such as the Hansch analysis and the Free-Wilson ap
proach, may be useful.3 On the other hand, if the SAR 
problem deals with structurally diverse compounds then 
substructural analysis may be appropriate.4 And if quanti
tative biological data are unavailable then other techniques 
may be appropriate. Recently, pattern recognition has been 
applied to predicting pharmacological activity.48,5^7 Al
though some of these studies5,7 have drawn criticism8-10 

with regard to the data and its representation, the pattern 
recognition techniques may offer a useful complement to 
QSAR methods. In an effort to help delineate the role of 
pattern recognition in SAR studies, this study attempts to 
predict the antineoplastic activity of test compounds in an 
experimental mouse brain tumor using pattern recognition 
based on structurally diverse compounds tested in this 
tumor system.11 

In general, this problem involved (1) defining and as
signing biological activity to a set of drugs (called the train
ing set) which was used to establish the criteria for activity, 
(2) creating mathematical representations of the molecules, 
(3) selecting and applying the pattern recognition methods, 
(4) predicting the activity of a set of test drugs (called the 
test set), and (5) analyzing the results. 

Criteria for Biological Activity. The structures of the 
drugs and their biological activity used in this paper were 
taken from a study on the effects of drugs on a murine 
ependymoblastoma in mice.11 In that study, a transplant
able solid mouse brain tumor was implanted into the brain 
of mice. Then groups of six mice were treated with drugs 
with a control group of 25 nontreated mice. The parameter 

for measuring the activity of the drugs was the median sur
vival time of the mice. That is, a comparison of the test me
dian survival time to the control median survival time gave 
the degree of increased life span (T/C). A drug was consid
ered active if in two separate experiments at the same dos
age tests gave a 25% increase in the life span of the treated 
mice, that is T/C > 125%. 

Of the 177 compounds in the ependymoblastoma study, 
27 were incompletely tested and 12 had undefined struc
tures, leaving 138 compounds. The training set (the set of 
drugs whose activity was known) consisted of 32 active 
drugs and 106 nonactive compounds while the test set (the 
set of drugs whose activity is to be predicted) consisted of 
all drugs (17 inactives and 7 actives) whose activity was 
completely determined after the reported ependymoblasto
ma study. In general, the compounds used in this study 
showed some type of antineoplastic activity toward other 
experimental tumor systems, generally L1210, the leuke
mia tumor system. 

Mathematical Representation of Molecules. In order 
to apply pattern recognition to SAR problems, a molecule 
is represented as a point in n- dimensional space (referred 
to as a feature space). Each dimension or component repre
sents a property such as the partition coefficient or a sub
structure of the molecules under study, where the type of 
properties selected to represent a molecule depends on the 
particular SAR problem. In our study, the antineoplastic 
agents span a wide range of structures, such as metal com
plexes, antimetabolites, alkylating agents, and alkaloids. 
This diversity of structure could be represented in several 
ways. One way is to use a global physicochemical parameter 
such as the partition coefficient, log P;1 2 however, these pa
rameters were not available for all the compounds in the 
study. Furthermore, this type of physical data may be diffi
cult to obtain for a large diverse set of reactive molecules. A 
logical alternative was to use the structure of the molecule. 
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Table I. Augmented Atom Fragments for Three 
Simple Molecules 
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Thus, in this study a molecule is represented as a point in 
n- dimensional space where each dimension represents a 
substructural unit present in the molecules under study 
and the value for each dimension for any molecule is the 
number of occurrences of that unit in the molecule. For in
stance, if the first dimension represented amines, then the 
value of this dimension for a molecule is the number of 
amine groups in the molecule. 

There are two important factors in determining the 
types of substructural features chosen to represent a mole
cule. First, the substructural fragments should be chemi
cally meaningful, such as functional groups and rings. Sec
ond, the fragments should allow the use of computer struc
ture files, such as the Chemical Abstract Service (CAS) 
files of over 2.7 million registered compounds. With these 
factors in mind, the three types of substructural units used 
in this study were (1) the augmented atom, (2) "hetero-
path", and (3) ring fragments. 

The augmented atom or the atom-centered fragment is 
the basic fragment used in substructural retrieval systems 
such as the CAS system. This fragment, which is created 
for every nonhydrogen atom in a molecule, is defined as an 
atom and its adjacent atoms and bonds.13 Simple examples 
of the decomposition of molecules into their augmented 
atom fragments and the creation of a vector are given in 
Table I. In this table, the rows represent the number of oc
currences of a feature in the molecules and the columns 
represent a 6-dimensional vector representation of the 
drugs for the augmented atom fragments. 

The augmented atom fragment has several important 
structural characteristics. First, it is an exact representa
tion of many functional groups, such as fragment 3 which 
defines an aldehyde and fragment 4 which defines a ketone, 
and an excellent approximation to others, such as fragment 
6 which represents the carboxy group. In other cases, this 
fragment can represent subfunctional groups such as the 
carbonyl moiety, fragment 1, which is common to the alde
hyde, ketone, and acid. In addition, the CAS bond types 
not only specify whether the bond is aromatic, tautomeric, 
single, double, or triple but also specify whether the bond is 
in a ring nucleus. 

The second substructural unit, the "heteropath" frag
ment, was created because the pharmacological activity of 
a set of derivatives can change with the number of carbon 
units between two heteroatoms. For example, in Chart I 
the activity of phenothiazine derivatives is antihistaminic 
if n = 2 and tranquilizing if n = 3.14 In another case, the 
activity of bis-quaternary ammonium compounds varies 
from ganglionic if n = 10 to ganglionic-blocking if n = 6 

Chart I. Compounds with Pharmacological Activities 
Dependent on the Number of Methylene Groups between 
Two Heteroatoms 
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(see Chart I).14 In order to express these differences explic
itly the heteropath fragment, which is defined as the path 
from one heteroatom to another, was .generated. An imme
diate advantage of this fragment was that some large phar
macodynamic groups were explicitly represented as hetero
path fragments. 

Neither the heteropath fragment nor the augmented 
atom fragment contain information regarding the rings in a 
molecule, e.g., ring size, type of heteroatoms in the rings, 
and the relationship of several rings to one another. Thus, 
the third fragment involved the ?ing nuclei. All combina
tions of fused ring systems with their heteroatoms were 
identified. In the case of six-membered rings, the substitu
tion pattern was also included. One purpose of this frag
ment was to discover important imbedded substructural 
rings. For example, the purine structure in Scheme I would 

Scheme I. Ring Fragments for Guanine 

x> £$ 
be represented by three ring fragments including the py-
rimidine nucleus. 

All the substructural units described above were generat
ed automatically from connection tables derived from the 
Chemical Abstract Service Registry II system connection 
tables by a substructural retrieval system developed by 
Feldmann.15 

Pattern Recognition Techniques. After the sub-
structural fragments were created for the molecules in the 
training set these fragments were used to create points in 
n- dimensional space. Then the drugs in the test set were 
represented as points in the n-dimensional space created 
by the training set fragments. Hence, pattern recognition 
techniques were applied to the training set points allowing 
the classification of the test set. 

A standard pattern recognition technique is the "nearest 
neighbor" method.16 It involves the computation of Euclid
ean distances between points (drugs) in the n- dimensional 
space. The formula for the distance (squared) between two 
such drugs, T(J) a test set drug and P(K) a training set 
drug, is 

D(K,J) = J (7\(J) - Pj(K))2 
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where T;(«J) and P;(K) represent the ith component of vec
tors T(J) and P(K). This distance is calculated for a test 
sample and each compound in the training set. The method 
assumes that the closer two points are in space the more 
they are alike pharmacologically. Thus the activity of the 
test sample is determined by the activity of the compound 
in the training set with the smallest Euclidean distance 
measurement to the test sample. In Figure 1, a two-dimen
sional representation of drugs is given where test samples 
X and Y are closest to nonactive compounds and were clas
sified as such. 

Another powerful pattern recognition technique, the 
"learning machine",16 '17 is an error-correcting procedure 
which attempts to create a linear mathematical function 
called a linear decision surface (a plane in two dimensions 
or hyperplane in higher dimensional space) which can sep
arate the active drugs of the training set from the nonac-
tives. In order to allow the decision surface to pass through 
the origin an additional feature usually given the value 1 
was added to all the samples in the training set. A drug is 
thus represented as a vector (point), P'(K), in n + 1 dimen
sional space. To determine the linear decision surface, the 
following equation was evaluated for each point 

W . P ' ( K ) = f^W,P,'(JS) = S 

where W (the weight vector) is a vector normal to the linear 
decision surface and defines this surface, and P'(K) is the 
vector describing the &th drug in the training set and S is 
their dot product. After the initial values of the weight vec
tor, W, were set, the dot product of the weight vector with a 
drug vector P'(K) was evaluated. If the sign of S was posi
tive, then P'(K) was classified as active; otherwise P'(K) 
was nonactive. If the classification according to the sign of 
S agreed with the category of P'(K), then P'(K) was classi
fied correctly. If P'(K) was classified incorrectly, then the 
plane defined by W must be moved to classify this point 
correctly. A standard correction factor is 

W = W + ( -2S/P ' (K)-P ' (K))P ' (K) 

This correction factor moves the plane an equal distance on 
the other side of the point, thus classifying it correctly. 
This process was continued until all the patterns were clas
sified correctly or until a present number of attempts had 
been performed. This gave a final hyperplane [W (final)] 
which was used to predict the activity of a test sample, 
T'(J): 

W(final)»T'(J) = S' 

The sign of S' determined the classification of T'(J), plus 
for active and minus for nonactive. An example of a linear 
decision surface for a two-dimensional problem is given in 
Figure 1. In this case sample X was classified as active and 
Y as nonactive. 

Pattern Spaces. Coding the compounds into the three 
types of substructural fragments resulted in 421 distinct 
substructural features, that is, all the substructures with 
two or more occurrences (represented as F421): 161 aug
mented atom fragments, 129 heteropath fragments, and 
131 ring fragments. Since a sample to feature ratio of three 
or greater is desirable for a learning machine decision sur
face,18 the initial feature space was reduced. In general, the 
method employed to reduce the features allowed the learn
ing machine to determine which features would be re
tained. The initial features were reduced by selecting those 
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Figure 1. Two-dimensional plot of points with two unknowns X 
and Y, where F\ and Fi are the number of occurrences of features 
Fi and F2. 

features which did not change the sign of their weight vec
tor components when +1 then —1 were used as initial 
weight values for the learning machine. This procedure has 
been called the weight-sign change feature selection tech
nique.19 The application of this procedure reduced 421 fea
tures to 127 (F127) then from 127 to 70 (F70) at which 
point no sign changes occurred. Then the removal of insig
nificant heteropath fragments with paths of seven carbons 
or more and the application of the sign changing procedure 
reduced the features from 70 to 51 (F51). 

Because we were dealing with antineoplastic drugs it was 
highly desirable to assign high priorities to all drugs which 
possess potentially active structural units. And since the 
learning machine indicates which features contribute to ac
tivity and inactivity by the sign of their weight component, 
all nonactive features which were not required for 100% 
recognition were removed. This process reduced 51 features 
to 37 (F37). Since the weight vector (F37 hyperplane) rep
resented a sample to feature ratio of 3.7, it was used to pre
dict the activity of the test samples. These features and 
their individual weight components are given in Tables I I -
IV. 

In the case of the nearest neighbor method there is no 
theoretical sample to feature ratio requirement. As a conse
quence, the five pattern spaces described above, F421, 
F127, F70, F51, and F37, were used to assign priorities to 
the test set. In general, the higher dimensional spaces, such 
as F421 and F127, reflect the overall nature of the molecule 
since most structural features are included. Thus, these 
feature spaces are used to find congeners. However, slight 
structural changes which may effect activity can be ob
scured when a large number of features are being consid
ered. Thus, the lower dimensional spaces F70, F51, and F37 
accentuate specific substructural characteristics while dis
regarding large portions of the molecule. However, these 
specific features may be overemphasized. 

Results 

A common way of predicting if an unknown compound 
will be active is to compare its structure to compounds 
known to be active.20 If the compounds are similar, that is, 
they are congeners or the unknown has important sub-
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Table III. Nine Heteropath Fragments and Their Learning 
Machine Weights for F37 
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structural units, then it can be given a high priority for bio
logical testing. In our study, the pattern recognition meth
od established separate criteria for assigning a high priority 
to the test samples for determining the similarity of com
pounds. However, the underlining premise of these criteria 
was that since 100% correct prediction may not be possible, 
in dealing with antitumor drugs, it was more desirable to 
predict that a compound be a false-positive than a false-
negative. Thus, if a test sample contained new substructur-
al fragments, that is, fragments not found in the training 
set fragments such as a new ring nuclei, then the compound 
could be assigned to be tested regardless of the pattern rec
ognition predictions since these fragments may indicate 
that there is insufficient information in the training set to 
accurately predict activity. 

For the nearest neighbor method, a test sample was as
signed a high priority if any of the five pattern spaces pre
dicted the compound to be active. While in the learning 
machine method, a test sample is assigned a high priority if 
the F37 hyperplane predicts the sample is active. As stated 
earlier, the substructural fragments and their weights for 
F37 are reported in Tables II-IV. A positive weight indi
cates that the feature is important for activity, while a neg
ative value indicates a feature is important for inactivity. 
The larger the magnitude of the weights the greater their 
importance. The prediction results are reported in Table V, 
and the structures of some test samples and their pattern 
recognition results are reported in Tables VI-IX. 

X (0.232) x (0 .768)> x Y j (0.768)Y(0.232) 

To aid in the evaluation of the prediction results, the 
probability of obtaining as good or better results was deter
mined under a simple model. Suppose the 7 active and 17 
inactive test compounds used in this study are presented to 
an investigator who knows only the training set probabili
ties of 0.232 (32/138) for the actives and 0.768 (106/138) for 
the inactives. If the investigator uses these probabilities to 
independently classify each unknown at random, then the 
probability of correctly classifying n or more of the actives 
and m or more of the inactives is 

t f 
X=n Y=m 

where n is the number of correctly predicted actives and m 
is the number of correctly predicted inactives. For the 
learning machine results, n = 7 and m = 15 because this 
method correctly predicted 7 actives and 15 of 17 inactives. 
The probability of the investigator getting as good or better 
results is less than 0.00001. For the nearest neighbor meth
od with n = 6 and m = 14, the probability is less than 
0.0005. Clearly, the prediction results could not be dupli
cated by a random classification using only the training set 
probabilities. 

Discussion 

The prediction rates suggest that pattern recognition 
with substructural analysis can predict the antineoplastic 
activity of the test compounds. This result is due to several 
factors. First, the training set is representative of the dif
ferent types of active compounds. Conversely, the test set 
does not introduce a new type of active compound. Second, 
similar structures had, in general, similar activities. For 
these data, the relative number of false-negatives to false-
positives also suggests that the active substructural fea
tures in F37 are necessary but not sufficient conditions for 
activity. Conversely, the absence of these units seems to in
dicate inactivity. 

As stated earlier, a basic premise of the pattern recogni
tion methods is that similar structures have similar activi
ty. When substructurally similar compounds, such as the 
aromatic nitrogen mustard, 3088, or the terephthalanilide, 
60339, and their respective nearest neighbors give different 
activities, then other parameters, inadequately described 
by substructural features, must be important, such as par
tition coefficients and electronic effects. 

A key pattern recognition limitation is that the methods 
are only as good as the scope of the data in the training set 
since the pattern recognition methods cannot predict accu-
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Table IV. Ten Ring Fragments and Their Learning Machine Weights for F37 

Feature no. RN fragments LM weight Feature no. RN fragments LM weight 
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33 
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0.53 
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Table V. Results of the Pattern Recognition Prediction of Ependymoblastoma Activity 

No. of samples 
sucessfully predicted No. of false -

as nonactive negatives 

No. of samples 
successfully 

predicted 
as active 

No. of false-
postives 
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LM 
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Table VI. Test Samples Correctly Predicted as Nonactive 

NSC no. Structure Nearest neighbor" Dist.6 
Prediction 

NNC LMd 
EM 

activity' 

742 

8806 

o 

N,CH,COCH,CHCOH 

" "! 
NH, 

O 

II 
HOCCHCH,-

NH. 

,C1 

•"ci 

r ? 
ONNCH.CHCOH 

"I 
NH; 

34.0 0-5 NA Nonactive 

0.0 0-5 NA Nonactive 

10023 

17663 

19962 
0 CH., CH.CH, 
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(T 

CH, 

/ 
CH, 

C = C H C H 

HO' 

4.0 0-5 NA Nonactive 

13.0 0-5 NA Nonactive 

99.0 0-5 NA Nonactive 

"Nearest neighbor to test sample for pattern space F421. 'Euclidean distance measurement. The number of times the nearest neighbor 
method predicted a compound active out of the five pattern spaces, e.g., 0-5 means none out of five. ^Learning machine prediction for ac
tivity: NA for nonactive and ACT for active. eEpe..dymoblastoma activity. 

rately beyond the scope of the training set data. For in
stance, the misclassification of cyclic ether, 77037, contain
ing several isoquinoline units could be attributed to the 
fact that isoquinoline units were present only in active 
compounds in the training set. Therefore, given the infor
mation available at the time of the evaluation, the comput

er predictions were logical. Of course, the training set can 
be updated to include these new results and new decision 
surfaces can be identified. 

The two pattern recognition methods used in this study 
were designed to mimic two common ways a medicinal 
chemist recognizes the potential of a compound.20 One way 
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Table VII. Test Samples Correctly Predicted as Nonactive 

Chu et al. 

NSC no. Structure Nearest neighbor0 Dist. 
Prediction EM 
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58.0 0-5 NA Nonactive 

58.0 0-5 NA Nonactive 

NHj CI 
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(CFUNOO 

NH.. a 
.W W 
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o-̂ See footnotes, Table VI. 

Table VIII. Test Samples Misclassified 

NSC 
no. Structure Active neighbor" 

Neighbor Prediction EM 
activity6 NNC LM" activity" 

3088 HOCCH2CH2CH,—f y—v 

CH.CH.OCCH, rvx /^/ i 

150+ 

1504 

2 -5 NA Nonactive 

6o339 CH>^-<S-r-O^J 0O™i /\-rs»-TS 

77037 

4 
18270 

OCH( 

N , J L , O C H ! C H > 

CHjCHjO^]! - 7 

•CNH 

« 
0 

.OCH 

125-150 5-5 ACT Nonactive 

1504 

150+ 

0-5 ACT Nonactive 

0-5 ACT Active 

"Nearest neighbor to test sample for pattern space F421 except for NSC.77037 and 18270. For these samples, the active neighbor was the 
active compound in the training set with the highest correlation coefficient with the test samples.b T/C for active neighbor. The number 
of times the nearest neighbor method predicted a compound active out of the five pattern spaces, e.g., 0-5 means none out of five. ''Learn
ing machine prediction for activity: NA for nonactive and ACT for active. eEpendymoblastoma activity. 

is to recognize that the overall structure of the new com
pound resembles some active drugs. This type of procedure 
was mimicked by the nearest neighbor method when large 
numbers of features were used. In addition, the Euclidean 
distance measurement gave a qualitative measure of the 

similarity of compounds since the smaller the distance the 
greater the similarity. Another way to find potentially ac
tive compounds is to recognize important "active" sub-
structural units imbedded in a molecule. The learning ma
chine with the weight-sign change technique mimicked this 
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Table IX. Tes t S a m p l e s Correctly P red ic ted as Active 

NSC no. S t r u c t u r e Act ive neighbor" 
Neighbor 
ac t iv i ty 6 

P r e d i c t i o n 
NNC LM d 

EM 
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CH.OH 

/H <0H | N
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H HO OCHj 

VrN 
NyN 

N 
/A 

YY 
X*yX 

N 
ZA 
O CHS 

0—NNCHN. A—k 
| VOH *\) 

H ^ 

HO OH 

150+ 2-5 ACT Active 

150+ 4 -5 ACT Act ive 

125-150 5-5 ACT Active 

aThe active neighbor was the active compound in the training set with the highest correlation coefficient with the test samples. bT/C 
for active neighbor. T h e number of times the nearest neighbor method predicted a compound active out of the five pattern spaces, e.g., 
0-5 means none out of five. ^Learning machine prediction for activity: NA for nonactive and ACT for active. eEpendymoblastoma 
activity. 

process by de te rmin ing which features are i m p o r t a n t for 
activity. T h e n the presence or absence of these features de
t e r m i n e d t h e act ivi ty of t h e compound . 

These resul ts suggest some in teres t ing appl ica t ions . One 
involves using th is methodology to prescreen new com
pounds for biological tes t ing. T h e p a t t e r n recognit ion 
m e t h o d s could r ank new compounds by the predic t ion of 
the i r act ivi ty and the p red ic ted activit ies could be assigned 
higher tes t ing priori t ies . As o ther pharmacological activi
t ies are added , a compound can be "p re sc r eened" by the 
c o m p u t e r t o direct it to t he mos t promising biological tes t 
ing. T h u s , th is methodology could opt imize t he use of p re 
viously collected chemical and biological da t a in directing 
cu r r en t tes t ing. In addi t ion, t he predict ive capabi l i ty of 
th i s methodology has been imp lemen ted on an interact ive 
subs t ruc tu ra l retr ieval sys tem 2 1 and work is present ly un
derway to apply th is methodology to recognizing mul t ip le 
pharmacological activities for use a t t he Food and Drug 
Admin i s t r a t ion . 

A second possible appl ica t ion is in the area of drug de
sign.2 2 Present ly , QSAR m e t h o d s are used to find t he mos t 
active compound in a series, t h a t is, to opt imize a " l e a d " 
drug. However, these m e t h o d s canno t genera te " n e w " lead 
compounds . Hopefully, p a t t e r n recognit ion wi th sub-
s t ruc tu ra l analysis can aid in th is area of drug deve lopment 
since subs t ruc tu ra l analysis allows the examinat ion of 
s t ruc tura l ly diverse drugs while p a t t e r n recognit ion me t h 
ods d e t e r m i n e the subs t ruc tu ra l un i t s i m p o r t a n t for discri
mina t ing between pharmacological classes. For ins tance, 
th is process may allow the deve lopment of " n e w " lead com
p o u n d s composed of new combina t ions of i m p o r t a n t sub-
s t ruc tu ra l features . 

C o n c l u s i o n s 

This s tudy repor ted t he successful use of subs t ruc tu ra l 
analysis and the neares t neighbor and learning mach ine 
m e t h o d s to p red ic t the ant ineoplas t ic act ivi ty of s t ruc tu ra l 
ly diverse compounds in an exper imenta l mouse bra in 
t u m o r system. In t he subs t ruc tu ra l analysis , t h e molecules 
were r ep resen ted by th ree types of subs t ruc tu ra l un i t s , t he 
a u g m e n t e d a tom, t he he t e ropa th , and the ring f ragments 
while t he p a t t e r n recognit ion t echn iques were designed to 

mimic t he ways a medicinal chemist might de te rmine po
tent ia l ly in teres t ing compounds given the s t ruc tures and 
activit ies of a series of known drugs . 

A c k n o w l e d g m e n t . T h e au thors are grateful to J. Mosi-
m a n n for s tat is t ical consul ta t ion. 
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