Correlation Analysis of Baker's Studies on Enzyme Inhibition

 ρ pears to undergo metabolism in whole animals in the andom walk from site of injection to site of action. We believe that correlation analysis can play a major role in "fine tuning" a reactive function such as SO₂F. This might be accomplished electronically or sterically; for example, a recent high ρ value of 2.79 has been reported²⁸ for the alkaline hydrolysis of para-substituted benzenesulfonyl fluorides. By placing proper substituents on the inhibitor with the SO₂F function, one could develop maximum stability with respect to metabolism compatible with reasonable irreversible enzyme inhibition. At each of Baker's four steps in inhibitor design, correlation analysis, coupled with cluster analysis for substituent selection,³ can play a crucial role in drug development at the enzymic level.

The role of substituents in metabolism⁵ and the random walk process must also be considered in making the transition from in vitro work to in vivo whole animal studies. It is clear from Baker's triazine study⁸ that gaining more inhibitory in vitro activity by increasing MR is not likely to be valuable in whole animal studies. MR seems to model the most nonspecific kind of interaction between enzyme and ligand. Baker did not distinguish^{2a} clearly between hydrophobic and polar areas; indeed, this is difficult to do even using regression analysis.

One must make maximum use of the directional nature²³ of hydrophobic binding to ensure maximum interaction between ligand and pathogen enzyme and, if possible, minimize this type of interaction with the host enzyme. When maximum hydrophobicity has been attained in one part of the inhibitor, one must attach polar groups which will fall in the polar space of the enzyme or project into the aqueous phase to counterbalance the overall hydrophobicity of the potential drug. There are few examples where log P_0 for a set of drugs exceeds 4 (in vivo).

References and Notes

- (a) This investigation was supported by Public Health Service Research Grant No. CA-11110 from the National Cancer Institute. (b) NATO Fellow and Visiting Professor of Chemistry from the Institute of Pharmaceutical and Toxicological Chemistry, University of Naples, Italy.
- (2) (a) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors", Wiley, New York, N.Y., 1967. (b) J.

J. Burchall, J. Infect. Dis., 128, S437 (1973).

- (3) C. Hansch, S. H. Unger, and A. B. Forsythe, J. Med. Chem., 16, 1217 (1973).
- (4) C. Hansch and J. M. Clayton, J. Pharm. Sci., 62, 1 (1973).
- (5) C. Hansch, Drug Metab. Rev., 1, 1 (1972).
- (6) C. Silipo and C. Hansch, Mol. Pharmacol., 10, 954 (1974).
- (7) C. Silipo and C. Hansch, Il Farmaco, Ed. Sci., 30, 35 (1975).
- (8) C. Silipo and C. Hansch, J. Am. Chem. Soc., 97, 6849 (1975).
- (9) C. Hansch and M. Yoshimoto, J. Med. Chem., 17, 1160 (1974).
- (10) M. Yoshimoto, C. Hansch, and P. Y. C. Jow, Chem. Pharm. Bull., 23, 437 (1975).
- (11) C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, and E. J. Lien, J. Med. Chem., 16, 1207 (1973).
- (12) (a) A. Leo, C. Hansch, and D. Elkins, *Chem. Rev.*, 71, 525 (1971);
 (b) C. Hansch, A. Leo, and D. Nikaitani, *J. Org. Chem.*, 37, 3090 (1972).
- (13) (a) R. W. Taft, Jr., in "Steric Effects in Organic Chemistry", M. S. Newman, Ed., Wiley, New York, N.Y., 1956, pp 556-675; (b) E. Kutter and C. Hansch, J. Med. Chem., 12, 647 (1969). (c) I. V. Talvik and V. A. Palm, Org. React., 8, 445 (1971).
- (14) M. Charton, Prog. Phys. Org. Chem., 8, 231 (1971).
- (15) C. Daniel and F. S. Wood, "Fitting Equations to Data", Wiley-Interscience, New York, N.Y., 1971, pp 55, 169, 203.
- (16) (a) B. R. Baker and W. F. Wood, J. Med. Chem., 10, 1101 (1967); (b) *ibid.*, 11, 644 (1968); (c) *ibid.*, 11, 650 (1968); (d) *ibid.*, 12, 216 (1969); (e) B. R. Baker and H. V. Siebeneick, *ibid.*, 14, 802 (1971).
- (17) (a) B. R. Baker and W. F. Wood, J. Med. Chem., 10, 1106 (1967); (b) ibid., 12, 211 (1969); (c) ibid., 12, 214 (1969).
- (18) C. Hansch and W. R. Glave, J. Med. Chem., 15, 112 (1972).
- (19) Reference 1, p 156.
- (20) L. Pauling, Nature (London), 161, 707 (1948).
- (21) (a) R. Wolfenden, Acc. Chem. Res., 5, 10 (1972); (b) G. E. Lienhard, Annu. Rep. Med. Chem., 7, 249 (1972).
- (22) In this instance, by functional group we mean that minimum constellations of inhibitor atoms are necessary to produce the specific stereoelectronic interaction at the active site; this is not necessarily the same active site at which substrates react.
- (23) C. Hansch, Adv. Pharmacol. Chemother., 13, 45 (1975).
- (24) C. Hansch and E. Coats, J. Pharm. Sci., 59, 731 (1970).
- (25) L. Pauling and D. Pressman, J. Am. Chem. Soc., 67, 1003 (1945).
- (26) D. Agin, L. Hersh, and D. Holtzman, Proc. Natl. Acad. Sci. U.S.A., 53, 953 (1965).
- (27) C. Hansch and W. J. Dunn III, J. Pharm. Sci., 61, 1 (1972).
- (28) E. Ciuffarin and L. Senatore, Tetrahedron Lett., 1635 (1974).

Correlation Analysis of Baker's Studies on Enzyme Inhibition. 2. Chymotrypsin, Trypsin, Thymidine Phosphorylase, Uridine Phosphorylase, Thymidylate Synthetase, Cytosine Nucleoside Deaminase, Dihydrofolate Reductase, Malate Dehydrogenase, Glutamate Dehydrogenase, Lactate Dehydrogenase, and Glyceraldehyde-phosphate Dehydrogenase^{†,1a}

Masafumi Yoshimoto1b and Corwin Hansch*

Department of Chemistry, Pomona College, Claremont, California 91711. Received May 5, 1975

The inhibitory activity of 1058 inhibitors of the title enzymes has been formulated in 13 equations correlating chemical structure with inhibitory potency. Two types of regions in enzymes have been defined by means of π and molar refractivity constants. The use of indicator variables has been extensively developed to suggest special enzyme-ligand interactions. Several examples are given of the use of correlation equations in comparing structural features of different systems.

In the first paper in this series,² five correlation equations were presented which relate chemical structure

[†] This paper is dedicated to the memory of Edward Smissman and Bernard R. Baker. and inhibitory activity of 578 reversible inhibitors of guanine deaminase, xanthine oxidase, dihydrofolate reductase, and complement. In this paper, most of the rest of Baker's studies during the period 1964-1972 are correlated by 13 equations describing the QSAR for 1053

Table I.	Inhibitio	n Constants and Physicochemical Paramete	ers for the Reversible	Inhibition of a	-Chymotryps	an by Benzylpyri	dinium Bromi	des	·····	<u></u>		
				x	Br•							
				Ċ	^{₩2}	~						
				Log	s 1/C ●	1					01 :	
	No.	x	Y	Ob sd ^a	Calcd ^b	$ \Delta \log 1/C $	π	<i>I</i> -1	<i>I</i> -2	<i>I-</i> 3	% irreversible inact.	e Ref
	1	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONHCH ₂)	4-NO,	3.33	3.55	0.22	1.65	0	0	0		8a
	2	3-(3,4-C1,C,H,OCH,CONHCH)	4-OCH,	3.40	3.63	0.23	2.06	0	0	0		8a
	3	3-(3,4-CI,C,H,OCH,CONHCH,)	Н	3.42	3.64	0.22	2.08	0	0	0		8a
	4	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONHCH ₂)	4-C1 , 3-SO ₂ F	3.70	3.86	0.16	3.16	Ó	Ó	Ó	100	8b
	5	14	2-SO ₂ F	3.77	4.42	0.65	0.37	1	0	0	100	8c
	6	$3-(3,4-Cl_2C_6H_3OCH_2CONH)$	4-NO,	3.82	3.82	0.00	1.65	0	0	1		8a
	7	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONH)	н	3.92	3.9 1	0.01	2.08	0	0	1		8a
	8 ^c	$3-(3,4-Cl_2C_6H_3OCH_2CONHCH_2)$	3-CI, 4-SO ₂ F	3.92	4.57	0.65	3.16	0	1	0	100	8b
	9	$3-(3,4-Cl_2C_6H_3OCH_2CONH)$	4-CH ₃	3.96	4.03	0.07	2.64	0	0	1		8a
	10	Н	4-SO, F	3 .9 6	3.99	0.03	0.37	0	1	0	93	8c
	11	4-CH ₃	4-SO ₂ F	4.01	4.11	0.10	0 .9 3	0	1	0	95	8c
	1 2	$3-(3,4-Cl_2C_6H_3OCH_2CONHCH_2)$	3-SO ₂ F	4.02	3.71	0.31	2.45	0	0	0	100	8a
	13	3-CH ₃ CONH	4-SO ₂ F	4.02	4.07	0.05	-0.6 0	0	1	1	100	8a
	14	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONH)	4-0CH ₃	4.05	3 .9 1	0.14	2.06	0	0	1		8a
	15	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONH)	4-NO ₂	4.07	3.82	0.25	1.65	0	0	1		8a
	16	$3-(3,4-CI_2C_6H_3OCH_2CONH)$	3, 4-Cl ₂	4.11	4.21	0.10	3.50	0	0	1		8a
	17	$4-C_6H_5(CH_2)_2$	4-SO ₂ F	4.18	4.54	0.36	3.03	0	1	0	94	8c
	18	$4-C_{6}H_{5}(CH_{2})_{3}$	4-S O ₂ F	4.23	4.65	0.42	3.53	0	1	0	94	8c
	1 9	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONH)	3-SO ₂ F	4.29	3 .9 9	0.30	2.45	0	0	1	100	8a
	20	4-C ₆ H ₅ CH ₂	4-SO ₂ F	4.30	4.41	0.11	2.38	0	1	0	94	8c
	21	2,3-Benzo	4- S O ₂ F	4.30	4.27	0 .0 3	1.69	0	1	0	88	8c
	2 2 °	$4-C_{6}H_{5}(CH_{2})_{3}$	6-CI, 2-SO ₂ F	4.32	5.22	0.90	4.24	1	0	0	92	8c
	23	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONHCH ₂)	3-C1, 2-SO ₂ F	4.43	5.00	0.57	3.16	1	0	0	100	8b
	24	$4-C_6H_5(CH_2)_4$	4-SO ₂ F	4.43	4.75	0.32	4.03	0	1	0	95	8c
	25 ^c	$4-(3,4-Cl_2C_6H_3CH_2CH_2)$	2-SO ₂ F	4.48	5.26	0.78	4.45	1	0	0	87	8c
	2 6 ^c	$3-(3,4-Cl_2C_6H_3OCH_2CONH)$	3-CI, 2-SO ₂ F	4.55	5.27	0.72	3.16	1	0	1	100	8b
	27	H	6-CI, 2-SO ₂ F	4.55	4.56	0.01	1.08	1	0	0	97	8c
	28	$3-(3,4-Cl_2C_6H_3CH_2CH_2)$	4-SO ₂ F	4.64	4.84	0.20	4.45	0	I	0	92	8c
	29	$4-(3,4-Cl_2C_6H_3CH_2CH_2)$	4-SO ₂ F	4.66	4.84	0.18	4.45	0	1	0	90	8c
	30	$3-(3,4-Cl_2C_6H_3OCH_2CONHCH_2)$	2-Cl, 4-SO ₂ F	4.70	4.57	0.13	3.16	0	1	0	100	8b
	31	$4 - [3, 4 - Cl_2C_6H_3(CH_2)_4]$	4-SO ₂ F	4.70	5.05	0.35	5.45	0	1	0	85	8c
	32	3,4-Benzo	6-C1, 2-SO ₂ F	4.72	4.84	0.12	2.40	1	0	0 0	96 85	8c 8c
	33	$2-(3,4-Cl_2C_6H_3CH_2CH_2)$	4-SO ₂ F	4.77	4.84	0.07	4.45	0	1			
	34	$3-(3,4-Cl_2C_6H_3OCH_2CONHCH_2)$	4-SO₂F	4.80	4.42	0.38	2.45	0	1	0	100	8a
	35	$4-C_6H_5(CH_2)_4$	6-Cl, 2-SO ₂ F	4.80	5.32	0.52	4.74	1	0	0	100	8c
	36	$3-(3,4-Cl_2C_6H_3OCH_2CONH)$	4-SO₂F	4.82	4.70	0.12	2.45	0	1	1	100	8a
	37	$3-(3,4-Cl_2C_6H_3OCH_2CONH)$	3-Cl, 4-SO ₂ F	4.85	4.85	0.00	3.16	0	1	1	84	8b
	38	$3-(3,4-Cl_2C_6H_3OCH_2CONH)$	2-SO₂F	4.89	5.12	0.23	2.45	1	0	1	100	8b
	39 ^c	$3-(3,4-C1_2C_6H_3OCH_2CONH)$	4-C1, 3-SO₂F	4.89	4.14	0.75	3.16	0	0	1	100	8b
	40	$4 \cdot [3, 4 - Cl_2 C_6 H_3 O(CH_2)_3]$	4-SO₂F	4.89	4.93	0.04	4.90	0	1	0	90 100	8c
	41	$3-(3,4-Cl_2C_6H_3OCH_2CONH)$	2-Cl, 4-SO ₂ F	4.92	4.85	0.07	3.16	0	1	1	100	8b

Table I. Inhibition Constants and Physicochemical Parameters for the Reversible Inhibition of a-Chymotrypsin by Benzylpyridinium Bromides

I

Table II. Squared Correlation Matrix Showing Degree of Collinearity (r^2) between the Important Variables Used in α -Chymotrypsin Correlation Analysis

	π	MR	<i>I</i> -1	I-2	<i>I</i> -3
π	1.00	0.29	0.05	0.00	0.09
MR		1.00	0.00	0.07	0.04
<i>I</i> •1			1.00	0.42	0.02
I-2				1.00	0.02
I-3					1.00

Table III.	Development	of QSAR	for a-Chymotrypsin
------------	-------------	---------	--------------------

Inter- cept	<i>π</i> -X,Y	<i>I</i> -1	I-2	<i>I</i> -3	r	S	$F_{1,X}$
3.79	0.28				0.642	0.485	38
3.69	0.23	0.62			0.800	0.383	34
3.41	0.19	1.05	0.62		0.877	0.310	29
3.21	0.21	1.13	0.71	0.28	0.895	0.291	8.1

inhibitors of 11 different enzymes. In the two papers, 18 equations give the QSAR for 1631 enzyme inhibitor interactions with 14 different enzymes. In all, the data from over 100 papers by Baker's group are organized in a coherent manner which gives a quick overview of a vast amount of work.

While the equations are not perfect correlations and the ground covered by Baker leaves a good deal to be desired in the mapping of the various binding site regions, they do give an immediately comprehendable view of a huge enzymic structure-activity study. One can clearly see from the correlation equations what has been done as well as what needs to be done to further develop a given system. Baker's inhibitors are so complex, so numerous, and scattered through so many papers that we have yet to encounter someone who has made a serious effort to integrate his studies or even read all of the papers.

Method. The substituent constants employed in this work are from our recent compilation³ or were calculated from these values. Many examples of such calculations have been reported.4-7 Three new values were determined: π NHCH₂C₆H₅ = 1.00 (from log $P_{C_6H_5NHCH_2C_6H_5}$ = 3.13); π OH = -1.23 and $\pi_{NH_2} = -0.16$ (from log $P_{2-pyridone} = -0.58$; log $P_{2\text{-aminopyridine}} = 0.49$; and pyridine = 0.65. These values were used for 4- and 6-OH and NH₂ pyrimidines of Table XXI. The data for the correlations are contained in Tables and XXXIII, the degree of collinearity among the pertinent variables is presented in Tables II, V, VIII, X, XIII, XVI, XIX, XXII, XXV, XXVIII, XXXI, and XXXIV, and the stepwise development of the "best" equations is displayed in Tables III, VI, XI, XIV, XVII, XX, XXIII, XXVI, XXIX, XXXII, and XXXV.

C in the correlation equations is the molar concentration of inhibitor causing 50% inhibition of the enzyme. [S]/[I]-0.5 refers to ratio of the concentration of substrate [S] to inhibitor [I] which gives 50% inhibition.

All of the data come from Baker's papers on chymotrypsin,⁸ trypsin,⁹ thymidine phosphorylase¹⁰ (*E. coli*), uridine phosphorylase¹¹ (Walker 256), thymidylate synthetase,¹² cytosine nucleoside deaminase,¹³ dihydrofolate reductase,¹⁴ malate dehydrogenase,¹⁵ glutamate dehydrogenase,¹⁵ lactate dehydrogenase,¹⁵ and glyceraldehyde-phosphate dehydrogenase.¹⁵

Results

 α -**Chymotrypsin.** We have been especially interested in the interaction of ligands with chymotrypsin, a proteolytic enzyme which hydrolyzes a wide variety of simple

Table IV. Constants Used for Deriving Eq 2 for Chymotrypsin

$R^1 - C - R^2$	
0	

		0									
			Lo	g 1/C	¦∆ log						
No.	R'	R²	Ob sd ^a	Calcd ^b		MR_{R_1,R_2}	I-1	I-2	<i>I</i> •3	<i>I-</i> 4	Ref
1	4-CN-C ₆ H ₄ OCH ₂	CH ₃	1.47	2.01	0.54	4.32	0.0	0.0	0.0	0.0	8d
2	C ₆ H ₅ OCH ₂	NHCH ₃	1.60	1.99	0.39	4.25	0.0	0.0	0.0	0.0	8d
3	3-CN-C ₆ H ₄ OCH ₂	CH ₃	1.66	2.01	0.35	4.32	0.0	0.0	0.0	0.0	8d
4	4-CH ₃ -C ₆ H ₄ OCH ₂	CH ₃	1.72	1.99	0.27	4.25	0.0	0.0	0.0	0.0	8d
5	4-CH ₃ O-C ₄ H ₄ OCH ₂	CH ₃	1.77	2.05	0.28	4.47	0.0	0.0	0.0	0.0	8d
6 7	$C_6H_5(CH_2)_2$	$N(C_2H_5)_2$	1.77 1.82	2.43 2.12	0.66 0.30	5.95 4.72	0.0 0.0	0.0 0.0	$0.0 \\ 0.0$	0.0 0.0	8d 8d
8	$C_6H_5CH_2NH$ $C_6H_5(CH_2)_2$	OC ₂ H ₅ CH ₃	1.82	1.94	0.12	4.04	0.0	0.0	0.0	0.0	8d
9	3-COO ⁺ -C ₆ H ₄ OCH ₂	NHC ₆ H ₅	1.89	1.83	0.06	6.72	0.0	0.0	0.0	1.0	8g
10	C ₆ H ₅ OCH ₂	CH ₃	1.92	1.87	0.05	3.79	0.0	0.0	0.0	0.0	8d
11	3-CH ₃ -C ₆ H ₄ OCH ₂	CH ₃	1.92	1.99	0.07	4.25	0.0	0.0	0.0	0.0	8d
12	$4-C_5H_4N(CH_2)_2$	NHC ₆ H ₅	2.04	2.49	0.45	6.23	0.0	0.0	0.0	0.0	8g
13	$2-C_{5}H_{4}N(CH_{2})_{2}$	NHC ₆ H ₅	2.07 2.10	2.49 1.80	0.42 0.30	6.23 3.57	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	8g 8d
14 15	$C_6H_5CH_2$ $C_6H_5(CH_2)_2$	CH ₃ N(CH ₃)C ₆ H ₅	2.10	2.65	0.55	6.94	0.0	0.0	0.0	0.0	8d
16	$3 - C_{5}H_{4}N(CH_{2})_{2}$	NHC ₆ H ₅	2.11	2.49	0.38	6.23	0.0	0.0	0.0	0.0	8g
17	4-C ₅ H₄NCH=CH	NHC,H	2.19	2.51	0.32	6.30	0.0	0.0	0.0	0.0	8g
18	2-NO ₂ C ₆ H ₄ OCH ₂	CH ₃	2.22	2.04	0.18	4.42	0.0	0.0	0.0	0.0	8d
19	2-COO C ₆ H ₄ OCH ₂	NHC ₆ H,	2.27	1.83	0.44	6.72	0.0	0.0	0 .0	1.0	8g
20 21	C H OCH	NHC ₆ H ₄ -4-COO ⁻ NHC ₆ H ₄ -3-COO ⁻	2.28 2.28	2.25 2.25	0.03 0.03	6.73 6.73	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	0.0 0.0	8f 8g
21	C ₆ H ₅ OCH ₂ C ₆ H ₅ OCH ₂	C ₆ H ₅	2.20	2.38	0.03	5.76	0.0	0.0	0.0	0.0	8d
23	2,3-(CH=CH) ₂ -C ₆ H ₅ OCH ₂	CH ₃	2.30	2.27	0.03	5.33	0.0	0.0	0.0	0.0	8d
24	C ₆ H ₅ SCH ₂	CH ₃	2.30	2.03	0.27	4.39	0.0	0.0	0.0	0.0	8d
25	3-NO ₂ -C ₆ H ₄ OCH ₂	CH ₃	2.31	2.04	0.27	4.42	0.0	0.0	0.0	0.0	8d
26	C ₆ H ₅ OCH ₂	NHC ₆ H ₄ -4-OCH ₂ COO ⁻	2.32	2.39	0.07	7.41	0.0	0.0	1.0	0.0 0.0	8g 8g
27	C ₆ H ₅ OCH ₂	NHC ₄ H ₄ -4-CH ₂ COO ⁻	2.35 2.37	2.34 2.25	0.01 0.12	7.19 6.73	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	0.0	og 8g
28 29	C6H5OCH2 4-NO2-C6H4OCH2	NHC ₆ H₄-2-COO [•] CH ₃	2.40	2.04	0.36	4.42	0.0	0.0	0.0	0.0	8d
30	C ₆ H ₅ CH=CH	OC ₂ H ₅	2.40	2.11	0.29	4.67	0.0	0.0	0.0	0.0	8d
31	$C_6H_5(CH_2)_2$	OC ₂ H ₅	2.40	2.12	0.28	4.72	0.0	0.0	0.0	0.0	8d
32	4-Cl-C ₆ H ₄ OCH ₂	CH ₃	2.41	2.83	0.42	4.29	0.0	1.0	0.0	0.0	8d
33	$4 \cdot NO_2 \cdot C_6 H_4 CH = CH$	CH ₃	2.44	2.09	0.35	4.62	0.0 0.0	0.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	8d 8d
34	C ₆ H ₅ OCH ₂	N(CH ₃)C ₆ H ₅	2.46 2.51	2.60 2.87	0.14 0.36	6.69 7.72	0.0	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	0.0	1.0	8g
35 36	4,6-Cl ₂ -2-COO ⁻ -C ₆ H ₂ OCH ₂ 3-C ₅ H ₄ NCH=CH	NHC ₆ H ₅ NHC ₆ H ₅	2.52	2.51	0.01	6.30	0.0	0.0	0.0	0.0	8g
37	$2-C_{s}H_{4}NCH=CH$	NHC ₆ H ₅	2.52	2.51	0.01	6.30	0.0	0.0	0.0	0.0	8g
38	C ₆ H ₅ OCH ₂	NHCĨHŜ	2.59	2.49	0.10	6.22	0.0	0.0	0.0	0.0	8d
39	C ₆ H ₅ OCH ₂	$NH(CH_2)_2C_6H_5$	2.64	2.70	0.06	7.15	0.0	0.0	0.0	0.0	8d
40	4-CH ₃ O-C ₆ H ₄ OCH ₂	C ₆ H ₅	2.72 2.74	2.54 2.28	0.18 0.46	6.44 5.33	0.0 0.0	0.0 0.0	$0.0 \\ 0.0$	0.0 0.0	8d 8d
41 42	$3,4-(CH=CH)_2-C_6H_3OCH_2$	CH ₃ CH ₃	2.80	2.28	0.40	6.22	0.0	0.0	0.0	0.0	8d
43	2-C ₆ H ₅ C ₆ H ₄ OCH ₂ 4-Cl-2-COO ⁻ -C ₆ H ₃ OCH ₂	NHC ₆ H ₅	2.82	2.76	0.06	7.22	0.0	1.0	0.0	1.0	8g
44	5-C1-2-COO ⁻ -C ₆ H ₃ OCH ₂	NHC ₆ H ₅	2.82	2.76	0.06	7.22	0.0	1.0	0.0	1.0	8g
45	$2-C_{9}H_{6}N(CH_{2})_{2}$	NHC, H,	2.85	2.82	0.03	7.77	0.0	0.0	0.0	0.0	8g
46	C,H,OCH,	N(CH ₃)Č ₆ H ₄ -4-NO ₂	2.92			7.32	0.0	0.0	0.0	0.0	8d
47	4-BI-2-COO ⁺ -C ₆ H ₃ OCH ₂	NHC ₆ H ₅	2.96 2.96	2.83 2.83	0.13 0.13	7.51 4.29	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 0.0	8g 8d
48 49	3-Cl-C₅H₄OCH₂	CH ₃ NHCH ₂ C ₆ H ₅	2.96	2.83	0.15	6.69	0.0	0.0	0.0	0.0	8d
49 5 0	C ₆ H ₅ OCH ₂ 4-Cl-2-COO ⁻ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -4-NHCONHC ₆ H ₄ -4'-	3.00	3.57	0.57	12.15	0.0	1.0	0.0	1.0	8h
20		SO ₂ F							_	_	
51	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	CH,	3.12	2.96	0.16	4.79	0.0	1.0	0.0	0.0	8d
52	4-C1-2-COO ⁻ -C ₆ H ₃ OCH ₂	NHC̃ ₆ H₄-3-NHCONHC ₆ H₄-4′-	3.15	3.51	0.36	11.69	0.0	1.0	0.0	1.0	8h
60		SO ₂ F	3.19	3.53	0.34	7.19	0.0	1.0	0.0	0.0	8d
53 54	C ₆ H ₅ OCH ₂ 4-Cl-2-COO ⁻ -C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -2-Cl NHCH ₂ C ₆ H ₄ -3-NHCONHC ₆ H ₄ -4'-	3.23	3.55	0.34	12.15	0.0	1.0	0.0	1.0	81
54	+~1°2~00 ~611400112	SO ₂ F						- / -			
55	C ₆ H ₅ OCH ₂	NHC ₆ H ₄ -3-Cl	3.28	3.43	0.15	6.72	0.0	1.0	0.0	0.0	80
56	2,3-Cl ₂ C ₆ H ₃ OCH ₂	CH ₃	3.28	2.96	0.32	4.79	0.0	1.0	0.0	0.0	8d
57	$3,4-Cl_2C_6H_3OCH_2$	NHC H 4-OCH Cl	3.29 3.30	3.42 3.74	0.13 0.44	8.41 8.24	0.0 0.0	1.0 1.0	1.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	8g 8e
58 59	3-Cl-C ₆ H₄OCH₂ 4-Cl-C H OCH.	NHC ₆ H ₄ -4-COCH ₂ Cl C ₆ H ₅	3.30	3.32	0.02	6.24	0.0	1.0	0.0	0.0	8d
59 60	4-C1-C ₆ H ₄ OCH ₂ 2-COO ⁻ -C ₆ H ₃ OCH	$C_6\Pi_5$ NHCH ₂ C ₆ H ₄ -4-NHCONHC ₆ H ₃ -4'-	3.32	3.62	0.30	12.61	0.0	1.0	0.0	1.0	81
00	2 000 061130011	CH ₃ -3'-SO ₂ F							_		
61	C ₆ H ₅ OCH ₂	NHCH,C,H,-4'-Cl	3.36		0.17	7.19	0.0	1.0	0.0	0.0	80
62	4-C1-2-COO+-C6H3OCH2	NHCH ₂ C ₆ H ₄ -3-NHCONHC ₆ H ₃ -4'-	3.40	3.62	0.22	12.61	0.0	1.0	0.0	1.0	81
		CH ₃ -3'-SO ₂ F	2 16	3.49	0.03	7.01	0.0	1.0	0.0	0.0	80
63	C ₆ H ₅ OCH ₂	NHC ₆ H ₄ -4-Br NHCH C H -4-NO	3.46 3.46		0.03	7.32	0.0	0.0	0.0	0.0	80
64 65	C ₆ H ₅ OCH ₂ 3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -4-NO ₂ NHC ₆ H ₄ -4-SO ₂ F	3.40		0.13	7.49	0.0	1.0	0.0	0.0	86
03		NHCH ₂ C ₆ H ₄ -3-NHCONHC ₆ H ₃ -3'-			0.10	12.65	0.0	1.0	0.0	1.0	81
66	4-Cl-2-COO ⁻ -C ₆ H ₃ OCH ₂	NHCH, C, H ₄ · 3·NHCONHC, H ₁ · 3·	3.52	5.02	0.10	12.05	0.0	1.0			

Table IV (Continued)

			Log	g 1/C	∣∆ log						
No.	R¹	R ²	Obsd ^a	Calcd ^b		MR _{R1} ,R2	<i>I</i> -1	<i>I</i> -2	<i>I</i> -3	<i>I</i> -4	Ref
67	4-C1-2-COO ⁺ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -4·NHCONHC ₆ H ₄ -3'- SO ₂ F	3.52	3.57	0.05	12.15	0.0	1.0	0.0	1.0	8h
68	C ₆ H ₅ OCH ₂	NHC ₆ H ₄ -4-Cl	3.52	3.43	0.09	6.72	0.0	1.0	0.0	0.0	8d
69	3,4-C1 ₂ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -3-NHCOCH ₂ Br	3.57	4.03	0.46	9.86	0.0	1.0	0.0	0.0	8f
7 0	4-C1-2-COO ⁺ -C ₆ H ₃ OCH ₂	NHC ₆ H ₄ -3-NHCONHC ₆ H ₃ -4'- CH ₃ -3'-SO ₂ F	3.59	3.57	0.02	12.15	0.0	1.0	0.0	1.0	8h
71	3-Cl-C₄H₄OCH₂	NHC ₆ H ₅	3.59	3.43	0.16	6.72	0.0	1.0	0.0	0.0	8g
7 2	C ₆ H ₅ OCH ₂	NHCH, C, H, -3-Cl	3.62	3.53	0.0 9	7.19	0.0	1.0	0.0	0.0	8d
73	4-C1-2-COO ⁺ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -4-NHCONHC ₆ H ₃ -2'- Cl-5'-SO ₂ F	3.64	3.62	0.02	12.65	0.0	1.0	0.0	1.0	81
74	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	NHC ₆ H ₄ -4-Cl	3.68	3.64	0.04	7.72	0.0	1.0	0.0	0.0	80
75	3-Cl-C ₆ H₄OČH₂	NHC ₆ H ₄ -4-CN	3.70	3.54	0.16	7.25	0.0	1.0	0.0	0.0	8f
76	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	NHC ₆ H ₄ -3-COCH ₂ Cl	3.72	3.84	0.12	8.74	0.0	1.0	0.0	0.0	80
77	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₅	3.72	3.53	0.19	7.19	0.0	1.0	0.0	0.0	80
78	3-Cl-C H OCH	NHC ₆ H ₄ -3-COCH ₂ Cl	3.74	3.74	0.00	8.24	0.0	1.0	0.0	0.0	86
79	4-Cl-2-COO [*] -C ₆ H ₃ OCH ₂	$\rm NHCH_2C_6H_4$ -3- $\rm NHCONHC_6H_3$ -2'-	3.80	3.62	0.18	12.65	0.0	1.0	0.0	1.0	8
		C1-5'-SO ₂ F	2 00	3.94	0.14	9.36	0.0	1.0	0.0	0.0	8:
80	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -2-NHCOCH ₂ Br	3.80	3.54	0.31	11.69	0.0	1.0	0.0	1.0	8
81	4-C1-2-COO ⁻ -C ₆ H ₃ OCH ₂	NHC ₆ H ₄ -3-NHCONHC ₆ H ₄ - 3'-SO ₂ F	3.82							0.0	8
82	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -4-Cl	3.85	3.73	0.12	8.19	0.0	1.0	0.0		
83	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -3-Cl	3.89	3.73	0.16	8.19	0.0	1.0	0.0	0.0	8
84	3-Cl-C ₆ H ₄ OCH ₂	NHC ₆ H ₄ -4-Cl	3.96	3.54	0.42	7.22	0.0	1.0	0.0	0.0	8
85	3-Cl-C ₆ H ₄ OCH ₂	NHC ₆ H ₄ -3-NHCOCH ₂ Br	4.00	3.86	0.14	8.90	0.0	1.0	0.0	0.0	8
86	3-Cl-C ₆ H ₄ OCH ₂	NHC ₆ H ₃ -2-OCH ₃ -5-SO ₂ F	4.04	4.47	0.43	8.17	1.0	1.0	0.0	0.0	8
87	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -2-NHCOC ₆ H ₄ - 4'-SO ₂ F	4.05	4.24	0.19	11.31	0.0	1.0	0.0	0.0	8
88	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -2-NHCONHC ₆ H ₄ - 3'-SO ₂ F	4.05	4.28	0.23	11.65	0.0	1.0	0.0	0.0	8
89	3-Cl-C ₆ H ₄ OCH ₂	NHCH2C6H4-4-NHCOCH2Br	4.05	3.94	0.11	9.36	0.0	1.0	0.0	0.0	8
90	4-Cl-2-COO ⁻ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -3-NHCONHC ₆ H ₄ - 3'-SO ₂ F	4.09	3.57	0.52	12.15	0.0	1.0	0.0	1.0	8
91	4-Cl-2-COO ⁺ -C ₆ H ₃ OCH ₂	NHC, H, -3-NHCONHC, H, -2'- Cl-5'-SO, F	4.10	3.57	0.53	12.19	0.0	1.0	0.0	1.0	8
9 2	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -3-NHCONHC ₆ H ₄ - 3'-SO ₂ F	4.15	4.28	0.13	11.65	0.0	1.0	0.0	0.0	8
9 3	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -3-NHCOC ₆ H ₄ -4'- SO ₂ F	4.17	4.24	0.07	11.31	0.0	1.0	0.0	0.0	8
94	3-Cl-C ₆ H ₄ OCH ₂	NHC ₆ H ₄ -4-CH ₂ NHCONHC ₆ H ₄ - 3'-SO ₂ F	4.22	4.28	0.06	11.65	0.0	1.0	0.0	0.0	8
9 5	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -4-NHCOC ₆ H ₄ -4'- SO ₂ F	4.22	4.24	0.02	11.31	0.0	1.0	0.0	0.0	8
9 6	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -2-NHCOC ₆ H ₄ -3'- SO ₂ F	4.28	4.24	0.04	11.31	0.0	1.0	0.0	0.0	8
97	3-Cl-C ₆ H ₄ OCH ₂	NHC₄H₄-2-SO₂F	4.38	4.33	0.05	7.49	1.0	1.0	0.0	0.0	8
9 8	3-Cl-C ₆ H ₄ OCH ₂	NHC, H 3-SO, F	4.44	4.33	0.11	7.49	1.0	1.0	0.0	0.0	8
99	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -3-NHCOC ₆ H ₄ - 3'-SO ₂ F	4.46	4.30	0.16		0.0	1.0	0.0	0.0	8
1 00	3-Cl-C ₆ H ₄ OCH ₂	NHCH ₂ C ₆ H ₄ -3-NHCOC ₆ H ₄ - 3'-SO ₂ F	4.46	4.24	0.22	11.31	0.0	1.0	0.0	0.0	8
1 0 1	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	NHC ₆ H ₄ -2-SO ₂ F	4.70	4.43	0.27	7.99	1.0	1.0	0.0	0.0	8
102	$3-C1-C_6H_4OCH_2$	NHCH ₂ C ₆ H ₄ -4-NHCOC ₆ H ₄ -3'- SO ₂ F	4.74	4.24	0.50		0.0	1.0	0.0	0.0	
1 0 3	3,4-Cl ₂ -C ₆ H ₃ OCH ₂	NHCH ₂ C ₆ H ₄ -3-NHCOC ₆ H ₄ -4'- SO ₂ F	4.85	4.30	0.55	11.81	0.0	1.0	0.0	0.0	8

^a Calculated from results of Baker et al.^{sd-h} ^b Calculated using eq 2.

Table V.	Squared Correlation Mat	rix for Variables of Eq 2
----------	-------------------------	---------------------------

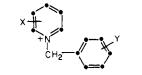
	<i>I</i> -2	MR _{R1} R2	$\pi_{\mathbf{R}_{1}\mathbf{R}_{2}}$	I-4	<i>I</i> •1	<i>I</i> -3	$(MR_{R_1R_2})^2$
<i>I</i> -2	1.00	0.43	0.02	0.10	0.03	0.04	0.39
$\frac{MR_{R_1R_2}}{\pi_{R_1R_2}}$		1.00	0.03	0.28	0.00	0.00	0.98
πR . R .			1.00	0.24	0.10	0.29	0.03
I-4 ¹⁻⁴²				1.00	0.01	0.01	0.31
<i>I</i> -1					1.00	0.00	0.00
I-3						1.00	0.01
$(MR_{R_1R_2})^2$							1.00

Table VI. Development of QSAR for Eq 2 for RC(=O)R Inhibition of Chymotrypsin

Intercept	<i>I</i> -2	$MR_{R_1R_2}$	<u> </u>	<i>I</i> -1	<i>I-</i> 3	$(MR_{R_1R_2})^2$	r	S	$F_{1,X}^{a}$
2.27	1.41						0.823	0.485	212
1.67	1.03	0.11					0.862	0.435	25.1
1.31	0.99	0.18	-0.84				0.921	0.335	70.0
1.27	0.90	0.18	-0.79	0.80			0.938	0.301	25.3
1.27	0.86	0.19	-0.82	0.79	-0.29		0.941	0.294	5.10
0.67	0.83	0.35	-0.77	0.74	-0.36	-0.01	0.944	0.290	4.20

^{*a*} $F_{1,60; \alpha 0.001} = 12; F_{1,60; \alpha 0.05} = 4.00.$

Table VII. Inhibition Constants and Physicochemical Parameters for the Reversible Inhibition of Trypsin by Benzamidines


	~ •∧	Log	; 1/C	I∆ log			% irrevers-	
No.	х	Ob sd ^a	Calcd ^b	1/C	π	σ	ible inact.	Rei
1°	4-CON(CH ₃)C ₆ H ₅	3.10	4.00	0.90	0.86	0.63	···	9a
2 ^c	$4-O(CH_2)_4OC_6H_4-4'-NHCOC_6H_4-4''-NHCOC_6H_4-4'''-SO_2F$	3.22	5.45	2.23	3.95	-0.27		9b
3	4-COCH ₃	3.44	3.51	0.07	-0.55	0.87		9a
4	Н	4.49	4.46	0.03	0.00	0.00		9a
5	$4-O(CH_2)_3OC_6H_5$	4.82	5.18	0.36	2.50	-0.27		9a
6	$4 - O(CH_2)_3 C_6 H_4 - 4' - NHCOCH_2 Br$	5.04	5.12	0.08	2.12	-0.27	0	9 b
7	$4-O(CH_2)_3C_6H_5$	5.10	5.30	0.20	3.11	-0.27		9a
8	$3-O(CH_2)_3OC_6H_5$	5.12	4.82	0.30	2.49	0.10		9 a
9	3-O(CH ₂) ₄ OC ₆ H ₄ -4'-NHCONHC ₆ H ₄ -4''-SO ₂ F	5.14	5.24	0.10	4.76	0.10	6	9 c
10	4-O(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -4''-SO ₂ F	5.21	5.28	0.07	3.03	-0.27	44	9t
11	4-O(CH ₂) ₄ OC ₆ H ₄ -4'-NHCOCH ₂ Br	5.27	5.19	0.08	2.55	-0.27	18	9t
1 2	4-O(CH ₂) ₂ OC ₆ H ₄ -3'-NHCONHC ₆ H ₄ -4''-SO ₂ F	5.32	5.43	0.11	3.83	-0.27	15	9 0
13	4-O(CH ₂) ₄ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -3''-SO ₂ F	5.35	5.36	0.01	3.46	-0.27	40	9t
14	$4-O(CH_2)_4OC_6H_4-3'-NHCOC_6H_4-4''-SO_2F$	5.36	5.36	0.00	3.46	-0.27	96	9c
15	$4-O(CH_2)_2OC_6H_4-3'-NHCONHC_6H_3-4''-CH_3-3''-SO_2F$	5.39	5.53	0.14	4.39	-0.27	76	90
16	4-O(CH ₂) ₄ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -4''-SO ₂ F	5.39	5.36	0.03	3.46	-0.27	31	9t
17	$4 - O(CH_2)_3 OC_6 H_4 - 4' - NHCONHC_6 H_4 - 4'' - SO_2 F$	5.40	5.52	0.12	4.33	-0.27	0	9c
18	$4 - O(CH_2)_2 OC_6 H_4 - 3' - NHCONHC_6 H_4 - 3'' - SO_2 F$	5.44	5.43	0.01	3.83	-0.27	96	90
19	$4 - O(CH_2)_3 OC_6 H_4 - 4' - NHCOC_6 H_4 - 3'' - SO_2 F$	5.47	5.28	0.19	3.03	-0.27	54	9 b
20	$4 - O(CH_2)_4 OC_6 H_4 - 4' - NHCONHC_6 H_4 - 3'' - SO_2 F$	5.49	5.60	0.11	4.76	-0.27	37	9t
2 1	$4-O(CH_2)_2OC_6H_4-3'-NHCOC_6H_4-4''-SO_2F$	5.52	5.19	0.33	2.53	-0.27	91	9 c
22	$4-O(CH_2)_4OC_6H_4-4'-NHCONHC_6H_3-2''-OCH_3-5''-SO_7F$	5.55	5.60	0.05	4.74	-0.27	6	9 c
23	$4 - O(CH_2)_4 OC_6 H_3 - 2' - Cl - 4' - NHCONHC_6 H_4 - 3'' - SO_2 F$	5.60	5.73	0.13	5.47	-0.27	41	9c
24	$4 - O(CH_2)_4 OC_6 H_4 - 4' - NHCONHC_6 H_3 - 4'' - OCH_3 - 3'' - SO_2 F$	5.60	5.60	0.00	4.74	-0.27	48	9c
25	$4 \cdot O(CH_2) OC_6 H_3 \cdot 2' \cdot Cl \cdot 4' \cdot NHCONHC_6 H_6 \cdot 4'' \cdot SO_7 F$	5.62	5.73	0.11	5.47	-0.27	0	9c
2 6	$4-O(CH_2)_4OC_6H_4-4'-NHCONHC_6H_3-4''-CH_3-3''-SO_2F$	5.64	5.70	0.06	5.32	-0.27	38	9c
27	$4 - O(CH_2)_4 OC_6 H_4 - 4' - NHCONHC_6 H_3 - 4'' - OC_2 H_5 - 3'' - SO_2 F$	5.66	5.69	0.03	5.24	-0.27	41	9c
28	$4-O(CH_2)_2OC_6H_4-3'-NHCONHC_6H_3-2''-CI-5''-SO_2F$	5.74	5.56	0.18	4.54	-0.27	100	9c
29	$4 - O(CH_2)_4 OC_6 H_4 - 4' - NHCONHC_6 H_3 - 2'' - C1 - 4'' - SO_2 F$	5.80	5.73	0.06	5.47	-0.27	78	9c
30	$4 \cdot O(CH_2)_4 OC_6 H_4 \cdot 4' \cdot NHCONHC_6 H_3 \cdot 3'' \cdot CH_3 \cdot 4'' \cdot SO_2 F$	5.80	5.70	0.10	5.32	-0.27	0	9 c
31	$4-O(CH_2)_4OC_6H_4-4'-NHCONHC_6H_3-2''-Cl-5''-SO_2F$	5.82	5.73	0.09	5.47	-0.27	76	9c
32	4-O(CH ₂) ₄ OC ₆ H ₄ -4'-NHCONHC ₆ H ₄ -4''-SO ₂ F	5.85	5.60	0.25	4.76	-0.27	0	9c
33	$4 \cdot O(CH_2)_4 OC_6 H_3 \cdot 3 \cdot CH_3 \cdot 4' \cdot NHCONHC_6 H_4 \cdot 4'' \cdot SO_2 F$	5.85	5.70	0.15	5.32	0.27	0	9 c

^a Calculated from results of Baker et al.⁹ ^b Calculated using eq 3. ^c These points not used in deriving equations.

Table VIII. Squared Correlation Matrix Showing Degree of Collinearity (r^2) between the Important Variables Used in Trypsin Correlation Analysis of Eq 5

	π	MR	σ
π	1.00	0.80	0.36
MR		1.00	0.40
σ			1.00

amide, peptide, and ester linkages. In the present report, two correlation equations for two types of inhibitors have been formulated from the data in Tables I and IV.

(causing 50% inhibition of α -chymotrypsin)

$$\log 1/C = 0.208 (\pm 0.06) \pi_{\mathbf{X},\mathbf{Y}} + 1.135 (\pm 0.23) (I-1) + 0.710 (\pm 0.23) (I-2) + 0.276 (\pm 0.19) (I-3) + 3.210 (\pm 0.26) (1)$$

$$n r s$$

$$56 0.895 0.291 (1)$$

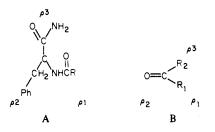
$$\mathbf{R}_{1} - \mathbf{C} - \mathbf{R}_{2}$$

(causing 50% inhibition of α -chymotrypsin)

$$\log 1/C = 0.355 (\pm 0.16) MR_{R_1,R_2} - 0.0099 (\pm 0.0096) (MR_{R_1,R_2})^2 + 0.738 (\pm 0.31) (l-1) + 0.826 (\pm 0.16) (l-2) - 0.359 (\pm 0.26) (l-3) - 0.771 (\pm 0.18) (l-4) + 0.665 (\pm 0.62) (l-3) - 0.771 (\pm 0.18) (l-4) + (2) n r s 103 0.944 0.290$$

Substituting MRX,Y for $\pi X,Y$ in eq 1 gives a correlation with r = 0.869 despite the fact that the collinearity between $\pi X,Y$ and MRX,Y is not unusually high. The explanation of this may be that the true vector for this space lies between π and MR; that is, the space is not very homogeneous and is not well modeled by either vector but is about as well fit by one as the other. This question should be examined using a set of substituents completely orthogonal with respect to π and MR. To do the job properly, one should study a set of relatively small substituents to explore space near the two rings and a set of larger functions to compare more distant enzymic space.

A most interesting aspect of eq 1 is I-1 which accounts for the effect of SO₂F in the 2 position of the benzyl ring. Activity is enhanced about 14-fold over the cases where SO₂F is in the 3 position or absent. A similar effect was observed for the inhibition of complement, an enzyme conglomerate⁷ composed of hydrolases. It has been suggested that 2-SO₂F is favorably disposed in the ortho position to react with the hydroxyl of a serine moiety.⁷ A smaller beneficial effect for SO₂F in the 4 position is

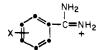

Correlation Analysis of Baker's Studies on Enzyme Inhibition

parameterized by I-2. No special effect is seen for 3-SO₂F despite the fact that by virtue of the rotation of the phenyl, 3-substituents can come into contact with a greater variety of enzyme space than 4-substituents. Indicator variable I-3 accounts for those cases where the nitrogen atom of an amide is attached directly to the pyridine ring. The slightly increased activity of these congeners is probably due to electron donation by the amide nitrogen to the pyridinium ring. The QSAR of the benzylpyridinium inhibitors of chymotrypsin is quite different from other inhibitors,^{16a} and suggests that these positively charged molecules may be interacting at a site removed from the hydrolytically active site. Table II shows that except for (π, MR) and (I-1, I-2), the other vectors are quite orthogonal. The development of the QSAR for eq 1 is shown in Table III.

Equation 2 correlates a set of 103 ketones, amides, and esters inhibiting chymotrypsin. R2 represents the Me of methyl ketones or NHR or OR of amides and esters. In the large majority of cases, $R_1 = XC_6H_4OCH_2$ -. In eq 2, MR_{R₁,R₂} represents the sum of molar refractivities for the two groups attached to the carbonyl moiety. The exponential term in MR indicates that very large groups produce less effective inhibition. Equation 2 is not a very significant improvement over the equation lacking (MR)² $(F_{1,96} = 7.5)$, since it reduces the variance in log 1/C by only 1%. I-1 takes the value of 1 for cases where $R_2 =$ $NHC_6H_4SO_2F$. The SO₂F function increases activity by a factor of about 5. I-2 is a rather unusual parameter in terms of our experience; it assumes the value of 1 for cases where there are one or two halogens on the aromatic rings of R_1 and R_2 . Strangely, the effect of halogen (mostly Cl) is not additive. In some instances there are three halogens (74, 82, and 83). These congeners are as well predicted as the cases where only one halogen is present on either ring. One could postulate that a substituent the size of Cl might be just the right size to produce a favorable (for inhibition) conformational change; however, it seems strange that the same effect could be obtained from either R group. I-3and I-4 parameterize the presence of a COO⁻ on R_2 and R₁, respectively.

The highly hydrophilic COO⁻ has a deleterious effect on the potency of the congeners containing it as the negative coefficients with these terms indicate. The smaller negative coefficient with I-3 for R₂ indicates that the COO⁻ function is better accommodated on the amide and ester moieties than on the phenoxy group. It suggests different binding areas for R₁ and R₂.

In an earlier study on ligands interacting with chymotrypsin, we found the Hein-Niemann system of labeling space about an asymmetric center to be helpful in structure-activity analysis. In the diagram shown for



binding an acylphenylalanine amide, $\rho_{\rm H}$ space is behind the plane of the page. ρ_2 space is clearly hydrophobic. Correlation equations have a 1.2 (±0.2) π term for hydrophobic bonding in this space. The ρ_1 and ρ_2 areas are different; binding in ρ_1 was correlated with MR and the little data available for ρ_3 interaction were highly collinear with respect to π and MR so that no clean decision could be made about ρ_3 space.^{16a} However, the coefficients with π and MR terms for ρ_3 space interaction are small, suggesting polar space. Correlation eq 3 for a limited set of

$$\log [S]/[1] 0.5 = 0.80 (\pm 0.28) \pi + 0.46 (\pm 0.45) \sigma + 0.87 (\pm 0.40) X - 1.96 (\pm 0.24)$$
(3)
$$n r s 15 0.913 0.261$$

phenoxyacetones $[XC_6H_4OCH_2C(=O)CH_3]$ was formulated from Baker's work. The electronic term in this equation is of very marginal importance as one can see from its confidence limits. X is an indicator variable for three examples where phenyl ketones rather than methyl ketones were used. S/I in this expression is the substrate/inhibitor ratio. It was postulated that even though the coefficient with the π term was lower than any others studied, it still probably indicates binding in ρ_2 space; this now seems unlikely. On the basis of the much larger data set, binding as in B would place X and Y in MR space; while this would rationalize the results, there is no proof that these compounds are necessarily acting in the $\rho_1 - \rho_2 - \rho_3$ region. Inhibition may be occurring from another point in the enzyme. The fact that one does not obtain an improved correlation by factoring MRR, R2 into MRR, and MRR, suggests that the two types of space involved are very similar. The orthogonality of π and MR for the R_1COR_2 congeners with poor correlation when π is used in place of MR supports the idea that ρ_2 space is not involved.

Trypsin. Trypsin is a proteolytic enzyme similar to chymotrypsin. The following QSAR (eq 4 and 5) have been formulated from the data in Table VII.

(causing 50% inhibition of trypsin)

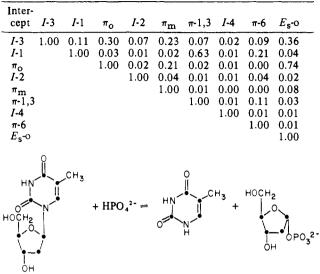
$$\log 1/C = 0.270 (\pm 0.06) \pi + 4.330 (\pm 0.23)$$
(4)
$$n r s$$

31 0.874 0.234

$$\log 1/C = 0.184 \ (\pm 0.05) \ \pi - 0.978 \ (\pm 0.32) \ \sigma^{-} + 4.463 \ (\pm 0.16) \ n \ r \ s \ 31 \ 0.949 \ 0.155 \ (5)$$

The two-variable equation is a significant improvement over the equation in π alone: $F_{1,28} = 38.1$; $F_{1,28}$; α 0.001 = 13.5. Two data points of Table VII have not been used in the formulation of the QSAR; these are the two least active congeners, one of which (1) has a unique attachment to the benzene ring. The use of MR in place of π in eq 5 also gives a high correlation. The small coefficients with these terms suggest that "true" hydrophobic interactions are probably not involved. The result is similar to that found for chymotrypsin. The poorly independent nature of π and σ can be seen in Table VIII. A better data set is needed for more firm conclusions.

Thymidine Phosphorylase (from *E. coli*). This enzyme catalyzes the phosphorylysis of the nucleoside


0 R³N 0 R³N R⁵ R⁵ R⁵ R⁵

	\dot{R}^1 Log S/I Log												
No.	Substituents	Obsda		$ \Delta \log S/I $	^g π-1,3	π-6	π-ortho	π-meta	<i>I</i> -1	I-2	<i>I</i> -3	<i>I-</i> 4	Ref
1	1-CH,	-2.30	-1.66	0.64	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10a
2 3	$1 \cdot (CH_2)_3 OH$	-1.90 -1.85	-1.71 -1.84	0.19 0.01	0.34 -0.16	0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\end{array}$	0.0 0.0	$0.0 \\ 0.0$	0.0 0.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	10a 10a
4	1-(CH ₂) ₂ OH 1-(CH ₂) ₅ OH	-1.85	-1.64	0.01	1.34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10a 10a
5	$1 \cdot (CH_2)_4 OH$	-1.78	-1.57	0.21	0.84	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10a
6	1-(CH ₂) ₃ C ₆ H ₄ -4'-COOH	-1.78	-2.12	0.34	-1.20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10ь
7	$1 - CH_2C_6H_4 - 2' - NHCOCH_2Br$	-1.43	-1.36	0.07	1.64	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10b 10a
8 9		-1.34 -1.32	-1.26 -0.95	0.08 0.37	2.00 3.16	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	10a 10c
10	$1 - (CH_2)_3 C_6 H_5 - 5 - CH_2 OH$ $1 - (CH_2)_3 C_6 H_5 - 5 - CH_2 OH$ $1 - C_4 H_9 - 5 - CH_2 OC_2 H_5$ $1 - i - C_5 H_{11}$ $1 - c - C_5 H_9$ $1 - (CH_2) C_1 H_2 - 5 - CH_2 OH = 0$	-1.32	-1.26	0.06	2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10c
11	1- <i>i</i> -C ₅ H ₁₁	-1.30	-1.18	0.12	2.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10ь
12	1-c-C _s H,	-1.28	-1.22	0.06	2.14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10b
13 14	$1-4-C_{5}H_{9}$ $1-(CH_{2})_{3}C_{6}H_{5}-5-CH_{2}O-i-C_{5}H_{11}$ $1-CH_{2}C_{6}H_{4}-3'-NHCOCH_{2}Br$ $1-CH_{2}C_{6}H_{4}-4'-CONH_{2}$ $1-CH_{2}C_{6}H_{1}-4'-CONH_{2}$ $1-CG_{2}H_{11}$ $1-CG_{2}H_{11}$ $1-CG_{2}H_{11}$ $1-CG_{2}H_{11}$ $1-CG_{2}H_{11}$ $1-CG_{2}H_{12}$ $1-CG_{2}H_{2}C_{6}H_{5}$ $3-CH_{2}CN-5-Br-6-CH_{2}C_{6}H_{5}$ $1-(CH_{2})_{3}C_{6}H_{5}-5-CH_{2}OC_{2}H_{5}$ $5-N=NC_{6}H_{5}-6-C_{6}H_{5}$ $6-CH_{3}$ $5-N=MC_{6}H_{5}-6-C_{6}H_{5}$	$-1.20 \\ -1.20$	-0.95 -1.36	0.25 0.16	3.16 1.64	$\begin{array}{c} 0.0\\ 0.0\end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	10с 10b
15	$1-CH_2C_4H_4-4'-CONH_2$	-1.18	-1.66	0.48	0.52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10b
16	1- <i>i</i> -C ₆ H ₁₃	-1.18	-1.04	0.14	2.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10ь
17	$1-C_{s}H_{11}$	-1.15	-1.12	0.03	2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10b
18 19	$1 \cdot (CH_2)_3 C_6 H_5$ 3 - CH CN-5 - Br - 6 - CH C H	$-1.11 \\ -1.00$	-0.95 -1.09	0.16 0.09	3.16 -0.57	0.0 2.01	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	0.0 0.0	0.0 0.0	10b 10f
20	1-(CH ₂) ₂ C ₄ H ₄ -5-CH ₂ OC ₂ H ₄	-1.00	-0.95	0.05	3.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10c
21	$5-N=NC_6H_5-6-C_6H_5$	-0. 9 0	-0.49	0.41	0.0	1.96	0.0	0.0	1.0	0.0	0.0	1.0	10i
22	6-CH ₃	-0.90	0.10	1.00	0.0	0.50	0.0	0.0	1.0	0.0	0.0	0.0	10d
23 24	$\begin{array}{l} 5 \cdot NH_{2} \\ 1 \cdot (CH_{2})_{2}C_{6}H_{5} \\ 5 \cdot SO_{2}NC_{5}H_{10} \cdot 6 \cdot CH_{3} \\ 1 \cdot CH_{2}C_{6}H_{5} \cdot 6 \cdot CH_{3} \\ 1 \cdot (CH_{2})_{3}C_{6}H_{5} \cdot 5 \cdot CH_{2}CH = CH_{2} \end{array}$	$-0.85 \\ -0.80$	$0.02 \\ -1.08$	0.87 0.28	0.0 2.66	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	1.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	10е 10b
25	5-SO ₂ NC ₂ H ₂ -6-CH ₂	-0.78	-0.73	0.05	0.0	0.50	0.0	0.0	1.0	0.0	0.0	1.0	10c
26	1-CH ₂ C ₆ H ₅ -6-CH ₃	-0.78	-1.17	0.39	2.01	0.50	0.0	0.0	0.0	0.0	0.0	0.0	10k
27	$1 \cdot (CH_2)_3 C_6 H_5 \cdot 5 \cdot CH_2 CH = CH_2$	-0.78	-0.95	0.17	3.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10c
28 29	I-CH ₂ C ₂ H ₂	-0.76 -0.70	-1.26 -0.38	0.50 0.32	$\begin{array}{c} 2.01 \\ 0.0 \end{array}$	0.0 2.66	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 1.0	0.0 0.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	10b 10f
30	$5 \cdot SO_2 NC_5 H_{10} - 6 - (CH_2)_2 C_6 H_5$ 1-(CH_2)_3 C_6 H_5 - 5 - C_6 H_5	-0.70	-0.95	0.32	3.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10c
31	$1 \cdot (CH_2)_3 C_6 H_5 \cdot 6 \cdot C_5 H_{11}$	-0.63	-0.54	0.09	3.16	2.50	0.0	0.0	0.0	0.0	0.0	0.0	10c
32	6-NHC ₆ H ₁₁	-0.60	0.27	0.87	0.0	1.54	0.0	0.0	1.0	0.0	0.0	0.0	10h
33	$1 \cdot (CH_2)_4 C_6 H_5$	-0.60 -0.59	$-0.81 \\ 0.02$	0.21 0.61	3.66 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 1.0	0.0 0.0	0.0 0.0	0.0 0.0	10ь 10d
34 35	Uracil 5-COCH	-0.59	0.02	0.54	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	10 u
36	5-N=NC ₆ H ₅ -6-CH ₃ 5-Br-6-CH ₂ C ₆ H ₄ -4'-NHCOCH ₃	-0.51	-0.73	0.22	0.0	0.50	0.0	0.0	1.0	0.0	0.0	1.0	10i
37°		-0.48	0.72	1.20	0.0	1.04	0.0	0.0	1.0	1.0	0.0	0.0	10j
38 39	$1-(CH_2)_3C_6H_5-6-CH_2C_6H_5$	$-0.48 \\ -0.48$	$-0.08 \\ -0.08$	0.40 0.40	3.16 3.16	2.01 2.01	0.0 0.0	0.0 0.0	0.0 0.0	1.0 1.0	0.0 0.0	$0.0 \\ 0.0$	10c 10e
40	$3-(CH_2)_3C_6H_5-6-CH_2C_6H_5$ $1-(CH_2)_3C_6H_5-6-C_3H_7$	-0.48	-0.70	0.40	3.16	1.50	0.0	0.0	0.0	0.0	0.0	0.0	10c
41	5-COO	-0.48	0.02	0.50	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	10e
42	6-C ₃ H ₇	-0.40	0.26	0.66	0.0	1.50	0.0	0.0	1.0	0.0	0.0	0.0	10d
43°	$5 \cdot Br \cdot 6 \cdot CH_2C_6H_4 \cdot 4' \cdot NHCOCH_2Br$	-0.38 -0.36	0.82 0.58	1.20 0.94	0.0 0.0	1.64 0.19	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	1.0 1.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	10j 10f
44 45	5-Br-6-CH ₂ C ₆ H ₄ -4'-SO ₂ NH ₂ 1-(CH ₂) ₅ C ₆ H ₅	-0.30	-0.68	0.34	4.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10b
46	$1-(CH_2)_{3}C_{6}H_{5}-6-C_{6}H_{5}$	-0.32	-0.63	0.31	3.16	1.96	0.0	0.0	0.0	0.0	0.0	0.0	10c
47	5-C ₆ H ₅	-0.30	0.02	0.32	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	10d
48	5-CH ₃	-0.28 -0.23	0.02 0.72	0.30 0.95	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 1.04 \end{array}$	0.0 0.0	0.0 0.0	1.0 1.0	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$0.0 \\ 0.0$	10d 10j
49 50	6-CH ₂ C ₆ H ₄ -4'-NHCOCH ₃ 5-Br-6-C ₆ H ₅	-0.23	0.72	0.95	0.0	1.96	0.0	0.0	1.0	0.0	0.0	0.0	10j
51	5-CH ₂ C ₆ H ₅ -6-C ₆ H ₅	-0.20	0.34	0.54	0.0	1.96	0.0	0.0	1.0	0.0	0.0	0.0	10d
52	6-C ₆ H₄-4'-NO₂	-0.18	0.29	0.47	0.0	1.68	0.0	0.0	1.0	0.0	0.0	0.0	10d
53	5-F	$-0.11 \\ -0.08$	0.02 0.19	0.13 0.27	0.0 0.0	0.0 1.05	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	0.0 0.0	0.0 0.0	0.0 0.0	10e 10g
54 55	6-COC ₆ H ₅ 6-CF ₃	-0.08 -0.08	0.19	0.27	0.0	0.88	0.0	0.0	1.0	0.0	0.0	0.0	10g 10e
56	6-C ₅ H ₁₁	-0.04	0.42	0.46	0.0	2.50	0.0	0.0	1.0	0.0	0.0	0.0	10d
57	$6 - (CH_2)_3 C_6 H_5$	-0.04	0.53	0.57	0.0	3.16	0.0	0.0	1.0	0.0	0.0	0.0	10d 10j
58 59	$5-BI-6-CH_2C_6H_3-3'-NO_2-4'-NHCOCH_3$	-0.04 0.06	0.69 -0.36	0.73 0.42	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	2.25 2.77	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$-0.28 \\ 0.0$	1.0 1.0	1.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	10j 10f
59 60	$5 \cdot SO_2 NC_5 H_{10} \cdot 6 \cdot CH = CHC_6 H_5$ $5 \cdot CH_2 C_6 H_5 \cdot 6 \cdot CF_3$	0.08	0.16	0.42	0.0	0.88	0.0	0.0	1.0	0.0	0.0	0.0	10i
61	6-NH ₂	0.17	-0.18	0.35	0.0	-1.23	0.0	0.0	1.0	0.0	0.0	0.0	10g
62	$5 \cdot N = N \cdot C_6 H_5 \cdot 6 \cdot C H_2 C_6 H_5$	0.20	0.05	0.15	0.0	2.01	0.0	0.0	1.0	1.0	0.0	1.0	10i 10f
63 64	5-NO ₂ -6-CH=CHC ₆ H ₅	0.21 0.22	0.47 0.26	0.26 0.04	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	2.77 1.50	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	1.0 1.0	0.0 0.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	101 10d
65	$5-C_{5}H_{11}-6-C_{3}H_{7}$ $6-(CH_{2})_{2}C_{6}H_{5}$	0.22	0.45	0.23	0.0	2.66	0.0	0.0	1.0	0.0	0.0	0.0	10d
66	$5-Br-6-(CH_2)_2C_6H_5$	0.24	0.45	0.21	0.0	2.66	0.0	0.0	1.0	0.0	0.0	0.0	10f
67	5-C ₅ H ₁₁ -6-CF ₃	0.28	0.16	0.12	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.88 -1.63	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	$0.0 \\ 0.0$	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	10i 10i
68 69	6-SO ₂ CH ₃ 5-(CH ₂) ₃ C ₆ H ₅ -6-CF ₃	0.28 0.30	$-0.25 \\ 0.16$	0.53 0.14	0.0	0.88	0.0	0.0	1.0	0.0	0.0	0.0	101 10i
07	C (C1.2/3 C61.5 C C1 3	0.00											

Table IX (Continued)

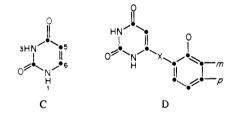

No	Substituants	Obsd ^a	S/I Calcd ^b	$\Delta \log S/I$	m , 1.2		morths	a.moto	<i>I</i> .1	1.2	<i>I</i> -3	<i>I-</i> 4	Re
$\frac{No.}{70}$	Substituents			<u>S/I</u>	$\frac{\pi - 1, 3}{2}$	π-6	$\frac{\pi - \text{ortho}}{2}$		<i>I</i> -1	<i>I</i> -2			
70 71	$6-CH_2C_6H_4-4'-NH_2$	0.32 0.33	0.68 0.53	0.36	0.0	0.78	0.0	$\begin{array}{c} 0.0\\ 0.0\end{array}$	1.0 1.0	1.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	10 10
71 72	5-Br-6-(CH ₂) ₃ C ₆ H ₅ 5-Br	0.33	0.53	0.20 0.33	0.0 0.0	3.16 0.0	0.0 0.0	0.0	1.0	0.0	0.0	0.0	10
73	$6-CH_2C_6H_4-4'-SO_2NH_2$	0.35	0.02	0.33	0.0	0.0 0.19	0.0	0.0	1.0	1.0	0.0	0.0	10
74	$5 \cdot Br - 6 \cdot C_3 H_7$	0.50	0.26	0.20	0.0	1.50	0.0	0.0	1.0	0.0	0.0	0.0	10
75	6-CHOHC ₆ H ₅	0.48	0.10	0.38	0.0	0.54	0.0	0.0	1.0	0.0	0.0	0.0	10
76	5-C ₆ H ₄ -4'-Cl-6-CF ₃	0.49	0.16	0.33	0.0	0.88	0.0	0.0	1.0	0.0	0.0	0.0	10
77	$6-NH(CH_2)_2C_6H_5$	0.49	0.38	0.11	0.0	2.21	0.0	0.0	1.0	0.0	0.0	0.0	10
78	5-(CH ₂) ₂ C ₆ H ₅ -6-CF ₃	0.60	0.16	0.44	0.0	0.88	0.0	0.0	1.0	0.0	0.0	0.0	10
79	5-NO ₂	0.66	0.02	0.64	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	10
80	6-CH ₂ C ₆ H ₅	0.66	0.88	0.22	0.0	2.01	0.0	0.0	1.0	1.0	0.0	0.0	10
81 82	6-NHCH(C, H ₅)CH ₂ C, H ₅ 6-NHC, H ₄ -4'-t-C, H ₉	0.71 0.74	0.57 1.74	0.14 1.00	0.0	3.43 3.35	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$1.0 \\ 1.0$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	0.0 0.0	10 10
83	5 -NHC $_6$ H_4 $-4'$ $-NO_2$	0.74	0.83	0.06	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.73	0.0	0.0	1.0	1.0	0.0	0.0	10
84	$6-N(CH_2C_6H_5)_2$	0.78	0.52	0.26	0.0	3.12	0.0	0.0	1.0	0.0	0.0	0.0	10
85	5-NO ₂ -6-CH ₃	0.80	0.10	0.70	0.0	0.50	0.0	0.0	1.0	0.0	0.0	0.0	10
86	6-CH ₂ C ₆ H ₄ -3'-NHCOCH ₂ Br	0.82	0.58	0.24	0.0	2.01	0.0	-0.37	1.0	1.0	0.0	0.0	10
87	6-N(ĆH ₃)C ₆ H ₅	0.85	0.35	0.50	0.0	2.02	0.0	0.0	1.0	0.0	0.0	0.0	10
88 ^c	5-N=N-Č ₆ H ₅ -6-C ₅ H ₁₁	0.85	-0.40	1.25	0.0	2.50	0.0	0.0	1.0	0.0	0.0	1.0	10
89	6-N(CH ₃)CH ₂ C ₆ H ₅	0.88	0.28	0.60	0.0	1.65	0.0	0.0	1.0	0.0	0.0	0.0	10
90	6-CH ₂ C ₆ H ₄ -4'-F	0.89	0.90	0.01	0.0	2.15	0.0	0.0	1.0	1.0	0.0	0.0	10
91	$5-NO_2-6-C_3H_7$	0.89	0.26	0.63	0.0	1.50	0.0	0.0	1.0	0.0	0.0	0.0	10
92	$5-(CH_2)_{4}C_{6}H_{5}-6-CF_{3}$	0.92	0.16	0.76	0.0	0.88	0.0	0.0	1.0	0.0	0.0	0.0	10
93 94	6-NHC ₆ H ₅ 6-CH ₂ C ₆ H ₄ -4'-CH ₃	1.00 1.02	1.42 0.96	0.42 0.06	0.0	1.37 2.51	0.0	0.0	1.0 1.0	0.0 1.0	1.0 0.0	0.0 0.0	10 10
95	$6-NHCH(C_6H_5)_2$	1.02	0.98	0.08	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	2.91	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	1.0	0.0	0.0	0.0	10
96	$6-N(C_2H_5)CH_2C_6H_5$	1.04	0.49	0.33	0.0	2.95	0.0	0.0	1.0	0.0	0.0	0.0	10
97	$6 \cdot CH_2C_6H_3 \cdot 3' \cdot NO_2 \cdot 4' \cdot F$	1.06	0.68	0.38	0.0	2.15	0.0	-0.28	1.0	1.0	0.0	0.0	10
98	6-CH ₂ C ₆ H ₃ -3'-NO ₂ -4'-NHCOCH ₃	1.12	0.69	0.43	0.0	2.23	0.0	-0.28	1.0	1.0	0.0	0.0	10
99	6-NHCH(CH ₃)C ₆ H ₅	1.15	0.23	0.92	0.0	1.30	0.0	0.0	1.0	0.0	0.0	0.0	10
100	6-SO ₂ C ₆ H ₅	1.15	1.24	0.09	0.0	0.27	0.0	0.0	1.0	0.0	1.0	0.0	10
101	6-CH ₂ C ₆ H ₄ -4'-NHCOCH ₂ Br	1.19	0.82	0.37	0.0	1.64	0.0	0.0	1.0	1.0	0.0	0.0	10
102	5- <i>i</i> -6-CH ₂ C ₆ H ₅	1.22	0.88	0.34	0.0	2.01	0.0	0.0	1.0	1.0	0.0	0.0	10
103	6-NHC ₆ H ₄ -2'-OC ₂ H ₅	1.23	1.84	0.61	0.0	1.37	0.38	0.0	1.0	0.0	1.0	0.0	10
104	6-OC ₆ H ₃	1.24	1.53	0.29	0.0	2.08	0.0	0.0	1.0	0.0	1.0	0.0	10
105 106	$6 \cdot \text{NHC}_6 H_4 \cdot 4' \cdot CH_3$	1.28 1.30	1.50	0.22	0.0	1.87	0.0	0.0	1.0	0.0	1.0	0.0	10
107	6-NHC ₆ H ₄ -2'-OCH ₃ 6-NHC ₆ H ₄ -4'-C ₂ H ₅	1.30	1.39 1.58	0.09 0.15	0.0	1.37	-0.02	0.0	1.0	0.0	1.0	0.0	10
108	$6-\text{NHC}_6H_4-4'-Cl$	1.46	1.58	0.13	0.0 0.0	2.37 2.35	0.0 0.0	0.0 0.0	1.0 1.0	0.0 0.0	$1.0 \\ 1.0$	0.0 0.0	10 10
109	$6 \cdot CH_2C_6H_4 - 4' \cdot NO_2$	1.48	0.83	0.65	0.0	1.73	0.0	0.0	1.0	1.0	0.0		10
110	5-Br-6-CH ₂ C ₆ H ₄ -4'-NH ₂	1.55	0.68	0.87	0.0	0.78	0.0	0.0	1.0	1.0	0.0		10
111	6-NHCH₂Ć₄H̃₄-4′-Cl	1.56	1.47	0.09	0.0	1.71	0.0	0.0	1.0	0.0	1.0	0.0	10
112	6-NHC ₆ H ₄ -3'-CH ₃	1.56	1.82	0.26	0.0	1.37	0.0	0.50	1.0	0.0	1.0	0.0	10
113	6-NHC ₆ H ₄ -4'-Br	1.60	1.60	0.00	0.0	2.50	0.0	0.0	1.0	0.0	1.0	0.0	10
114	5-Br-6-CH ₂ C, H,	1.60	0.88	0.72	0.0	2.01	0.0	0.0	1.0	1.0	0.0	0.0	10
115	$6-NHC_{a}H_{a}^{4}-4^{3}-C_{a}^{2}H_{a}$	1.73	1.74	0.01	0.0	3.37	0.0	0.0	1.0		1.0		10
116 117	$6-NHCH_2C_6H_4-2',5'-(CH_3)_2$ $6-NHCH_4H_4-4'-OC_2H_5$	1.78 1.78	2.00	0.22	0.0	1.50	0.50	0.0	1.0	0.0	1.0	0.0	10
118	6-NHC ₆ H ₄ -3'-Cl	1.78	1.48 2.03	0.30 0.22	0.0 0.0	1.75 1.64	0.0	0.0	1.0 1.0	0.0	1.0 1.0	0.0	10 10
119	6-NHCH ₂ C ₆ H ₅	1.82	1.36	0.46	0.0	1.04	0.0 0.0	$\begin{array}{c} 0.71 \\ 0.0 \end{array}$	1.0	0.0 0.0	1.0	0.0 0.0	10
120	6-NHC ₆ H ₃ -2',5'-(CH ₃) ₂	1.98	2.06	0.08	0.0	1.87	0.50	0.0	1.0	0.0	1.0	0.0	10
121	6-SC ₆ H ₅	2.00	1.57	0.43	0.0	2.32	0.0	0.0	1.0	0.0	1.0	0.0	10
122 ^c	6-CH, C, H, ·3'-NO,	2.07	0.65	1.42	0.0	2.01	0.0	-0.28	1.0	1.0	0.0	0.0	10
123°	5.Br-6-CH ₂ C ₆ H ₃ -3'-NO ₂ -4'-NH ₂	2.10	0.65	1.45	0.0	1.99	0.0	-0.28	1.0	1.0	0.0	0.0	10
124	$6 - \text{NHC}_6 H_4 - 2' - C_2 H_5$	2.11	2.54	0.43	0.0	1.37	1.0	0.0	1.0	0.0	1.0	0.0	10
125	$6 \cdot \text{NHC}_6 H_4 \cdot 2' \cdot CH_3$	2.11	1.98	0.13	0.0	1.37	0.50	0.0	1.0	0.0	1.0	0.0	10
126 ^c 127	2 - 6 - 3 2	2.20	0.65	1.55	0.0	1.99	0.0	-0.28	1.0	1.0	0.0	0.0	10
127	$6-\text{NHCH}_2C_6H_4-2'-C1$	2.26	2.16	0.10	0.0	1.0	0.71	0.0	1.0		1.0	0.0	10
120	$6 \cdot \text{NH}(2 \cdot \text{C}_{10} \text{H}_7)$ $6 \cdot \text{NHC}_6 \text{H}_4 \cdot 2' \cdot \text{Cl}$	2.26 2.28	2.06 2.26	0.20	0.0	2.03	0.0	0.66	1.0		1.0	0.0	10
130	6-NHC ₆ H ₄ -4'-C ₆ H ₅	2.28	2.26	0.02 0.58	0.0	1.66	0.71	0.0	1.0		1.0	0.0	10
131	6-NHC ₆ H ₃ -2',6'-(CH ₃) ₂	2.32	2.06	0.38	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	3.33 1.87	$\begin{array}{c} 0.0\\ 0.50\end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0		1.0	0.0	10
132	$6-\text{NH}(1-C_{10}H_7)$	2.34	2.69	0.28	0.0	1.87	0.50	0.66	1.0		1.0 1.0	0.0 0.0	10 10
133	$6 \cdot \text{NHC}_{6} \text{H}_{3} \cdot 2', 4' \cdot (\text{CH}_{3})_{2}$	2.43	2.06	0.37	0.0	1.87	0.50	0.00	1.0	0.0	1.0	0.0	10
134	6-NHCH, C, H, -3'-Cl	2.52	1.93	0.59	0.0	1.00	0.0	0.71	1.0	0.0	1.0	0.0	10
135	6-NHC, H, -3'-C, H,	2.63	3.00	0.37	0.0	1.37	0.0	1.96	1.0		1.0	0.0	10
136	$6 - NHC_6 H_3 - 2', 3' - (CH_3)_3$	2.65	2.38	0.27	0.0	1.37	0.50	0.50	1.0		1.0	0.0	10
137	$6 \cdot \text{NHC}_{6} H_{4} \cdot 2', 3' - C1,$	3.04	2.86	0.17	0.0	1.83	0.71	0.71	1.0		1.0	0.0	10
138	6·NH(2-Anthranyl)	3.04	2.70	0.34	0.0	2.69	0.0	1.32	1.0		1.0	0.0	10
139	$6-\text{NHCH}_{2}(1-C_{10}H_{7})$	3.28	2.63	0.65	0.0	1.00	0.66	0.66	1.0		1.0		10
140	$6 \cdot \text{NHCH}_2(1 - C_{10} \text{H}_5 - 6', 7' - Cl_2)$	3.57	4.01	0.44	0.0	1.00	1.37	1.37	1.0	0.0	1.0	-	10
141	$6 \cdot \text{NHCH}_{2}[1 \cdot C_{10} \text{H}_{5} \cdot 6', 7' \cdot (\text{CH}_{3})_{2}]$ $6 \cdot \text{NHCH}_{2}(1 - C_{10} \text{H}_{6} \cdot 7' \cdot \text{Cl})$	3.60 3.76	3.60 3.43	0.00 0.33	0.0	$\begin{array}{c} 1.00 \\ 1.00 \end{array}$	1.16 1.37	1.16	1.0 1.0		1.0 1.0	0.0	10
142					0.0			0.66		0.0		0.0	10

Table X.Squared Correlation Matrix for Variables Pertaining toEq 6 for Thymidine Phosphorylase (E. coli)

linkage.^{17a} Baker used 5-fluorouracil-2⁻deoxy ribonucleoside (FUDR) as a substrate in his studies in place of the natural thymidine analog. His interest was in finding inhibitors to prevent the detoxification of the FUDR with further catabolism of 5-FU by other enzymes to α -fluoro- β -alanine.^{17b}

Certain tumors cannot detoxify FU or FUDR for lack of these catabolic enzymes. This could form the basis of cancer chemotherapy. The QSAR for uracils causing 50% inhibition of enzyme from $E.\ coli$ B has been developed from the data in Table IX. Although eq 6 contains eight

$$\log [S]/[1] 0.5 = 1.177 (\pm 0.23) (I-3) + 1.814 (\pm 0.32) (I-1) + 1.127 (\pm 0.35) \pi_0 + 0.536 (\pm 0.22) (I-2) + 0.807 (\pm 0.29) \pi_m + 0.269 (\pm 0.12) (\pi - 1,3) - 0.827 (\pm 0.37) (I-4) + 0.163 (\pm 0.08) (\pi - 6) - 1.798 (\pm 0.29) (6) n r s 136 0.948 0.431$$

terms, there are, on the average, 17 data points per term. In this expression I-3 refers to $6 \cdot X \cdot C_6 H_5$ functions where X represents NH, NHCH₂, O, S, and SO₂. I-2 takes the value of 1 for the case where X = CH₂. All of these bridge atoms are electron releasing except SO₂. There is only one example of this unit and only one example of an S bridge. It may simply be fortuitous that these two congeners are well parameterized by *I*-3; other such congeners must be tested before this classification can be made with any certainty. The stereoelectronic character of the congeners where $X = CH_2$ does not allow such effective inhibition. It was thought possible that the electronic effect of the bridge atom would be a significant feature of X; however, the use of \mathcal{F} and/or \mathcal{R} to parameterize the electronic character of X did not result in a reduction in the variance of the data.

The indicator variable *I*-1 takes the value of 1 for those congeners where H is present on the nitrogens at the 1 and 3 positions. These congeners are, on the average, 65 times as active as those with substituents in one of these positions. This does not seem to be a steric effect since the size of the group has little import, but rather suggests a role for hydrogen bonding. The variables π_0 and π_m refer to positions on the phenyl ring attached through X. It is assumed that only substituents on one side of this ring contact hydrophobic space; hence, 5- and 6-substituents are given a value of π_m or π_0 of zero. These substituents. as well as para substituents, are included in π -6; the small coefficient with this term indicates little effect for such groups. It seemed likely that part of π_0 might be steric in nature but an attempt to delineate a steric role for ortho substituents by using E_{s} o did not result in an improved correlation. The high collinearity of E_{s} -o and π_{0} can be seen from Table X. A role for a steric effect of ortho substituents might be established with a better selection of substituents. Substituent space around the 1 and 3 positions does not appear to be truly hydrophobic as the low coefficient with relatively large confidence limits indicates. Large substituents in these positions do not destroy activity; they simply make very little contribution to inhibitory power and this is largely offset by the loss of the H atom on nitrogen (I-1). This suggests that these positions are essentially open to the surrounding solvent (high bulk tolerance with small substituents being as well fit as large groups) with some weak dispersion forces playing a small role. This might be due to weak interaction with a polar surface of the enzyme.

I-4 takes the value of 1 for the bridges 5-N=N- and $5-SO_2NH-$. Only six congeners (three of each type) have been used in the derivation of the regression equations. Attempts to separate electronic effects of 5-substituents via \mathcal{F} and \mathcal{R} were also unsuccessful. I-4 is not a very important variable; it does, however, merit further study to see if it primarily represents a steric problem. It is difficult to visualize what properties the azo and sulfonyl groups have in common.

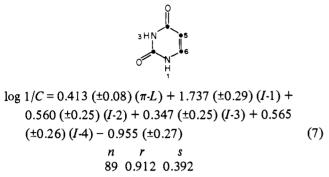
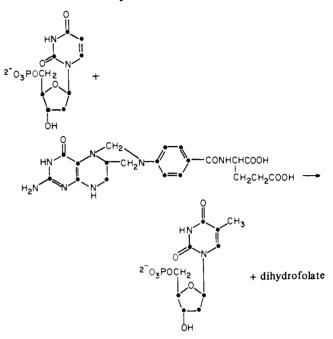

It is surprising that no role could be established for electronic effects of substituents in the 5 or 6 positions. A wide variation of substituents has been tested; there is considerable unaccounted for variance (s for eq 6 is 0.43). It is possible that a better purified enzyme and more careful testing might bring out an electronic role for the 5- and 6-functions.

Table X1. Development of QSAR for Eq 6 for Thymidine Phosphorylase (E. coli)

Intercept	I-3	<i>I</i> -1	π_{0}	I-2	π_m	π-1,3	<i>I-</i> 4	π-6	r	S	$F_{1,X}^{a}$
-0.16	2.24								0.761	0.856	185
-1.11	1.79	1.41							0.874	0.644	104
-1.11	1.38	1.41	1.27						0.899	0.582	30.6
-1.17	1.55	1.30	1.27	0.61					0.913	0.545	19.9
-1.17	1.38	1.31	1.02	0.65	0.76				0.925	0.510	19.1
-1.78	1.39	1.91	1.02	0.66	0.76	0.29			0.935	0.478	19.2
-1.78	1.31	1.98	1.02	0.63	0.77	0.29	0.75		0.942	0.454	14.9
-1.80	1.18	1.81	1.13	0.54	0.81	0.29	-0.83	0.16	0.948	0.431	14.9

 ${}^{a}F_{1,120;\alpha,0,001} = 11.4.$

Uridine Phosphorylase (from Walker 256 Rat Tumor). Baker points out that uridine phosphorylase from different sources shows quite different responses to the same inhibitor.^{17b} In this study enzyme from Walker 256 tumor was employed and the reaction inhibited by uracils was the cleavage of FUDR. Variable π -L in eq 7



is the larger hydrophobic substituent in the 1 or 5 position. Such a mode of parameterization yields a better correlation than, say, π -1 + π -5 or π -L + π -S where π -S is the smaller of the two possible hydrophobic groups. Using the two variables π -1 and π -5 gives a rather good correlation with essentially equal coefficients with each term. The fact that π -L alone does a better job suggests that there is a preferred hydrophobic space near the 1 or 5 position which can be occupied by the more hydrophobic of the substituents by rotation of the uracil about its 3–6 axis. However, as can be seen in Table XIII, there is such a large amount of collinearity between π -1,5 and π -L, and π -1,5 and MR-L that firm statements about the nature of enzymic 1- and 5-space cannot be made without further study.

Table XIV shows the development of the Walker 256 uridine phosphorylase QSAR. The most important variable is the hydrophobic term π -L. Since the value of this term is 0.41 rather than in the range 0.1–0.2 and since π gives a better correlation than MR, it seems most likely that interaction of substituents is predominantly with hydrophobic space rather than polar space. The second most important variable is I-1, which takes a value of 1 for $5-CH_2C_6H_5$ and $5-SC_6H_5$ substituents. The large coefficient with this term suggests that these two groups appear to be of optimum size and configuration to cause a conformational change in the enzyme which is quite inhibitory. The contribution by I-1 is in addition to that made by the π -L component of these functions. Other large 5-substituents such as 5-COOEt, 5-Br, 5-NHC₆H₅, $5-N=NC_6H_5$, and $5-NHCH_2C_6H_5$ are adequately parameterized by π -L alone. The third most significant parameter, I-4, is the only parameter for substituents in the 6 position. I-4 takes the value of 1 only for 6-NHCH₂R. Groups such as 6-NHC6H5 and 6-NHCHR1R2 are not included. Since other large groups such as 6-CH₂C₆H₄X do not make any contribution to inhibitory power, it is thought that substituents in the 6 position fall into aqueous space and do not make direct contact with the enzyme. If this is so, then 6-NHCH₂R must make its contribution via an electronic effect. Attempts to justify this hypothesis by the use of \mathcal{F} and \mathcal{R} were not successful. I-2 takes the value of 1 for $1-CH_2C_6H_5$; this group increases activity by a factor of about 4. The least important variable is I-3, which has a value of 1 for 1-H. An H on the 1 position makes a small contribution to inhibitory activity which might be ascribed to H-bonding.

Assuming the different reaction end points for eq 6 and 7 are comparable, a comparison of two different kinds (bacterial and mammalian) of pyrimidine nucleoside phosphorylase can be made, even though different sets of uracils were studied in each case. Hydrophobic interactions in different portions of enzymic space are important for each enzyme but the hydrophobic space does not appear to be large.

Thymidylate Synthetase ($E. \ coli\ B$). Thymidylate synthetase catalyzes the transfer of 1-carbon fragments; it is crucial for the synthesis of the DNA bases.

Equation 8, which is derived from the data in Table XV,

og [S]/[1]
$$0.5 = 0.255 (\pm 0.05) (MR-Y) + 0.905 (\pm 0.29)$$

(I-1) ~ 0.664 (±0.23) (I-2) - 2.910 (±0.32) (8)
 $n r s$
41 0.914 0.299

constitutes the QSAR for the 50% inhibition of thymidylate synthetase by 2-amino-6-methylpyrimidines. Baker employed the reactants shown in this equation. For the set of 43 congeners under consideration, X = OH, SH, H, NH_2 , or $N(Me)_2$; only one congener was present for each of the cases where X = H, NH, or N(Me)₂. I-1 takes the value of 1 for X = SH. This result reminds us that thioinosinate binds to inosinate dehydrogenase fourfold better than the substrate inosinate; this is the reason for 6-mercaptopurine's use as an antitumor drug. I-2 assumes the value of 1 for functions of the type where Y = $(CH_2)_3N(R)C(=O)Z$ and where $Z = CH_3$, C_6H_5 , or OC_6H_5 . Two data points (34 and 36) have been dropped because they are poorly fit; however, including these does not make a significant change in the terms of eq 8. The positive coefficient with I-1 indicates that 4-SH functions are about eight times as effective in enzyme inhibition as 4-OH or 4-NH₂. The negative coefficient with I-2 brings out the fact that carbonyl groups attached to the nitrogen of the side chain result in about five times poorer inhibition. It is surprising that sulfonamides not parameterized by I-2are well fit, indicating that they do not produce a deleterious effect on inhibition. Although there is a 500-fold range in the activity of the inhibitors, relatively little highly specific information has been gained. The most useful

Table XII. Constants Used for Deriving Eq 7 for Uridine Phosphorylase (Walker 256)

No.	Substituents	Obsd ^a	Calcd ^b	$ \Delta \log S/I $	π-L	<i>I</i> -1	<i>I</i> -2	<i>I</i> -3	<i>I</i> -4	Ref		
1	6-OC ₆ H ₅	-1.32	-0.61	0.71	0.0	0.0	0.0	1.0	0.0	11a		
2 3 ^c	$\begin{array}{l} 6\cdot NHCH(CH_3)C_6H_5\\ 1-c-C_5H_9\\ 6-CH_2C_6H_5\\ 6-NH_2\\ 1-CH_3\\ 6-NHC_6H_3-2',6'-(CH_3)_2\\ 6-CF_3\\ H\\ 6-(CH_2)_2C_6H_5\\ 1-C_4H_9-5-Br\\ 6-SO_2C_6H_5\\ 1-(CH_2)_2C_6H_5\\ 1-(CH_2)_2C_6H_5\\ 6-NHC_4H_9\\ 1-(CH_2)_2C_6H_5\\ 6-(CH_2)_3C_6H_5\\ 6-(CH_2)_3C_6H_5\\ 6-(CH_2)_3C_6H_5\\ 5-CO_2C_2H_5\\ \end{array}$	-1.30 -1.16	$-0.61 \\ -0.07$	0.69 1.09	0.0 2.14	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	1.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	11a 11b		
4	6-CH.C.H.	-1.04	-0.61	0.43	0.0	0.0	0.0	1.0	0.0	11a		
5	6-NH ₂	-1.00	-0.61	0.39	0.0	0.0	0.0	1.0	0.0	11a		
6	1-CH ₃	-0.95	-0.75	0.20	0.50	0.0	0.0	0.0	0.0	11b		
7 8	$6-\text{NHC}_{6}\text{H}_{3}-2', 6'-(\text{CH}_{3})_{2}$	-0.94 -0.92	-0.61 -0.61	0.33 0.31	0.0	$0.0 \\ 0.0$	0.0	1.0 1.0	0.0 0.0	11a 11c		
9	6-Сг ₃ Н	-0.92	-0.61 -0.61	0.31	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0	0.0 0.0	1.0	0.0	11c 11a		
10	6-(CH ₂),C ₆ H ₅	-0.83	-0.61	0.22	0.0	0.0	0.0	1.0	0.0	11a		
11	1-C ₄ H ₉ -5-Br	-0.81	-0.13	0.68	2.00	0.0	0.0	0.0	0.0	11b		
12 13 ^c	6-SO ₂ C ₆ H ₅	-0.81 -0.78	-0.61	0.20	0.0	0.0	0.0	1.0	0.0	11a		
13-	6-NHCH	-0.78	0.14 -0.04	0. 92 0.64	2.66 0.0	0.0 0.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	11b 11a		
15	1-(CH,),OC,H,	-0.65	-0.12	0.53	2.01	0.0	0.0	0.0	0.0	11b		
16	$6 - (CH_2)_3 C_6 H_5$	-0.65	-0.61	0.04	0.0	0.0	0.0	1.0	0.0	11a		
17	$6 \cdot \text{NH}(\text{CH}_2)_2 C_6 H_5$	-0.60	-0.04	0.56	0.0	0.0	0.0	1.0	1.0	11a		
18 19	$5 \cdot CO_2 C_2 H_5$	-0.57 -0.57	-0.40 -0.61	0.17 0.04	$\begin{array}{c} 0.51 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	11c 11a		
20	6-NHCH(C, H,)CH, C, H,	-0.57	-0.61	0.04	0.0	0.0	0.0	1.0	0.0	11a		
21	1.C ₃ H ₇	-0.57	-0.33	0.23	1.50	0.0	0.0	0.0	0.0	11b		
22	$1 - (CH_2)_3 C_6 H_5$	-0.37	0.30	0.67	3.03	0.0	0.0	0.0	0.0	11b		
23 24	$5 \text{-NH}(CH_2)_3 C_6 H_5$	-0.33 -0.30	-0.04 -0.04	0.29 0.26	0.0 1.37	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	1.0 0.0	11a 11c		
25	5-F	-0.28	-0.55	0.20	0.14	0.0	0.0	1.0	0.0	11c		
26	1-C4H9-5-SO2NHC4H9	-0.26	-0.13	0.13	2.00	0.0	0.0	0.0	0.0	11b		
27	1-CH ₂ C ₆ H ₄ -3'-NO ₂	-0.25	0.32	0.57	1.73	0.0	1.0	0.0	0.0	11b		
28 ^c 29	$5 \cdot CH_2 C_6 H_5 \cdot 0 \cdot CF_3$ 6-NHC H -2' 3'-(CH)	-0.22 -0.18	1.96 -0.61	2.18 0.43	2.01 0.0	$\begin{array}{c} 1.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	11c 11a		
30	$5-N=N-C_{6}H_{5}-6-C_{5}H_{11}$	-0.15	0.09	0.24	1.69	0.0	0.0	1.0	0.0	11a		
31	5-Br-6-NHCH ₂ C ₆ H ₅	-0.14	0.31	0.45	0.86	0.0	0.0	1.0	1.0	11a		
32	$5-NH(CH_2)_2C_6H_5$	-0.13	0.06	0.19	1.61	0.0	0.0	1.0	0.0	11c		
33 34	6-NH(CH ₂) ₂ C ₆ H ₅ 5-CO ₂ C ₂ H ₅ 6-N(CH ₃)CH ₂ C ₆ H ₅ 6-NHCH(C ₆ H ₅)CH ₂ C ₆ H ₅ 1-C ₃ H ₇ 1-(CH ₂) ₃ C ₆ H ₅ 6-NH(CH ₂) ₃ C ₆ H ₅ 5-NHC ₆ H ₅ 5-F 1-C ₄ H ₉ -5-SO ₂ NHC ₄ H ₉ 1-CH ₂ C ₆ H ₄ -3'-NO ₂ 5-CH ₂ C ₆ H ₅ -6-CF ₃ 6-NHC ₆ H ₃ -2',3'-(CH ₃) ₂ 5-N=N-C ₆ H ₅ -6-C ₅ H ₁₁ 5-Br-6-NHCH ₂ C ₆ H ₅ 6-NHCH ₂ C ₆ H ₅ 6-NHC ₂ C ₆ H ₅ 6-NH ₂ C ₆ H ₅ 6-NH ₂ C ₆ H ₅ 6-NH ₂ C ₆ C ₆ C ₆ 6-NH ₂	$-0.10 \\ -0.01$	-0.04 -0.61	0.06 0.60	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	1.0 0.0	11 a 11a		
35	$5-NH(CH_2)C_2H_2$	0.00	0.47	0.47	2.6 1	0.0	0.0	1.0	0.0	11a 11c		
36	6-NHCH2C,H	0.00	-0.04	0.04	0.0	0.0	0.0	1.0	1.0	1 1a		
37	6-NHC ₆ H ₃ -2',3'-Cl ₂	0.00	-0.61	0.61	0.0	0.0	0.0	1.0	0.0	11a		
38 39	6-NHC ₂ H ₁ 6-NHCH(C ₆ H ₅) ₂ 1-CH ₂ C ₆ H ₄ -4'-CH ₃ 1-C ₄ H ₉ 6-NHCH ₂ C ₆ H ₄ -3'-Cl 5-Br-6-CH ₂ C ₆ H ₅ 1-(CH ₂) ₃ OC ₆ H ₅ 6-NH(CH ₂) ₄ C ₆ H ₅ 5-NHCH ₂ C ₆ H ₅ 1-CH ₂ C ₆ H ₄ -3'-NHCOCH ₂ Br 1- <i>i</i> - <i>i</i> -C H	0.01 0.0 2	-0.04 -0.61	0.05 0.63	0.0 0.0	0.0 0.0	0.0 0.0	1.0 1.0	1.0 0.0	11a 11a		
40	1-CH_C_H_+4'-CH_	0.02	0.64	0.61	2.51	0.0	1.0	0.0	0.0	11b		
41	1-C ₄ H ₉	0.06	-0.13	0.19	2.00	0.0	0.0	0.0	0.0	11b		
42	6-NHCH ₂ C ₆ H ₄ -3'-Cl	0.08	-0.04	0.12	0.0	0.0	0.0	1.0	1.0	11a		
43 44	$5 \cdot BI - 6 \cdot CH_2 C_6 H_5$	0.08 0.12	-0.25 0.08	0.33 0.04	0.86 2.51	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 0.0	0.0 0.0	11a 11b		
44	$6-NH(CH_2)_3OC_6H_5$	0.12	-0.04	0.04	0.0	0.0	0.0	1.0	1.0	110 11a		
46	5-NHCH ₂ C ₆ H ₅	0.17	-0.1 9	0.36	1.0	0.0	0.0	1.0	0.0	11c		
47	1-CH ₂ C ₆ H ₄ -3'-NHCOCH ₂ Br	0.19	0.28	0.09	1.64	0.0	1.0	0.0	0.0	11b		
48 49		0.19 0.20	0.20 0.08	0.01 0.1 2	2.80 2.50	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	0.0 0.0	11b 11b		
50	1-C _s H ₁₁ 5-Br	0.20	-0.25	0.12	0.86	0.0	0.0	1.0	0.0	11c		
51	$6-NHCH_2-(1-C_{10}H_7)$	0.22	-0.04	0.26	0.0	0.0	0.0	1.0	1.0	11a		
52	6-NHCH ₂ C ₆ H ₄ -2'-Cl	0.22	-0.04	0.26	0.0	0.0	0.0	1.0	1.0	11a		
53	$1-i-C_{s}H_{11}$	0.26 0.30	0.00 0. 26	0.26 0.04	2.30 2.11	0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	0.0 0.0	11b 11c		
54 55	5-NH(CH ₂) ₃ C ₆ H ₅ 6-NH(CH ₂) ₃ OC ₆ H ₅	0.30	-0.04	0.04	2.11 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0	1.0	1.0	11a		
56	5-OC ₆ H ₅	0.32	0.25	0.07	2.08	0.0	0.0	1.0	0.0	11c		
57	$1 \cdot (CH_2)_5 OC_6 H_5$	0.32	0.50	0.18	3.51	0.0	0.0	0.0	0.0	11b		
58 59	$1 - CH_2C_6H_4 - 3' - OH$ $1 - CH_2 - (2 - C_{10}H_7)$	0.35 0.40	0.16 0.98	0.19 0.58	1.34 3.33	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.0 1.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	11b 11b		
60	5-CH,OCH,C,H,	0.43	0.04	0.39	1.56	0.0	0.0	1.0	0.0	11c		
61	1-CH,C,H,	0.43	0.44	0.01	2.01	0.0	1.0	0.0	0.0	11b		
62 63	5-BI-6- $CH_2C_6H_4$ -3'-NO ₂	0.43 0.46	-0.25 0.49	0.68 0.03	0.86 2.66	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	1.0 1.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	11a 11c		
64	5-(CH ₂) ₂ C ₆ H ₅ 1-C ₄ H ₉ -5-SO ₂ NHC ₆ H ₅	0.46	-0.13	0.03	2.00	0.0	0.0	1.0 0.0	0.0	11c 11b		
65	$1 - CH_2 - (1 - C_{10}H_7)$	0.52	0.98	0.46	3.33	0.0	1.0	0.0	0.0	11b		
66	$1 \cdot (CH_2)_5 C_6 H_5$	0.61	0.71	0.10	4.03	0.0	0.0	0.0	0.0	11b		
67 68	$1-(CH_2)_6C_6H_5$	0.66 0.67	0. 92 -0.04	0.26 0.71	4.53 0.0	0.0 0.0	0.0 0.0	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	11b 11a		
68 69	6-NH(CH ₂) ₅ C ₆ H ₅ 1-CH ₂ C ₆ H ₄ -3'-Cl	0.67	-0.04	0.71	0.0 2.72	0.0	0.0 1.0	1.0 0.0	1.0 0.0	11a 11b		
07		<i></i>	5.75	¥194		2.0		0.0				

Table XII (Continued)

Log S/I											
No.	Substituents	Obsda	Calcd ^b	∆ log <i>S/I</i>	π -L	<i>I</i> -1	I-2	1-3	<i>I</i> -4	Ref	
70	1-CH ₂ C ₆ H ₄ -2'-OCH ₃	0.82	0.43	0.39	1.99	0.0	1.0	0.0	0.0	11b	
71	1-(CH ₂) ₃ OC ₆ H ₅ -5-(CH ₂) ₄ C ₆ H ₅	0.86	0.50	0.36	3.53	0.0	0.0	0.0	0.0	11c	
7 2	5-(CH ₂) ₃ C ₆ H ₅	0.91	0.64	0.27	3.03	0.0	0.0	1.0	0.0	11c	
73	1-(CH ₂), C ₆ H ₅ 1-CH ₂ C ₆ H ₄ -4'-OC ₆ H ₅	0.94	0.50	0.44	3.53	0.0	0.0	0.0	0.0	11b	
74	1-CH ₂ C ₆ H ₄ -4'-OC ₆ H ₅	1.02	1.30	0.28	4.09	0.0	1.0	0.0	0.0	11b	
75	1-(CH ₂), OC ₆ H ₅ 1-CH ₂ C ₆ H ₄ -3'-CH ₃	1.06	0.29	0.77	3.01	0.0	0.0	0.0	0.0	11b	
76	1-CH ₂ C ₆ H ₄ -3'-CH ₃	1.19	0.56	0.63	2.31	0.0	1.0	0.0	0.0	11b	
77 ^c	1-CH,C,H,-3'-OCH	1.35	0.43	0.92	1.99	0.0	1.0	0.0	0.0	11b	
78	1-CH ₂ C ₆ H ₃ -3',5'-(CH ₃) ₂	1.40	0.85	0.55	3.01	0.0	1.0	0.0	0.0	11b	
79 ^c	5-NO,	1.43	-0.61	2.04	0.0	0.0	0.0	1.0	0.0	11c	
80	1-CH ₂ C ₆ H ₄ -3'-OCH ₂ C ₆ H ₅	1.52	1.31	0.21	4.12	0.0	1.0	0.0	0.0	11b	
81	1-CH ₂ C, H ₂ -3'-C, H ₂	1.60	1.79	0.19	5.29	0.0	1.0	0.0	0.0	11b	
82	1-CH ₂ C ₆ H ₄ -3'-O(CH ₂) ₄ C ₆ H ₅ 1-CH ₂ C ₆ H ₄ -3'-OC ₆ H ₅	1.63	1.74	0.11	5.17	0.0	1.0	0.0	0.0	11b	
83	1-CH ₂ C ₆ H ₄ -3'-OC ₆ H ₅	1.63	1.30	0.33	4.09	0.0	1.0	0.0	0.0	11b	
84	1-CH,C,H,-3'-O(CH,),C,H,	1.64	1.33	0.31	4.17	0.0	1.0	0.0	0.0	11b	
85 ^c	1-CH,C,H,-3'-OC,H.	1.74	0.59	1.15	2.39	0.0	1.0	0.0	0.0	11b	
86	$5-CH_{2}-(1-C_{10}H_{7})$	1.76	2.50	0.74	3.33	1.0	0.0	1.0	0.0	11c	
87	$1 - CH_2C_6H_4 - 3' - O(CH_2)_3C_6H_5$	1.79	1.53	0.25	4.67	0.0	1.0	0.0	0.0	11b	
88	1-CH ₃ -5-CH ₂ C ₆ H ₅	1.81	1.61	0.20	2.01	1.0	0.0	0.0	0.0	11c	
8 9	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 5 \cdot CH_2 C_6 H_6$	1.85	1.82	0.03	2.51	1.0	0.0	0.0	0.0	11c	
90	5-CH ₂ C ₆ H ₅	1.88	1.96	0.08	2.01	1.0	0.0	1.0	0.0	11c	
91	5-SC,H,	1.89	2.09	0.20	2.32	1.0	0.0	1.0	0.0	11c	
92 ^c	$5 - (CH_2)_{4}C_{6}H_{5}$	2.00	0.85	1.15	3.53	0.0	0.0	1.0	0.0	11c	
93	$1,5-(CH_2C_6H_5)_2$	2.19	2.17	0.02	2.01	1.0	1.0	0.0	0.0	11c	
94	5-CH,C,H,-4'-OCH,	2.32	1.95	0.37	1.99	1.0	0.0	1.0	0.0	11c	
95	5-CH ₂ C ₆ H ₄ -3'-OC ₂ H ₅	2.46	2.12	0.34	2.39	1.0	0.0	1.0	0.0	11c	
96	5-CH ₂ C ₆ H ₄ -3'-OC ₂ H ₅ 5-CH ₂ C ₆ H ₄ -3'-OCH ₂ C ₆ H ₅	2.90	2.83	0.07	4.12	1.0	0.0	1.0	0.0	11c	

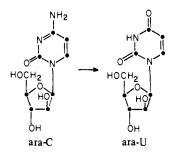
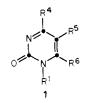

^a Calculated from results of Baker et al.¹¹ ^b Calculated using eq 7. ^c These molecules not used in deriving equations.

Table XIII. Squared Correlation Matrix for Variables of Eq 7 for Uridine Phosphorylase (Walker 256)

	π-1,5	MR-L	π-L	<i>I</i> -1	<i>I</i> -2	<i>I</i> -3	<i>I</i> -4
π-1,5	1.00	0.83	0.94	0.07	0.22	0.49	0.20
MR-L		1.00	0.89	0.05	0.28	0.39	0.22
π-L			1.00	0.03	0.25	0.46	0.20
<i>I</i> -1				1.00	0.01	0.01	0.02
I-2					1.00	0.35	0.05
I-3						1.00	0.13
I-4							1.00

information is the potency of the SH function. Increasing activity by increasing MR-Y would probably be of very little value for in vivo systems. A slight improvement over eq 8 can be obtained (see Table XVII) by adding the variable *I*-3, which takes the value of 1 for X = OH. The collinearity between *I*-3 and *I*-1 makes for ambivalence in the use of *I*-3. If more 4-X functions (other than SH and OH) had been studied, *I*-3 might be a more important term.

Cytosine Nucleoside Deaminase (*E. coli* **B**). This enzyme catalyzes the deamination of nucleosides such as ara-C to ara-U.

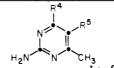

Ara-C is a rather effective antitumor agent for certain types of cancers; however, ara-U is not very cytotoxic. Baker hoped eventually to find an inhibitor of cytosine nucleoside
 Table XIV.
 Development of QSAR of Eq 7 for Uridine

 Phosphorylase (Walker 256)

Inter- cept	π-L	<i>I-</i> 1	<i>I-</i> 4	I-2	<i>I</i> -3	r	s	$F_{1,X}^{a}$
-0.39	0.41					0.676	0.687	73.4
-0.45	0.35	1.68				0.747	0.472	98.7
-0.65	0.42	1.72	0.61			0.889	0.432	11.4
-0.65	0.35	1.82	0.60	0.43		0.904	0.406	12.3
-0.95	0.41	1.73	0.56	0.56	0.34	0.912	0.392	7.36

 ${}^{a}F_{1,60;\alpha_{0,001}} = 11.97; F_{1,60;\alpha_{0,01}} = 7.08.$

deaminase which would be selective against tumor enzyme but inactive against human enzyme and in this way increase the effectiveness of ara-C. This initial study was done with enzyme from *E. coli*. The QSAR for uracils causing 50% inhibition of the cytosine nucleoside deaminase has been formulated from the data in Table XVIII. Equation 9, using π -5 and π -1,6, gives a somewhat



$$\log 1/C = 0.283 (\pm 0.06) (\pi - 5) + 0.188 (\pm 0.07) (\pi - 1,6) + 0.265 (\pm 0.16) (l - 1) + 2.257 (\pm 0.24)$$
(9)

$$n r s$$

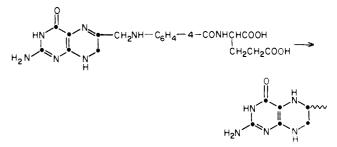
$$71 0.927 0.227$$

better correlation than the corresponding equation using MR-5 and MR-1,6 (r = 0.897 for the MR equation). As in most of Baker's studies, the high collinearity between π and MR (see Table XIX) precludes one's making a clear decision about the nature of 1,5,6-space. Our inclination

Log S/I										
No.	R⁴	R ⁵	Ob sd ^a	Calcd ^b	$ \Delta \log S/I $	MR-5	<i>I</i> -1	<i>I</i> -2	Ref	
1	ОН	(CH ₂) ₃ NHCOCH ₃	-2.70	-2.83	0.13	2.89	0.0	1.0	12g	
2	ОН	$(CH_2)_3N(COCH_3)CH_2 \cdot (2 - C_5H_4N)$	-2.69	-2.16	0.53	5.55	0.0	1.0	12c	
3	ОН	(CH ₂) ₃ NHC ₄ H ₉	-2.54	-1.93	0.61	3.82	0.0	0.0	12c	
4	OH	$(CH_2)_3 N(COCH_3)CH_2 \cdot (4-C_5H_4N)$	-2.30	-2.16	0.14	5.55	0.0	1.0	12b	
5	ОН	$(CH_2)_3N(COCH_3)CH_2-(3-C_5H_4N)$	-2.28	-2.16	0.12	5.55	0.0	1.0	12c	
6	OH	$(CH_2)_3$ NHSO ₂ C ₄ H ₉	-2.26	-1.76	0.49	4.48	0.0	0.0	12g	
7	ОН	$(CH_2)_3N(COCH_3)CH_2-(2-C_4H_3O)$	-2.23	-2.31	0.08	4.96	0.0	1.0	12c	
8	OH	$(CH_2)_3C_6H_5$ $(CH_2)_3NHC_6H_5$ $(CH_2)_3NHC_6$	-2.04	-1.90	0.13	3.93	0.0	0.0	1 2 i	
9	Н	(CH ₂) ₃ NHC ₆ H ₅	-2.00	-1.78	0.21	4.40	0.0	0.0	12a	
10	$N(CH_3)_2$	(CH ₂) ₃ NHC ₆ H ₅	-2.00	-1.78	0.21	4.40	0.0	0.0	1 2 f	
11	OH	NHCH ₂ CH=CHC ₆ H ₅	-1 .9 0	-1.77	0.13	4.46	0.0	0.0	1 2 i	
12	ОН	(CH ₂) ₃ NHCOC ₆ H ₄ -4-CH ₂ OC ₂ H ₅	-1.82	-1.92	0.10	6.46	0.0	1.0	12g	
13	NH ₂	(CH ₂) ₃ NHC ₆ H ₅	-1.80	-1.78	0.02	4.40	0.0	0.0	12a	
14	OH	$NH(CH_2)_3C_6H_5$	-1.76	-1.78	0.02	4.40	0.0	0.0	12i	
15	ОН	$(CH_2)_3 NHC_6 H_5$	-1.70	-1.78	0.08	4.40	0.0	0.0	12a	
16	ОН	$(CH_2)_3NH \cdot (3 - C_5H_4N)$	-1.67	-1.85	0.18	4.14	0.0	0.0	12c	
17	ОН	$(CH_2)_3N(COCH_3)CH_2C_6H_5$ $(CH_2)_4C_6H_5$ $(CH_2)_4C_6H_7$ $(CH_2)_3NH(2-C_{10}H_7)$	-1.59	-2.10	0.51	5.78	0.0	1.0	12c	
18	ОН	(CH ₂) ₄ C ₆ H ₅	-1.54	-1.79	0.25	4.39	0.0	0.0	1 2 b	
19	OH	$(CH_2)_3 NH - (2 - C_{10}H_2)$	-1.48	-1.39	0.09	5.94	0.0	0.0	12c	
20	ОН	$(CH_2)_3NHSO_2C_6H_5$	-1.43	-1.59	0.16	5.15	0.0	0.0	12d	
21	ОН	$(CH_2)_3$ NHSO ₂ C ₆ H ₄ -4-CN	-1.43	-1.46	0.03	5.68	0.0	0.0	12d	
22	OH	$(CH_{2})_{3}NHC_{4}H_{4}-4F$	-1.28	-1.79	0.51	4.39	0.0	0.0	12c	
23	ОН	$(CH_2)_3$ NHSO ₂ C ₆ H ₄ -4-COCH ₂ Br $(CH_2)_3$ N(C ₄ H ₉)Ts $(CH_2)_3$ NHSO ₂ C ₆ H ₄ -4-NO ₂ $(CH_2)_3$ NHSO ₂ C ₆ H ₄ -4-NO ₂	-1.23	-1.16	0.07	6.85	0.0	0.0	12d	
24	ОН	$(CH_{2})_{3}N(C_{4}H_{6})Ts$	-1.23	-1.00	0.23	7.47	0.0	0.0	12e	
25	ОН	(CH ₂) ₂ NHSO ₂ C ₂ H ₄ -4-NO ₂	-1.20	-1.46	0.26	5.69	0.0	0.0	12d	
26	ОН	(CH,), NHSO, C, F.	-1.08	-1.65	0.57	4.92	0.0	0.0	12d	
27	ОН	$(CH_2)_3$ NHSO ₂ C ₆ F ₅ $(CH_2)_3$ N(C ₆ H ₅)SO ₂ C ₆ H ₄ -4-NO ₂	-1.08	-0.84	0.24	8.12	0.0	0.0	12d	
28	SH	(CH ₂) ₃ NHC ₆ H ₅	-1.04	-0.88	0.16	4.40	1.0	0.0	12a	
29	ОН	(CH ₂) ₃ NHSO ₂ C ₆ H ₄ -4-CH ₂ NHCOCH ₂ Br	-1.04	-0.95	0.09	7.69	0.0	0.0	12d	
30	SH	$(CH_2)_3 NHC_6 H_4 - 4 - N(CH_3)_2$	-0.93	-0.51	0.42	5.85	1.0	0.0	12b	
31	SH	$(CH_2)_3N(C_6H_5)COC_6H_5$	-0.85	-0.80	0.05	7.33	1.0	1.0	12h	
32	OH	$(CH_2)_3N(Ts)CH_2C_6H_4-3-NH_2$	-0.85	-0.65	0.20	8.85	0.0	0.0	12e	
33	ОН	$(CH_2)_3N(Ts)CH_2C_6H_4-4-NH_2$	-0.79	-0.65	0.14	8.85	0.0	0.0	12e	
34 ^c	OH	$(CH_2)_3$ NHTs	-0.76	-1.48	0.72	5.61	0.0	0.0	12g	
35	SH	$(CH_2)_3 N(C_6 H_5) COOC_6 H_5$	-0.71	-0.74	0.03	7.55	1.0	1.0	1 2 h	
36 ^c	SH	(CH ₂) ₃ N(COCH ₃)C ₆ H ₅	-0.59	-1.29	0.70	5.41	1.0	1.0	12b	
37	OH	$(CH_2)_3N(T_5)CH_2C_6H_4-3-NO_2$	-0.59	-0.60	0.01	9.05	0.0	0.0	12e	
38	ОН ОН	$(CH_2)_3N(Ts)(CH_2)_3NHCOCH_2Br$	-0.59	-0.59	0.00	9.08	0.0	0.0	12e	
39	ОН	$(CH_2)_3 N(C_6 H_5) SO_2 C_6 H_4 - 4 - NH_2$	-0.45	-0.89	0.44	7.92	0.0	0.0	12d	
40	OH	(CH ₂) ₃ N(Ts)CH ₂ C ₆ H ₄ -4-NHCOCH ₂ Br	-0.45	-0.21	0.24	10.59	0.0	0.0	12e	
41	OH	$(CH_2)_3N(Ts)CH_2C_6H_4-4-NO_2$	-0.28	-0.60	0.32	9.05	0.0	0.0	12e	
42	SH	$(CH_2)_3$ NHC ₆ H ₅ -4-Cl	-0.15	-0.75	0.60	4.90	1.0	0.0	12b	
43	OH	(CH ₂) ₃ N(Ts)CH ₂ C ₆ H ₄ -3-NHCOCH ₂ Br	0.05	-0.21	0.26	10.59	0.0	0.0	12e	

^a Calculated from results of Baker et al.¹² ^b Calculated using eq 8. ^c These molecules not used in deriving equations.

Table XVI. Squared Correlation Matrix for Variables Pertaining to Eq 8 for Thymidylate Synthetase


	π-Υ	MR-Y	<i>I</i> -3	<i>I</i> -1	<i>I</i> -2
<i>π</i> -Υ	1.00	0.33	0.04	0.09	0.03
MR-Y		1.00	0.05	0.00	0.01
I-3			1.00	0.49	0.00
I-1				1.00	0.03
I-2					1.00

is, until better data are in hand, to regard it as not typically hydrophobic because of the low coefficients with π and MR terms.

In eq 9, I-1 takes the value of 1 for $4-NH_2$, 4-SH, and 4-NHOH functions. These functions increase inhibitory activity, on the average, by about 1.8-fold over the 4-OH group. Studying π -1 and π -6 independently indicated that these two variables could be combined into π -1,6; however, relatively few 6-substituents were studied. The one unique case, compound 43, in which large substituents are present in both the 1 and 6 positions, is rather poorly fit. This suggests that 1,6-space may have rather limited bulk

tolerance. Compound 42 is unique in that it is a 2-thiopyridone; it is well fit without a correction for the replacement of O by S. This study was not very encouraging since only 250-fold variation in activity was found and no typical hydrophobic sites were uncovered in the 1, 5, or 6 position.

Dihydrofolate Reductase (Pigeon Liver). This enzyme reduces dihydrofolate to tetrahydrofolate.

The crucial role of tetrahydrofolate in the transfer of 1-carbon fragments in the synthesis of the DNA bases

Table XVII. Development of QSAR of Eq 8 for Thymidylate Synthetase

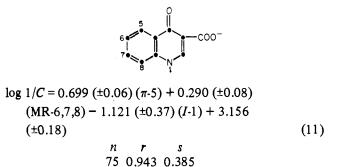
Inter- cept	MR-Y	<i>I</i> -1	I-2	I-3	r	S	$F_{1,X}^{a}$
-3.01	0.27				0.745	0.478	48.6
-3.12	0.27	0.77			0.828	0.407	15.7
-2.91	0.26	0.91	-0.66		0.914	0.299	33.4
-3.10	0.24	1.22	-0.71	0.34	0.923	0.287	4.37

makes it most interesting for control studies. The unusual degree of variation of its structure from system to system provides the possibility for selective toxicity.¹⁸

Baker's group achieved a variation in concentration in the inhibitors correlated by eq 10 of 1000000. The most

X = OH, SH, or NH_2 (causing 50% inhibition)

$$\log [S]/[I] 0.5 = 1.116 (\pm 0.23) (I-6) + 2.168 (\pm 0.27) (I-2) + 0.895 (\pm 0.13) (\pi-6) - 1.227 (\pm 0.49) (I-4) + 1.184 (\pm 0.42) (I-1) - 1.606 (\pm 0.50) (I-5) + 1.634 (\pm 0.47) (I-3) + 0.255 (\pm 0.09) (\pi-5) - 3.116 (\pm 0.29) (10) n r s 108 0.932 0.520$$


pronounced effect, that by $5-(CH_2)_nC_6H_5$ or $5-CH_2R$ (n =0-4 and R = 4 or 5 carbon atoms), is accounted for by assigning the variable I-6 a value of 1. These bulky groups appear to reach hydrophobic space located somewhat off of the 5 position (see Discussion) and possibly cause a conformational change since small groups or groups with other geometries are accounted for by π -5. The variable I-1 is assigned the value of 1 for 4-SH and I-2 assumes this value for 4-NH₂. These latter two groups can be interchanged by rotation of the pyrimidine ring about its 2-5 axis; such a rotation transposes 1- and 3-, and 4- and 6-substituents. We have assumed that 2,4-diamino binding is preferred since this makes no difference with respect to other substituents (no substituents are present on the 1 or 3 position; 2 and 5 positions are invariant). These variables indicate that, on the average, 4-SH is about 15 times more potent than 4-OH and 4-NH₂ is about 150 times as potent. The coefficient with π -6 is typical of that seen for hydrophobic interactions but that with π -5 is not: this reveals that enzymic space near the 5 position is not hydrophobic. In addition, π -5 is seen to be the least important variable and of marginal importance. Although the COO⁻ group is so hydrophilic that it lowers activity, the large coefficient with the indicator variable I-3 shows that it is 40 times more active than π alone would predict. This is not surprising since the natural substrate, folic acid, contains two carboxyl groups which would fall far out in 5- and 6-space. Thus the carboxyl group shows some specificity as might be expected. The variable I-4 is assigned the value of 1 when no substituent is present in the 5 position. The negative coefficient with this term brings out the importance, as does I-6, of a bulky group in the 5 position. Since I-5 takes the value of 1 for $6-(CH_2)_nC_6H_5$ (n = 0, 1, 2) and the coefficient with this term is negative. large groups in the 6 position run into the problem of steric hindrance. Moderate size groups (up to CH₃CH₂CH₂-) are well fit and these characterize a small hydrophobic pocket at the 6 position.

Malate Dehydrogenase. With the exception of chymotrypsin and trypsin, the enzymes considered up to this point are involved with DNA synthesis. These inhibitors might be effective in the growth and division phase of cells where division is very fast. Many tumors are slow in dividing and, hence, are resistant to inhibitors of DNA synthesis. Baker decided to search for inhibitors of the enzymes involved in glucose metabolism and in this way limit the source of energy. He hoped to find selective inhibitors of the tumor enzyme.

Malate dehydrogenase plays a role in the Krebs cycle by the conversion of malate to oxalacetate.

$$\begin{array}{ccc} COO^{-} & COO^{-} \\ \downarrow \\ H-C-OH & \rightarrow & C = 0 \\ CH_{2}COO^{-} & CH_{2}COO^{-} \end{array}$$

The inhibition of this reaction by 1,4-dihydro-4quinolone-3-carboxylates yielded the data in Table XXIV from which the following QSAR was formulated.

A slightly better correlation can be obtained if MR-6,7,8 is factored into MR-6, π -7, and MR-8 (r = 0.959, s = 0.337). The coefficients with the factored terms are close and there is very high collinearity between π -7 and MR-7; hence, until better data are in hand, it seems best to designate 6-, 7-, and 8-substituent space as primarily polar rather than hydrophobic. The coefficient with the π -5 term is in the range one normally expects for hydrophobic interaction.

I-1 takes the value of 1 for cases where $5-O(CH_2)_nOC_6H_5$ (n = 3 or 4) is present. The negative coefficient and the fact that cases where n = 2 are well fit suggest that the longer chains position the phenyl moiety outside of 5hydrophobic space. The value for π of C₆H₅ is 2.13 which, multiplied by 0.7 (the coefficient with π -5), gives 1.5. This is close to the missing increment in log 1/C accounted for by the coefficient of *I*-1. Attempts to find an electronic role for substituents by means of σ were unsuccessful.

Baker achieved an activity of 20000-fold with the quinolonecarboxylates with the best inhibitors being active at 10^{-7} *M*. The best inhibitors, however, are much too lipophilic to be useful for in vivo work. Malate dehydrogenase, like dihydrofolate reductase,^{4b} contains both hydrophobic areas (5-space) and polar areas (6-, 7-, 8-space) with good bulk tolerance. The superoptimal lipophilicity of inhibitors with large hydrophobic 5-substituents can be counterbalanced with hydrophilic substituents in the 6, 7, or 8 position. A careful study of malate dehydrogenase from bacterial and mammalian sources might uncover a route to effective antibacterials.

Glutamate Dehydrogenase. This is one of the enzymes which connects the glucose energy pathway with amino acid metabolism.

 Table XVIII. Constants Used for Deriving Eq 9 for Cytosine Nucleoside Deaminase

	R'	Log	1/C					
No.	Substituents		Calcd ^b	$ \Delta \log 1/C $	π-5	π-1,6	<i>I</i> -1	Ref
1	1-CH ₂ C ₆ H ₅ -4-OH	2.10	2.63	0.53	0.0	2.01	0.0	13a
2	4-OH-6-C ₅ H ₁₁	2.52	2.73	0.21	0.0	2.50	0.0	13a
3	$1 - c - C_s H_s - 4 - OH$	2.57	2.66	0.09	0.0	2.14	0.0	13a
4 5	$1 \cdot CH_2C_6H_4 \cdot 2' \cdot NHCOCH_2BI \cdot 4 \cdot OH$	2.64 2.64	2.56 2.56	0.08	0.0	1.64 1.64	0.0	13a 13a
6	$1-CH_2C_6H_4-3'-NHCOCH_2Br-4-OH$ $1\cdot(CH_2)_3C_6H_5-4-OH$	2.64	2.85	0.08 0.21	0.0 0.0	3.16	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	13a 13a
7	4-OH-6-NHCH ₂ C ₆ H ₅	2.66	2.44	0.21	0.0	1.00	0.0	13a
8	1-(CH ₂) ₃ OC ₆ H ₅ -4-OH	2.70	2.84	0.14	0.0	3.11	0.0	13a
9	$4 - OH - 6 - NH(CH_2)_3 C_6 H_5$	2.70	2.76	0.06	0.0	2.66	0.0	13a
10	$1 \cdot (CH_2)_4 C_6 H_5 \cdot 4 \cdot OH$	2.72	2.95	0.23	0.0	3.66	0.0	1 3a
11	$4 \cdot OH \cdot 6 \cdot CH_2C_6H_5$	2.74	2.63	0.11	0.0	2.01	0.0	13a
12	$1 \cdot (CH_2)_3 C_6 H_4 \cdot 4' \cdot COOC_2 H_5 \cdot 4 \cdot OH$	2.77	2.95	0.18	0.0	3.67	0.0	13a
13 14	$4 \cdot OH \cdot 6 \cdot (CH_2)_3 C_6 H_5$	2.82 2.82	2.85 3.04	0.03 0.22	0.0 0.0	3.16 4.16	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	13a 13a
14	1·(CH ₂) ₅ C ₆ H ₅ -4·OH 1·(CH ₂) ₃ C ₆ H ₅ -4·OH-5·CH ₂ OC ₂ H ₅	3.00	3.00	0.00	0.53	3.16	0.0	13a 13b
16	$1-(CH_2)_3C_6H_5+4-OH-6+C_3H_7$	3.03	3.13	0.10	0.0	4.66	0.0	13b
17	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_5$	3.36	3.66	0.30	1.96	3.11	1.0	13c
18	$1 - (CH_2)_3 OC_6 H_4 - 2' - C1 - 4 - NH_2 - 5 - C_6 H_5$	3.40	3.79	0.39	1.96	3.82	1.0	13c
19	$1 \cdot (CH_2)_2 OC_6 H_5 \cdot 4 \cdot OH \cdot 5 \cdot C_6 H_5$	3.42	3.30	0.12	1.96	2.61	0.0	13b
20	$1 \cdot (CH_2)_4 OC_6 H_5 - 4 - OH - 5 - C_6 H_5$	3.43	3.49	0.06	1.96	3.61	0.0	13b
21	$1-(CH_2)_2C_6H_5-4-NH_2-5-C_6H_3-3',4'-Cl_2$	3.43	3.98	0.55	3.38	2.66	1.0	13c
22 23	1-(CH ₂) ₃ OC ₆ H ₅ -4-NH ₂ -5-C ₆ H ₄ -2'-Cl 1-(CH ₂) ₃ OC ₆ H ₅ -4-OH-5-CH ₂ C ₆ H ₅	3.46 3.47	3.86 3.41	0.40 0.06	2.67 2.01	3.11 3.11	1.0 0.0	13с 1 3 Ь
23	$1 \cdot (CH_2)_3 OC_6 H_4 - 4' - NO_2 - 4 - NH_2 - 5 - C_6 H_5$	3.52	3.65	0.13	1.96	3.03	1.0	13c
25	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 3' \cdot NO_2 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_5$	3.55	3.65	0.10	1.96	3.03	1.0	13c
26	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 2' \cdot NO_2 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_5$	3.55	3.65	0.10	1.96	3.03	1.0	13c
27	$1 \cdot (CH_2)_3 C_6 H_5 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3' \cdot 4' \cdot Cl_2$	3.62	4.07	0.45	3.38	3.16	1.0	13c
28	$1 \cdot (CH_2)_3 OC_4 H_5 \cdot 4 \cdot OH \cdot 5 \cdot C_6 H_5$	3.64	3.40	0.24	1.96	3.11	0.0	13b
29 30	1·(CH ₂) ₃ OC ₆ H ₄ ·3'·CH ₃ ·4·NH ₂ ·5·C ₆ H ₄ ·4'·NH ₂ 1·(CH ₂) ₃ C ₆ H ₅ ·4·OH·5·C ₆ H ₅	3.70 3.70	3.41 3.41	0.29 0.29	0.73 1. 96	3.61 3.16	1.0 0.0	13c 13b
31	$1 - (CH_2)_3 OC_6 H_5 - 4 - NH_2 - 5 - C_6 H_4 - 3' - Cl$	3.72	3.86	0.14	2.67	3.11	1.0	130 13c
32	$1-(CH_2)_3OC_6H_5-4-NH_2-5-C_6H_4-4'-CH_3$	3.72	3.80	0.08	2.46	3.11	1.0	13c
33	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot NHOH \cdot 5 \cdot C_6 H_5$	3.74	3.66	0.08	1.96	3.11	1.0	13c
34	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot OH \cdot 5 \cdot (CH_2)_2 C_6 H_5$	3.74	3.59	0.15	2.66	3.11	0.0	13b
35	$1 \cdot (CH_2)_3 \circ OC_6 H_5 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_4 \cdot 4' \cdot NO_2$	3.80 3.80	3.58	0.22	1.68	3.11	1.0	13c
36 37	1-(CH ₂) ₃ OC ₆ H ₅ -4'-Cl-4-NH ₂ -5-C ₆ H ₅ 1-(CH ₂) ₃ OC ₆ H ₅ -4-NH ₂ -5-C ₆ H ₄ -4'-NH ₂	3.80	3.79 3.31	0.01 0. 49	1.96 0.73	3.82 3.11	1.0 1.0	13c 13c
38	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_4 \cdot 4' \cdot NHAc$	3.80	3.39	0.41	0.99	3.11	1.0	13c
39	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_4 \cdot 4' \cdot Cl$	3.80	3.86	0.06	2.67	3.11	1.0	13c
40	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot OH \cdot 5 \cdot (CH_2)_3 C_6 H_5$	3.82	3.74	0.08	3.16	3.11	0.0	13b
41	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 3' \cdot Cl \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_5$	3.82	3.79	0.03	1.96	3.82	1.0	13c
42	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 2 \cdot S \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_5$	3.82	3.66	0.16	1.96	3.11	1.0	13c
43 44	$1 - (CH_2)_3 C_6 H_5 - 4 - OH - 6 - C_5 H_{11}$ $1 - (CH_2)_3 OC_6 H_5 - 4 - NH_2 - 5 - C_6 H_4 - 4' - OCH_3$	3.85 3.92	3.32 3.65	0.53 0.27	0.0 1. 94	5.66 3.11	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	13b 13c
45	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot OH \cdot 5 \cdot C_6 H_3 \cdot 3' \cdot 4' \cdot Cl_2$	3.92	3.80	0.12	3.38	3.11	0.0	130 130
46	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 2' \cdot Cl \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3' \cdot 4' \cdot Cl_2$	3.96	4.20	0.24	3.38	3.82	1.0	13e
47	$1 - (CH_2)_3 OC_6 H_4 - 3' - NO_2 - 4 - NH_2 - 5 - C_6 H_3 - 3', 4' - Cl_2$	3.96	4.05	0.09	3.38	3.03	1.0	13c
48	$1 \cdot (CH_2)_3 OC_6 H_5 + NH_2 - 5 \cdot C_6 H_4 - 4' \cdot NHCOC_6 H_4 - 4'' \cdot SO_2 F$	4.00	3.81	0.19	2.50	3.11	1.0	13d
49	$1 - (CH_2)_3 OC_6 H_4 - 4' - NHSO_2 C_6 H_4 - 4'' - SO_2 F - 4 - NH_2 - 5 - C_6 H_3 - 3', 4' - Cl_2$	4.00	4.16	0.16	3.38	3.61	1.0	13d
50	1-(CH ₂) ₃ OC ₆ H ₄ ·4'-NHCOC ₆ H ₄ ·4''-SO ₂ F·4-NH ₂ ·5-C ₆ H ₃ ·3',4'-Cl ₂ 1-(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -3''-SO ₂ F-4-NH ₂ ·5-C ₆ H ₃ -3',4'-Cl ₂	4.00	4.16 4.16	0.16 0.15	3.38	3.65	1.0	13d
51 52	$1 - (CH_2)_3 OC_6 H_4 - 4 - NHCOC_6 H_4 - 3 - SO_2 F - 4 - NH_2 - 3 - C_6 H_3 - 3 , 4 - CI_2$ $1 - (CH_2)_3 OC_6 H_4 - 4' - OCH_3 - 4 - NH_2 - 5 - C_6 H_3 - 3', 4' - CI_2$	4.01 4.10	4.16	0.13	3.38 3.38	3.65 3.09	1.0 1.0	13d 13c
53	$1 - (CH_2)_3 OC_6 H_4 - 4' - NO_2 - 4 - NH_2 - 5 - C_6 H_3 - 3', 4' - Cl_2$	4.12	4.05	0.04	3.38	3.03	1.0	13c
54	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 2' \cdot NHCONHC_6 H_4 \cdot 3'' \cdot SO_2 F \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3', 4' \cdot Cl_2$	4.12	4.43	0.31	3.38	5.05	1.0	13d
55	$1 \cdot (CH_2)_3 SC_6 H_4 \cdot 4' \cdot NO_2 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3', 4' \cdot Cl_2$	4.13	4.17	0.04	3.38	3.66	1.0	13c
56	$1 \cdot (CH_2)_3 OC_6 H_2 - 2' - NO_2 - 4', 6' - Cl_2 - 4 - NH_2 - 5 - C_6 H_3 - 3', 4' - Cl_2$	4.14	4.31	0.17	3.38	4.45	1.0	13c
57 ^c	$1 \cdot (CH_2)_3 OC_6 H_5 \cdot 4 \cdot SH \cdot 5 \cdot C_6 H_5$	4.15 4.17	3.66 4.05	0.49 0.12	1.96	3.11	1.0	13c 13c
58 59	1-(CH ₂) ₃ OC ₆ H ₄ -2'-NO ₂ -4-NH ₂ -5-C ₆ H ₃ -3',4'-Cl ₂ 1-(CH ₂) ₃ OC ₆ H ₄ -3'-Cl-4'-NO ₂ -4-NH ₂ -5-C ₆ H ₃ -3',4'-Cl ₂	4.17	4.05	0.12	3.38 3.38	3.03 3.74	1.0 1.0	13c
60	$1 \cdot (CH_2)_6 C_6 H_5 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3' \cdot 4' \cdot Cl_2$	4.21	4.35	0.03	3.38	4.66	1.0	13c
61	$1 \cdot (CH_2)_3 OC_6 H_5 - 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3', 4' - Cl_2$	4.21	4.06	0.15	3.38	3.11	1.0	13c
62	$1-(CH_2)_3OC_6H_5-4-NH_2-5-C_6H_4-4'-NHCONHC_6H_4-3''-SO_2F$	4.22	4.18	0.04	3.80	3.11	1.0	13d
63	$1 \cdot (CH_2)_2 OC_6 H_5 - 4 - NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3', 4' \cdot Cl_2$	4.24	3.97	0.27	3.38	2.61	1.0	13c
64 65	1·(CH ₂) ₄ OC ₆ H ₅ -4·NH ₂ -5·C ₆ H ₃ -3',4'-Cl ₂ 1·(CH ₂) ₃ OC ₆ H ₄ ·2'-NHCOC ₆ H ₄ -4''-SO ₂ F-4-NH ₂ -5·C ₆ H ₃ -3',4'-Cl ₂	4.25 4.25	4.16 4.16	0.09 0.09	3.38 3.38	3.61 3.65	1.0 1.0	13c 13d
66	$1 \cdot (CH_2)_3 \cup C_6 H_4 \cdot 2 \cdot NHC \cup C_6 H_4 \cdot 4 \cdot S \cup 2^{-4} \cdot NH_2 \cdot S \cdot C_6 H_3 \cdot 3', 4' \cdot Cl_2$ $1 \cdot (CH_2)_3 \cup C_6 H_4 \cdot 2' \cdot NHC \cup C_6 H_5 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3', 4' \cdot Cl_2$	4.25	4.16	0.09	3.38	3.60	1.0	130 13c
67	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 2 \cdot NHC OC_6 H_4 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_4 \cdot 5 \cdot C_6 H_4 \cdot 4 \cdot NHC ONHC_6 H_4 \cdot 4 \cdot SO_2 F$	4.28	4.18	0.10	3.80	3.11	1.0	13d
68	$1 \cdot (CH_2)_3 OC_6 H_3 \cdot 3', 4' \cdot Cl_2 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3', 4' \cdot Cl_2$	4.36	4.33	0.03	3.38	4.53	1.0	13c
69	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 3' \cdot Cl \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3' \cdot 4' \cdot Cl_2$	4.38	4.20	0.18	3.38	3.82	1.0	13c

Table XVIII (Continued)

		Log	; 1/C	$\Delta \log$				
No.	Substituents	Obsd ^a	Calcd ^b	1/Cĭ	π-5	π-1,6	<i>I</i> -1	Ref
70	1-(CH ₂) ₃ OC ₆ H ₄ -4'-NHCONHC ₆ H ₄ -4''-SO ₂ F-4-NH ₂ -5-C ₆ H ₃ -3',4'-Cl ₂	4.46	4.41	0.05	3.38	4.95	1.0	13d
71	$1 \cdot (CH_2)_3 OC_6 H_4 \cdot 4' \cdot C1 \cdot 4 \cdot NH_2 \cdot 5 \cdot C_6 H_3 \cdot 3' \cdot 4' \cdot C1_2$	4.48	4.20	0.28	3.38	3.82	1.0	13c
72	$1 \cdot (CH_2)_3 OC_6 H_4 - 3' - NHCOC_6 H_5 - 4 - NH_2 - 5 - C_6 H_3 - 3' + 4' - Cl_2$	4.51	4.15	0.36	3.38	3.60	1.0	13c

^a Calculated from results of Baker et al.¹³ ^b Calculated using eq 9. ^c This compound not used in deriving equations because of only one compound bearing 4-SH.

$$\begin{array}{c} \text{COO}^{\text{CO}^{\text{CO}}^{\text{COO}^{\text{CO}^{\text{CO}}^{\text{COO}^{\text{CO}^{\text{CO}^{\text{CO}}^{\text{CO}^{\text{CO}}^{\text{CO}^{\text{CO}}^{\text{CO}^{\text{CO}}^{\text{CO}}^{\text{CO}^{\text{CO}}^{\text{CO}^{\text{CO}}^{\text{CO}}^{\text{CO}^{\text{CO}}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}^{\text{CO}}}^{\text{CO}}}^{\text{CO}}}^{\text{CO}}}^{\text{CO}}}^{}$$

The quinolones studied with malate dehydrogenase are also very effective against glutamate dehydrogenase. The QSAR of eq 12 comes from the data in Table XXVII. log $1/C = 0.491 (\pm 0.04) (\pi \cdot 5) + 0.233 (\pm 0.05) (MR \cdot 6) -$

$$0.553 (\pm 0.17) (I-1) + 3.355 (\pm 0.08)$$
(12)

$$n \quad r \quad s$$

87 0.948 0.253

Equation 12 is a very good correlation with, on the average, 28 data points/variable. The QSAR for glutamate dehydrogenase is remarkably similar to that for malate dehydrogenase. In each case, 5-space appears to be hydrophobic. While this statement must be qualified because of extremely high collinearity between π -5 and MR-5 (Table XXVIII), the relatively large coefficient with π -5 suggests normal hydrophobic interaction. No parameterization of 7-substituents proved to be of value and, although adding a term in π -8 made a very slight improvement in the correlation (r = 0.949, s = 0.247; $F_{1,80}$ = 4.0), this term is of dubious value. The message is that 7 and 8 positions appear to be open to solvent, even for groups as large as C_6H_5 or $CH_2C_6H_5$. *I*-1 takes the value of 1 for 5- or $6-O(CH_2)_nC_6H_5$ (n = 2-5). The negative coefficient with this term suggests a disturbance of the hydrophobic area. Again, no role could be found for an electronic effect of substituents. This enzyme also seems to be a good candidate for further chemotherapeutic work. While the best inhibitors are about ten times less effective than with the malate enzyme, they are active at concentrations approaching $10^{-6} M$.

Glyceraldehyde-3-phosphate Dehydrogenase. This dehydrogenase was also found to be inhibited by the 4quinolone-3-carboxylates. It is an enzyme which is important in the glycolytic pathway where its function is to convert glyceraldehyde 3-phosphate to 1,3-diphosphoglycerate.

CHO

$$CH_2OPO_3^{2-}$$

 $HCOH + P_i^{2-} + NAD^+ \Rightarrow HCOH + NADH + H^+$
 $H_2OPO_3^{2-}$
 $CH_2OPO_3^{2-}$

The QSAR of eq 13 has been formulated from the data of $\log 1/C = 0.0906 (\pm 0.02) (MR-1,5,6,8) + 0.498 (\pm 0.18)$

$$(I-1) = 0.149 (\pm 0.10) (I-2) + 3.127 (\pm 0.10)$$
 (13)
 $n \quad r \quad s$
 $72 \quad 0.849 \quad 0.172$

Table XXX. In eq 13, MR refers to all positions on the quinolone ring except the 7 position; this suggests that the 7 position is open to solvent. The variable I-1 takes the value of 1 for 5-CH₂CH₂-C₆H₄-3'- or 4'-X. This is not a well-documented parameter since only four data points support it. It is a point worthy of further study. I-2 takes the value of 1 for congeners having H in both the 1 and 5 positions. It does not contribute greatly to the reduction

 Table XIX.
 Squared Correlation Matrix for Variables Pertaining to Eq 9 for Cytosine Nucleoside Deaminase

	π-5	MR- 5	<i>I</i> -1	π-1,6	MR-1,6
π-5	1.00	0.74	0.51	0.10	0.14
MR-5		1.00	0.50	0.05	0.05
<i>I</i> -1			1.00	0.09	0.11
π-1,6				1.00	0.33
MR-1,6					1.00

Table XX.	Development of QSAR of Eq 9 for Cytosine
Nucleoside	Deaminase

Intercept	π-5	<i>I</i> -1	π-1,6	r	S	$F_{1,X}^{a}$
2.79	0.40			0.905	0.255	308
2.75	0.32	0.32		0.925	0.232	15.4
2.38	0.30	0.29	0.13	0.935	0.216	11.1
a r		10. 5				·····

 ${}^{a}F_{1,60;\alpha 0,001} = 12; F_{1,60;\alpha 0,005} = 8.5.$

in the variance but does suggest a small negative steric effect which may be relieved by omitting substituents in the 1 and 5 positions.

An equation slightly better than eq 13 can be obtained by factoring the MR term into π -5 + MR-1,6,8 (r = 0.863). So little is gained by the additional term and there is such high collinearity between π -5 and MR-5 (Table XXXI) that more work would have to be done before such factoring could be justified.

Lactate Dehydrogenase. This enzyme consists of four subunits. It is known to exist in a variety of isoenzymic forms so that it is an interesting subject for chemotherapy. Its function is the conversion of lactate to pyruvate in the glycolytic process. This also makes it of interest to cancer chemotherapy since many tumors show high rates of glycolysis.¹⁹ The QSAR of eq 14 for the inhibitory activity

$$\begin{array}{ccc} \text{COO}^{\bullet} & \text{COO}^{\bullet} \\ & & & \\ \text{HCOH} \rightleftharpoons & \text{C=O} \\ & & & \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

 $log 1/C = 0.0803 (\pm 0.02) (MR-1,5,6,8) + 0.487 (\pm 0.16)$ $(I-1) - 0.114 (\pm 0.09) (I-2) + 3.853 (\pm 0.11)$ n r s(14)

79 0.836 0.173

of 4-quinolone-3-carboxylates has been developed from the data in Table XXXIII. The correlation of eq 14 for lactate dehydrogenase is remarkably similar to that of eq 13 for the glyceraldehyde dehydrogenase. Similar variables have been employed and the quality of the two correlations is about the same. I-1 in eq 14 takes the value of 1 for $5 \cdot (CH_2)_n C_6 H_5$ where n = 2-6. This is assumed to be due to hydrophobic interaction of the phenyl rings. I-2 accounts for 1-H which has a small negative effect on activity. One could consider that substrates require some bulky 1-substituents to fix themselves in the binding pocket of the enzyme.

Discussion

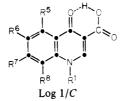
The overview of Baker's enzyme studies presented in the

R⁴ N R⁵ H₂N R⁵

					g <i>S/I</i>	ıΔ									
No.	R⁴	R ^s	R6		Calcd ^b	10g S/I	π-5	π-6	<i>I</i> -1	<i>I</i> -2	<i>I-</i> 3	<i>I</i> -4	I-5	<i>I</i> -6	Ref
1	ОН	Н	CH ₃	-3.51	-3.90	0.39	0.0	0.50	0.0	0.0	0.0	1.0	0.0	0.0	1 4 f
2		C ₂ H ₅	OH		-1.79		1.0	-1.23		1.0			0.0		14 r
3 4	NH, OH	H (CH ₂) ₃ NHSO ₂ C ₄ H ₉	OH CH ₃		-3. 28 -2. 24		0.0 1.68	-1.23 0.50		1.0			0.0		14f 14d
5	OH	CH ₃	CH ₃		-2.54		0.50	0.50							14u 14r
6	OH	(CH ₂) ₄ C ₆ H ₅	coo-	-2.79	-3.33	0.54	3.66	-4.36							14nı
7	OH	$(CH_2)_3N(COCH_3)CH_2-(4-Py)$	CH ₃		-2.22		1.75	0.50							14p
8 9	ОН ОН	$(CH_2)_3N(COCH_3)CH_2 \cdot (3-Py)$	CH, CH,		-2.23 -1.68		1.73 -2.55	0.50 0.50							14p 14h
10	ОН	(CH ₂) ₃ NHSO ₂ C ₆ H ₄ -4-COO ⁺ (CH ₂) ₃ NHTs	CH ₃		-2.08		2.31	0.50							14d
11	OH	C ₂ H ₅	CH ₃		-2.41		1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	1 4 r
12	OH	CH ₂ CH=CH ₂	CH ₃		-2.39		1.10	0.50							14r
13 14	OH OH	$(CH_2)_3N(COCH_3)CH_2 \cdot (2 \cdot Py)$ $(CH_2)_3NHCOCH_3$	CH ₃ CH ₃		-2.25 -2.53		1.64 0.53	0.50 0.50							1 4 p 14d
15	NH,	H	NH ₂		-2.32		0.0	0.16		1.0			0.0		14d
16	-	Н	CH,	-2.26	-1.73	0.53	0.0	0.50	0.0	1.0	0.0	1.0	0 .0	0.0	14f
17	OH	C ₃ H ₇	CH ₃		-2.29	-	1.50	0.50							14r
18 19 ^c	OH OH	$(CH_2)_3$ NHCOCH ₂ C ₆ H ₅ $(CH_2)_4C_6$ H ₅	CH ₃ C ₃ H ₇	-2.20 -2.18	-2.12 0.27		2.14 3.66	0.50 1.50							14d 14i
20		$C_6 H_4 - 4 - Cl$	CO0-		-1.42			-4.36							14m
21	OH	(CH ₂) ₃ OC ₆ H ₅	CH ₃		1.88		3.11	0.50					-		14k
22 23	OH OH	$(CH_2)_3$ NHCOC ₆ H ₄ ·4·NH ₂	CH ₃ CH ₃		-2.18 -1.98		1.91 2.71	$\begin{array}{c} 0.50 \\ 0.50 \end{array}$							14d 14j
23	OH	$(CH_2)_3 NHC_6 H_5$ NH $(CH_2)_3 C_6 H_5$	CH ₃		-1.99		2.66	0.50							14j 14f
25	OH	(CH ₂) ₃ NH-(3-Py)	CH ₃	-2.04	-2.52	0.48	0. 59	0.50	0.0	0.0	0.0	0.0	0.0	0.0	14p
26	OH	$(CH_2)_3$ NHC ₆ H ₄ -4-F	CH ₃		-1.94		2.85	0.50			0.0		0.0		14p
27 28	NH ₂ OH	$sec \cdot C_4 H_9$ (CH ₂) ₃ NHCOC ₆ H ₄ · 4 · CH ₂ OC ₂ H ₅	OH CH ₃		1.59 1.99		1.80 2.67	-1.23 0.50			0.0 0.0				140 14d
29	OH	$(CH_2)_3 N(COCH_3) CH_2 C_6 H_5$	CH,		-2.02		2.54	0.50			0.0				14p
30	OH	(CH ₂) ₄ C ₆ H ₅	CHÔ	-1.94	-1.65	0.29		-0.65			0.0		0.0		14m
31	OH	$(CH_2)_3$ NHCOC ₆ H ₄ -4-COO ⁻	CH ₃		-1.60		-2.22 2.14	0.50			1.0				14h
32 33	OH NH	$(CH_2)_3$ NHCOC ₆ H ₅ C ₃ H ₇	CH ₃ OH		-2.12 -1.67			0.50 1.23			0.0 0.0		0.0 0.0		14d 14r
34		c-C ₅ H,	ОН		-1.50			-1.23			0.0		0.0		1 4 0
35	OH	$(CH_2)_3$ NHC ₆ H ₄ -3-CF ₃	CH,		-1.75		3.59	0.50							-
36 37 ^c	OH SH	$(CH_2)_3$ NHCOC ₆ H ₄ -4-NO ₂	CH3 C6H5	-1.76 -1.73	-2.19 0.26		1.86 3.66	0.50 1.96					0.0	0.0	14d
38	OH	$(CH_2)_4C_6H_5$ $(CH_2)_3NHC_6H_4-4-NO_2$	CH ₃		-1.85		3.20	0.50						0.0	
39		C ₃ H ₇	NH ₂	-1.70	-0.71	0. 9 9	1.50	-0.16							-
40	OH	$(CH_2)_3 NH - (2 - C_{10}H_7)$	CH ₃		-1.65		3.98	0.50					0.0		14p
41 42	OH OH	C₄H, C H	CH ₃ CH ₃		-2.16 -1.65		2.00 4.00	0.50 0.50					0.0 0.0		14r 14r
43	OH	$C_8 H_{17}$ $(CH_2)_3 N(COCH_3) CH_2 \cdot (2 \cdot C_4 H_3 O)$	CH ₃		-2.15		2.04	0.50			0.0		0.0		14p
44	OH	$(CH_2)_3 N(C_4 H_9) Ts$	CH ₃		-1.57		4.31	0.50			0.0		0. 0		1 4 d
45	OH	$(CH_2)_3N(C_4H_9)COC_6H_5$	CH,		-1.61		4.14	0.50					0.0		14d
46 47	OH OH	$(CH_2)_3$ NHC ₆ H ₄ -4-(CH ₂) ₆ COCH ₂ Cl (CH ₂) ₃ NHC ₆ H ₄ -4-COCH ₂ Cl	CH ₃ CH ₃		0.93 -2.02		6.81 2.55	$\begin{array}{c} 0.50 \\ 0.50 \end{array}$							14a
48	OH	$(CH_2)_4C_6H_5$	(CH ₂) ₂ C ₆ ·		-0.62		3.66	2.29							
			H₄-4-NH·												
40	ОЧ	(CH ₂) ₃ NHC ₆ H ₄ -4-CO-Gly	COCH ₂ Br CH ₃	-143	-1.57	0.14	-212	0.50	0.0	0.0	1.0	0.0	0.0	0.0	14.5
49 50	OH OH	$(CH_2)_3 NHC_6 H_4$ (CH ₂) ₃ C ₆ H ₅	CH,		-0.75		3.16	0.50							
51	NH ₂		C₄H̃₅		-2.03	0. 6 0	0.0	1.96	0.0	1.0	0.0	1.0	1.0	0.0	1 4 i
52 ^c	NH ₂	$C_{\bullet}H_{4}$ -4·Cl	COOC ² H ²	-1.36			2.67	0.51							
53 54	OH OH	$(CH_2)_3$ NHC ₆ H ₄ -4-(CH ₂) ₂ COCH ₂ Cl (CH ₂) ₃ NHC ₆ H ₄ -4-CO-Glu	CH ₃ CH ₃		-1.44 -1.52		4.81 -1. 92	$\begin{array}{c} 0.50 \\ 0.50 \end{array}$							
55	NH ₂	$(CH_2)_2CH=CH_2$	OH	-1.17	-1.64	0.47		-1.23							
56	NH ₂	$CH(CH_3)C_3H_7$	ОН		-1.46			-1.23							
57 58 ^c		$(CH_2)_3$ NHC ₆ H ₄ -4·COO ⁻ <i>i</i> -C ₅ H ₁₁	CH ₃ Cl	-1.09	-1.45 1.39		-1.65 2.30	0.50 0.71							14a 14s
59	NH,	$(CH_2)_3C_6H_5$	ОН		-0.13			-1.23	0.0	1.0	0.0	0.0	0.0	1.0	1 4 f
60	SH	$(CH_2)_3 NHC_6 H_4 - 4 - N(CH_3)_2$	CH3	-1.00	-0.75	0.25	2.89	0.50	1.0	0.0	0.0	0.0	0.0	0.0	14k
61 62 ^c	OH NH	$(CH_2)_3 N(COCH_3)C_6 H_4 - 4 - COO^2 C_6 H_4 - 4 - COO^2$	CH3 CF3	-0.95 -0.92	-1.47 1.64		-1.70 2.67	$\begin{array}{c} 0.50 \\ 0.88 \end{array}$							
63	SH ²	$(C_{4} \Pi_{4}^{-4+Cl})$ $(CH_{2})_{3} N(C_{6} H_{5}) COC_{6} H_{5}$	CF, CH,		-0.40		4.27	0.50					0.0		14e
64	$\rm NH_2$	$C_{8}H_{17}$	OH	-0.90	-1.03	0.13	4.00	-1.23	0.0	1.0	0.0	0.0	0.0	0.0	
65 66	SH	$(CH_2)_3$ NHC ₆ H ₅	СН ₃ ОН		-0.79 -1.54		2.71	0.50 1.23							1 4 j 14r
66 67		C ₄ H, C ₆ H ₁₃	CH,		-0.79		3.00	0.50							
		· · · ·													

Table XXI (Continued)

		ontinuea)		Log	<i>S/I</i>										
No.	R⁴	R ⁵	R ⁶	Obsd ^a		log <i>S/I</i>	π-5	π-6	<i>I</i> -1	<i>I</i> -2	<i>I</i> -3	<i>I</i> -4	I-5	<i>I</i> •6	Ref
68	NH.	CH ₂ CH=CHCH ₃	OH	-0.77	-1.64	0.87	1.60	-1.23	0.0	1.0	0.0	0.0	0.0	Ü.0	140
69	•	c-C ₆ H ₁₁	ОН	-0.77	-1.41	0.64	2.51	-1.23	0.0	1.0	0.0	0.0	0.0	0.0	14o
70	OH	$(CH_2)_4C_6H_5$	CH,	-0.70	-0.62	0.08	3.66	0.50	0.0	0.0	0.0	0.0	0.0	1.0	14k
71	NH.	C ₆ H ₁₃	OH	-0.70	-0.17	0.53	3.00	-1.23	0.0	1.0	0.0	0.0	0.0	1.0	14r
72	OH	$C_{3}H_{11}$	CH ₃	-0.70			2.50	0.50		0.0	0.0	0.0	0.0	1.0	14r
73		$C_6 H_4 - 4 - C1$	CH ₃	-0.68			2.67	0.50	0.0	0.0	0.0	0.0	0.0	1.0	14s
74		C ₄ H ₉	C ₆ H ₅	-0.68			2.00	1.96		1.0	0.0	0.0	1.0	0.0	14i
75	NH ₂		C ₆ H ₄ -4- C ₆ H ₅	-0.68	-0.27	0.41	0.0	3.92	0.0	1.0	0.0	1.0	1.0	0.0	14i
76	NH	OC ₆ H ₄ -4-Cl	CH ₃	-0.65	0.21	0.86	2.79	0.50	0.0	1.0	0.0	0.0	0.0	0.0	14b
77		C ₄ H ₆	NH ₂		-0.58			-0.16					0.0		14r
78	OH	$(CH_2)_3$ NHC ₆ H ₄ -4-(CH ₂) ₄ COCH ₂ Cl	CH	-0.58		0.61	5.81		0.0		0.0		0.0		14a
79	SH	$(CH_2)_3N(COCH_3)C_6H_5$	CH ₃	-0.52			2.97	0.50				0.0	0.0		14k
80	OH	$(CH_2)_3NHC_6H_4-4-CH=CHCOC1$	CH ₃		-0.18		3.37		0.0			0.0	0.0		14a
81		$CH_2CH=C(CH_3)_2$	OH OH	-0.45				-1.23					0.0		14r
81 82			OH		-0.35					1.0	0.0	0.0	0.0		140
83	SH	$CH_2CH(CH_3)C_2H_5$	CH ₃		-0.53		3.42	0.50	1.0				0.0		14k
84		$(CH_2)_3$ NHC ₆ H ₅ -4-Cl	CH ₃		-0.49		4.17		0.0	0.0			0.0		14h
	OH	$(CH_2)_4C_6H_4$ -4-COOC ₂ H ₅		-0.14		0.15			0.0		0.0		0.0		14f
85		$(CH_2)_4C_6H_5$	OH		-0.97		2.30	0.50	0.0				0.0		14r
86	OH	<i>i</i> -C _s H ₁₁	CH ₃		-1.39				0.0				0.0		140
87		CH(CH ₃)CH ₂ CH(CH ₃) ₂	OH			0.91		-0.16					0.0		140 14f
88		$(CH_2)_3C_6H_5$	NH ₂	-0.08			2.30	-1.23				0.0		1.0	14r
89		$i - C_5 H_{11}$	OH		-0.35							-	1.0		14i
90		$(CH_2)_3 NHC_6 H_5$	CH ₂ C ₆ H ₅		-0.06		2.71		0.0			0.0	0.0		141 14f
91		$(CH_2)_4C_6H_5$	NH ₂	0.23		0.73		-0.16							14s
92	SH	<i>i</i> -C ₅ H ₁₁	CH,	0.36		0.14	2.30	0.50			0.0			1.0	145 14h
93	OH	$(CH_2)_4C_6H_4$ -4-COO [*]	CH,		-0.10		-0.70	0.50		0.0		0.0		1.0	
94		(CH ₂) ₃ NHC ₆ H ₅	CH,	0.43		0.24	2.71	0.50					0.0		14j
95		C ₆ H ₅	OH		-0.43			-1.23		1.0			0.0	1.0	14r
9 6		<i>i</i> -C ₅ H ₁₁	NH ₂	0.46		0.15				1.0		0.0		1.0	14r
97		C ₄ H,	CH3	0.48		0.47	2.00	0.50					0.0		14i
9 8		$(CH_2)_3N(C_6H_5)Ts$	CH3	0.49		0.14	4.44	0.50		1.0		0.0	0.0		14e
99	SH	C ₆ H ₄ -4-Cl	CH ₃	0.55		0.24	2.67	0.50		0.0			0.0	1.0	14s
100	NH ₂	$(CH_2)_4C_6H_5$	C,H,	0.74		0.51	3.66		0.0						14i
101	NH ₂	C ₅ H ₁₁	CH3	0.78		0.47	2.50	0.50		1.0		0.0		1.0	14r
102		(CH ₂) ₃ NHC ₆ H ₅	C, Ĥ,	0.83	-0.11		2.71		0.0						14i
103	NH ₂	C ₆ H ₄ -4-Cl	(ČH ₂) ₂ C ₆ - H ₄ -4-NH- COCH ₂ Br	1.05	1.29	0.24	2.67	2.29	0.0	1.0	0.0	0.0	1.0	1.0	14q
1 04	NH	(СН)СН		1.25	1 20	0.04	3.66	2.01	0.0	1.0	0.0	0.0	1.0	10	14i
104		$(CH_2)_4C_6H_5$	CH ₂ C ₆ H ₅	1.25		0.04	2.67	0.79		1.0			0.0		
105		C_6H_4 -4-Cl	CH Br	1.36		0.19	2.87						0.0		141 14r
		$i - C_s H_{11}$	CH ³	1.40		0.20	2.50		0.0 0.0	-			0.0		141 14m
107 108		$C_{4}H_{4}-4-CI$	CH ₃	1.48		0.18	2.07		0.0					1.0	
108		(CH ₂) ₃ C ₆ H ₅	CH ₃	2.18	-	0.10	3.66								14g
109	1112	$(CH_2)_4C_6H_5$	(CH ₂) ₂ C ₆ - H ₄ -4-NH- COCH ₂ Br		1,54	0.04	3.00	2.29	0.0	1.0	0.0	0.0	1.0	1.0	1.4Å
110	NH	C ₆ H ₃ -3,4-Cl ₂		2.27	1 / 9	0.79	3.38	0.50	0.0	1 0	0.0	0.0	0.0	10	14b
110		(CH) C H	CH ₃												
		$(CH_2)_4 C_6 H_5$	CH ₃	2.35		0.80			0.0		0.0			1.0	
112		$(CH_2)_4C_6H_5$	C_3H_7	2.46		0.02					0.0			1.0	14i 14b
113	1112	C ₆ H ₃ -3,4-Cl ₂	C ₂ H ₅	2.52	1.92	0.60	3.38	1.00	0.0	1.0	0.0	0.0	0.0	1.0	140


^a Calculated from results of Baker et al.¹⁴ ^b Calculated using eq 10. ^c These molecules not used in deriving equations. Table XXII. Squared Correlation Matrix for Variables Pertaining to Eq 10 for Dihydrofolate Reductase

	<i>I</i> -6	I-2	π-6	MR-6	I-4	<i>I</i> -1	I-5	<i>I</i> -3	π-5	MR-5
<i>I</i> -6	1.00	0.07	0.01	0.03	0.03	0.00	0.01	0.00	0.08	0.02
<i>I</i> -2		1.00	0.03	0.04	0.03	0.06	0.08	0.05	0.00	0.24
π-6			1.00	0.38	0.02	0.00	0.33	0.04	0.00	0.03
MR-6				1.00	0.03	0.00	0.81	0.01	0.00	0.00
I-4					1.00	0.00	0.04	0.01	0.12	0.22
<i>I</i> •1						1.00	0.01	0.01	0.01	0.01
I-5							1.00	0.01	0.00	0.01
I-3								1.00	0.27	0.07
π-5									1.00	0.12
MR-5										1.00

Table XXIII.	Development of QSAR of Eq 10 for Dihydrofolate Reductase
--------------	--

Intercept	<i>I-</i> 6	<u>I-2</u>	π-6	<u>I-4</u>	<u>I-1</u>	I-5	<i>I</i> -3	π-5	<u>r</u>	S	$F_{1,X}^{a}$
-1.55	1.76								0.609	1.100	62.5
-1 .9 0	1.46	1.02							0.704	0.990	26.0
-2.12	1.51	1.21	0.48						0.802	0.837	42.7
-2.07	1.29	1.46	0.55	1.90					0.855	0.730	33.6
-2.20	1.27	1.60	0.54	1.88	1.18				0.879	0.675	18.7
-2.27	1.31	1.84	0.73	1.81	1.14	-1.14			0.895	0.633	14.8
-2.43	1.30	2.03	0.81	1.81	1.26	-1.32	0.79		0.908	0.598	13.3
-3.12	1.12	2.17	0.89	1.23	1.18	-1.60	1.63	0.25	0.932	0.520	33.4

 $a_{F_{1,60;\alpha,0,001}} = 12.0.$

	$\operatorname{Log} 1/C$										
No.	Substituents	Obsd ^a	Calcd ^b	$ \Delta \log 1/C $	π-5	MR-6,7,8	1-1	Ref			
1	8-CH ₃	2.68	3.38	0.70	0.0	0.77	0.0	15a			
2 3	$8-CF_3$	2.85 3.05	3.36 3.44	0.51	0.0	0.70	0.0	15a			
3 4	1-(CH ₂)₄OC ₆ H₄-4′-NH ₂ -6-OCH ₃ 1-CH ₂ C ₆ H ₅	3.05	3.44	0.39 0.18	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.99 0.30	0.0 0.0	15b 15b			
5	6-CH ₃	3.15	3.38	0.23	0.0	0.77	0.0	150 15a			
6	8-OCH ₃	3.19	3.44	0.25	0.0	0.99	0.0	15a			
7	1-C ₄ H,	3.19	3.24	0.05	0.0	0.30	0.0	15b			
8	Н	3.28	3.24	0.04	0.0	0.30	0.0	15a			
9	$1-CH_3$	3.28 3.28	3.24	0.04	0.0	0.30	0.0	15a			
10 11	7,8-(N-CH=CHCH=) 1-CH ₂ C ₆ H ₄ -3'-NH ₂ -6-OCH ₃	3.28	3.60 3.44	0.32 0.14	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	1.53 0.99	0.0 0.0	15c 15b			
12	8-Cl	3.39	3.39	0.00	0.0	0.80	0.0	150 15a			
13	6-NO ₂	3.40	3.43	0.03	0.0	0.94	0.0	15a			
14	8-Br	3.40	3.47	0.07	0.0	1.09	0.0	15a			
15 ^c	7-O(CH ₂) ₃ OC ₆ H ₅	3.40	4.48	1.08	0.0	4.57	0.0	15c			
16	$1-CH_3-7-CH_2C_6H_5$	3.40 3.47	4.08	0.68	0.0	3.20 0.99	0.0	15c			
17 18	1-CH ₃ -8-OCH ₃ 7-Cl	3.47	3.44 3.39	0.03 0.09	0.0 0.0	0.99	0.0 0.0	15b 15a			
18	$1-CH_3-8-CH_2C_6H_5$	3.49	4.08	0.59	0.0	3.20	0.0	15a 15c			
20	1-CH8-Cl	3.52	3.39	0.13	0.0	0.80	0.0	15b			
21	1-CH ₂ C ₆ H ₄ -4'-COOH-6-OCH ₃	3.52	3.44	0.08	0.0	0.99	0.0	15b			
22	0 06	3.54	3.95	0.41	0.0	2.74	0.0	15c			
23	8-C ₆ H ₅	3.59	3.95	0.36	0.0	2.74	0.0	15e			
24 25	6-C₄H, 1-CH -5-O(CH -) OC H -8-Cl	3.60 3.62	3.78 4.08	0.18 0.46	0.0 2.59	2.16 0.80	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	15c 15d			
25	$1-CH_3-5-O(CH_2)_3OC_6H_5-8-C1$ $1-(CH_2)_3C_6H_5-6-OCH_3$ $1-C_1H_2-6-OCH_2$	3.64	3.44	0.20	0.0	0.99	0.0	15b			
27	1-C₄H ₉ -6-OCH ₃		3.44	0.22	0.0	0.99	0.0	15b			
28	1-(CH ₂) ₄ OC ₆ H ₅ -6-OCH ₃ 1-CH ₃ -6-OCH ₃	3.66	3.44	0.22	0.0	0.99	0.0	15b			
29	1-CH ₃ -6-OCH ₃	3.70	3.44	0.26	0.0	0.99	0.0	15b			
30	$1-C_{6}H_{13}-6-OCH_{3}$	3.70	3.44 3.44	0.26 0.26	0.0 0.0	0.99 0.99	0.0 0.0	15b			
31 32	1-CH ₂ C ₆ H ₄ -3'-NO ₂ -6-OCH ₃ 1-CH ₂ C ₆ H ₅ -3'-NO ₂ -6-OCH ₃ 1-CH ₂ C ₆ H ₅ -6-OCH ₃ 6-CH ₂ C ₆ H ₅ 1-(CH ₂) ₃ OC ₆ H ₅ -6-OCH ₃	3.70 3.72	3.44	0.28	0.0	0.99	0.0 0.0	15b 15b			
33	6-CH ₂ C ₂ H ₂	3.72	4.08	0.36	0.0	3.20	0.0	150 15c			
34	1-(CH ₂) ₃ OC ₆ H ₅ -6-OCH ₃	3.74	3.44	0.30	0.0	0.99	0.0	15b			
35	5,8-Cl ₂	3.77	3.88	0.11	0.71	0.80	0.0	15a			
36	6-OC, H,	3.77	4.02	0.25	0.0	2.97	0.0	15c			
37 38	8-CH ₂ C ₆ H ₅ 7,8-(CH=CH) ₂	3.85 3.89	4.08 3.72	0.23 0.17	0.0 0.0	3.20 1.94	0.0 0.0	15c 15c			
39	5-CH ₃ -8-Cl	3.92	3.74	0.18	0.50	0.80	0.0	15a			
40	5-O(CH ₂) ₃ OC ₆ H ₅	3.92	3.93	0.01	2.59	0.30	1.0	15d			
41	6-C1	3.96	3.39	0.57	0.0	0.80	0.0	15a			
42	6-OCH ₂ C ₆ H ₅	3.96	4.15	0.19	0.0	3.42	0.0	15c			
43	$5-C_6H_5-8-C1$	4.03	4.76	0.73	1.96	0.80	0.0	15d			
44 45	1-(CH ₂) ₄ OC ₆ H ₄ -4'-NO ₂ -6-OCH ₃ 6-O(CH ₂) ₂ C ₆ H ₅	4.05 4.14	3.44 4.28	0.61 0.14	0.0 0.0	0.99 3.88	0.0 0.0	15b 15с			
46	$7-C_6H_5$	4.17	3.95	0.22	0.0	2.74	0.0	15e			
47	6,8-Cl,	4.20	3.53	0.67	0.0	1.30	0.0	15a			
48	5-O(CH ₂) ₃ OC ₆ H ₅ -8-Cl	4.20	4.08	0.12	2.59	0.80	1.0	15d			
49	$6-O(CH_2)_2OC_6H_5$	4.37	4.35	0.02	0.0	4.10	0.0	15c			
50	5-O(CH ₂) ₄ OC ₆ H ₅ -8-CH ₃	4.42 4.48	4.42 4.08	0.00 0.40	3.09 0.0	0.77 3.20	1.0 0.0	15d 15c			
51 52	7-CH ₂ C ₆ H ₅ 8-O(CH ₂) ₃ OC ₆ H ₅	4.48	4.08	0.00	0.0	4.5 7	0.0 0.0	15c			
53	5-CH ₂ CH ₂ C ₆ H ₅ -8-Cl	4.66	5.25	0.59	2.66	0.80	0.0	15d			
54	5-O(CH ₂) ₄ OC ₆ H ₅ -8-Cl	4.77	4.43	0.34	3.09	0.80	1.0	15d			
55	6-O(CH ₂) ₃ OC ₆ H ₅	5.02	4.48	0.54	0.0	4.57	0.0	15c			
56	5-CH ₂ C ₆ H ₅ -8-Cl	5.23 5.33	4.79 5.32	0.44	2.01 2.77	0.80 0.80	0.0 0.0	15d 15d			
57 58	$5-CH=CHC_6H_5-8-C1$ $6-O(CH_2)_5OC_6H_5$	5.34	4.75	0.01 0.59	0.0	5.49	0.0	15u 15c			
59	5-CH ₂ CH ₂ C ₆ H ₃ -3'-F-8-Cl	5.37	5.34	0.03	2.80	0.80	0.0	15e			
60	5-CH ₂ CH ₂ C ₆ H ₄ -4'-CH ₃ -8-Cl	5.40	5.60	0.20	3.16	0.80	0.0	15e			
61	$6-O(CH_2)_4OC_6H_5$	5.41	4.62	0.79	0.0	5.03	0.0	15c			
62 63	5-CH=CHC ₆ H ₃ -3',4'-(OCH ₂ O)-8-Cl 5-CH CH $_{2}$ (1-C H) $_{2}$ S-Cl	5.51 5.52	5.29 6.17	0.22 0.65	2.72 3.98	0.80 0.80	0.0 0.0	15e 15e			
63 64 ^c	5-CH ₂ CH ₂ -(1-C ₁₀ H ₇)-8-C1 6-O(CH ₂) ₃ C ₆ H ₅	5.52	4.42	1.15	3.98 0.0	4.34	0.0	15c			
65	5-CH ₂ CH ₂ C ₆ H ₃ -4'-Cl-8-Cl	5.66	5.74	0.08	3.37	0.80	0.0	15e			
66 ^c	5-CH ₂ CH ₂ C ₆ H ₄ -2'-C ₆ H ₅ -8-Cl	5.77	6.62	0.85	4.62	0.80	0.0	15e			
67	$5-CH_2CH_2-(2-C_{10}H_7)-8-C1$	5.92	6.17	0.25	3.98	0.80	0.0	15e			
68	$5-CH=CH-(1-C_{10}H_{7})-8-C1$	5.96	6.25	0.29	4 .0 9	0.80	0.0	1 5 e			

Table XXIV (Continued)

		Loį	g 1/C					
No.	Substituents	Obsd ^a	Calcd ^b	$ \Delta \log 1/C $	π-5	MR-6,7,8	<i>I</i> -1	Ref
69	5-(CH ₂) ₄ C ₆ H ₅ -8-Cl	6.00	5.95	0.05	3.66	0.80	0.0	15d
7 0 ^c	5-CH ₂ CH ₂ C ₆ H ₃ -3',4'-(OCH ₂ O)-8-Cl	6.10	5.21	0.89	2.61	0.8 0	0.0	15e
71	5-CH=CHC ₆ H ₃ -2',6'-Cl ₂ -8-Cl	6.12	6.32	0.20	4.19	0.80	0.0	15e
7 2	5-CH ₂ CH ₂ C ₆ H ₃ -3'-Cl-8-Cl	6.26	5.74	0.52	3.37	0.80	0.0	15e
73	5-CH ₂ CH ₂ C ₆ H ₃ -3',4'-Cl ₂ -8-Cl	6.32	6.24	0.08	4.08	0.80	0.0	15e
74	5-(CH ₂) ₆ C ₆ H ₅ -8-Ci	6.34	6.64	0.30	4.66	0.80	0.0	15d
75	5-CH ₂ CH ₂ C ₆ H ₄ -3'-C ₆ H ₅ -8-Cl	6.39	6.62	0.23	4.62	0.80	0.0	15e
7 6	5-CH ₂ CH ₂ C ₆ H ₄ -4'-C ₆ H ₅ -8-Cl	6.60	6.62	0.02	4.62	0.80	0.0	15e
77	5-CH2CH2C6H3-2',5'-Cl2-8-CI	6.72	6.24	0.48	4.08	0.80	0.0	15e
78	5-CH ₂ CH ₂ C ₆ H ₃ -2',4'-Cl ₂ -8-Cl	6.96	6.24	0.72	4.08	0.80	0.0	15e
7 9	5-CH ₂ CH ₂ C ₆ H ₃ -2',6'-Cl ₂ -8-Cl	7.00	6.24	0.76	4.08	0.80	0.0	15e

^a Calculated from results of Baker et al.¹⁵ ^b Calculated using eq 11. ^c These molecules not used in deriving equations.

 Table XXV.
 Squared Correlation Matrix for Variables Pertaining

 to Eq 11 for Malate Dehydrogenase

	π-5	MR-6,7,8	<i>I</i> -1	MR-5
π-5	1.00	0.15	0.06	0.97
MR-6,7,8		1.00	0.03	0.16
<i>I</i> -1			1.00	0.06
MR-5				1.00

two papers in this series, when taken with other enzymic studies,²⁰ constitutes convincing evidence that one can, in general, expect to be able to formulate enzyme-inhibitor structure-activity studies in numerical terms. The advantages of this approach are that large masses of data can be structured objectively. When dealing with thousands or even hundreds of molecules, the human mind must have such assistance if we are ever going to make a serious attempt to organize the incredible number of structureactivity studies which are being published at an everincreasing rate. A numerical structuring of the data is the first important step. Hopefully, a relatively few general parameters can be developed so that equations developed in one system can be precisely compared with a system which might at first glance seem quite remote. Correlation equations will eventually be employed in developing our understanding of a host of interactions between micro- and macromolecules which constitute the driving forces for biochemical and molecular biological processes. Final understanding of cellular processes will have to be obtained on intact cells. We shall have to deduce the inner processes of the cells by means of information obtained via molecular probes.

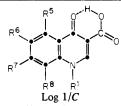
Structuring data via correlation equations is of course of great help in planning research. Even someone completely unfamiliar with a developing research project can quickly comprehend from correlation equations what sections of substituent space have been explored, what areas need exploration, and in what areas the best prospects for development lie.

It is very difficult to isolate those data points which are "strange" in large masses of data. These points are the congeners which may need retesting because of experimental error, or these molecules may be acting by a different mechanism from that of the main body of compounds, or it may be that improper parameters are being employed because new and different substituent effects are involved.

The problem of recognizing the significant patterns in structure-activity studies is one of the most complex confronting the scientific mind. The first step in this problem is to define a set of congeners (a set of molecules, all members of which are acting mechanistically in the same way). This is by *no means* simple and calls for the highest quality biochemistry or pharmacology. Correlation analysis can be of importance in maintaining the integrity

Table XXVI. Development of QSAR of Eq 11 for Malate Dehydrogenase

Idia	CITA	uru	ger	asc


Intercept	π-5	MR-6,7,8	<i>I</i> -1	r	S	$F_{1,X}^{a}$
3.66	0.57			0.855	0.592	198
3.10	0.66	0.31		0.912	0.471	43.3
3.16	0.70	0.29	-1.12	0.943	0.385	36.8

 ${}^{a}F_{1,60;\alpha 0,001}=12.$

of a growing set of congeners as a study develops. Defining a set of congeners means recognizing first-order specifity of the intermolecular interactions. Second-order intermolecular interactions of the members of the set can then be factored into two classes: nonspecific and specific. Our general approach to the formulation of QSAR has been hierarchical, that is, to sort out interactions in the following order: (1) nonspecific hydrophobic and dispersion; (2) electronic; (3) steric parameterizable by continuous variables; (4) steric parameterizable by discrete variables; (5) discrete interactions by special molecular constellations, the basic character of which is not apparent.

Nonspecific Hydrophobic and Dispersion Interaction. From our current view of the structure of biomacromolecules it has become clear that pools of apolar side chains often clump together in micellular fashion to form hydrophobic pockets. Correlative to this, there must be large areas of polar space; hence, for ligand interaction with biomacromolecules one would a priori expect to need two types of parameters for two limiting types of space. Handling the problem of ligand interaction with mixed space is of course much more difficult. We have operationally defined the hydrophobic parameters log P and π using octanol-water partition coefficients. There is now sufficient evidence in hand to convince us that these constants permit a useful start to be made on defining hydrophobic interactions. There is considerable evidence that when ligand interaction depends linearly on hydrophobic interaction, one can expect a slope with π or log P in the range of 0.4-1.2. When such terms are encountered in correlation equations, one can assume as a working hypothesis that interaction in substituent space depends on desolvation. This is not always the case; we have found examples with MR (scaled by 0.1) with coefficients approaching 1. It is possible that conformational changes amplify the simple MR effect reflected by low MR coefficients. Very few examples are known with slopes (with tight confidence limits) much higher than 1.2. Slopes in the range of 0.1-0.3 appear to be the result of weaker interactions and suggest that they are the result of dispersion forces without significant desolvation; such interactions might occur on a polar "surface" or in a polar cavity of a macromolecule. It would seem that molar refractivity (MR) might be a better parameter to model such interactions than π or log P. Unfortunately, little proper data are available to rigorously test this hypothesis.

Table XXVII. Constants Used for Deriving Eq 12 for Glutamate Dehydrogenase

Log 1/C										
No.	Substituents	Obsd ^a	Calcd ^b	$ \Delta \log 1/C $	π-5	MR-6	<i>I</i> -1	Ref		
1	8-CH ₃	2.68	3.38	0.70	0.0	0.10	0.0	15a		
2	7-Cl	2.77	3.38	0.61	0.0	0.10	0.0	15a		
3 4	8-NO ₂	2.89 3.10	3.38 3.49	0.49	0.0	0.10 0.57	0.0	15a 15a		
4 5	6-CH ₃ 1-CH ₂ C ₆ H ₄ -4'-NO ₂ -6-OCH ₃	3.10	3.54	0.39 0.42	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.37	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	15a 15b		
6	H	3.22	3.38	0.16	0.0	0.10	0.0	150 15a		
7	8-C ₆ H ₅	3.24	3.38	0.14	0.0	0.10	0.0	15c		
8	6-CI	3.26	3.49	0.23	0.0	0.60	0.0	15a		
9	8-OCH ₃ 8-CF ₃ 1-CH ₃ 7-CH ₂ C ₆ H ₅ 1-CH ₃ -7-CH ₂ C ₆ H ₅ 1-CH ₂ C ₆ H ₄ -3'-NO ₂ -6-OCH ₃ 1-(CH ₂) ₄ OC ₆ H ₄ -4'-NH ₂ -6-OCH ₃ 6-OCH ₃ 7,8-(N-CH=CHCH=) 1-CH ₄ -C ₄ H ₄ -2'-NH ₄ -6-OCH	3.27	3.38	0.11	0.0	0.10	0.0	15a		
10	8.CF ₃	3.29	3.38	0.09	0.0	0.10	0.0	15a		
11		3.30	3.38	0.08	0.0	0.10	0.0	15a		
12 13	$1 C H_2 C_6 H_5$	3.33 3.34	3.38 3.38	0.05 0.04	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 0.10\\ 0.10\end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	15c 15c		
13	$1 - CH_3 - 7 - CH_2 - C_6 H_5$	3.35	3.54	0.19	0.0	0.79	0.0	15b		
15	1-(CH.).OC.H4'-NH6-OCH.	3.35	3.54	0.19	0.0	0.79	0.0	15b		
16	6-OCH ₃	3.37	3.54	0.17	0.0	0.79	0.0	15a		
17	7,8-(N-ČH=CHCH=)	3.39	3.38	0.01	0.0	0.10	0.0	15c		
18	1-CH ₂ C ₆ H ₄ -3'-NH ₂ -6-OCH ₃ 1-C ₁ H ₂	3.40	3.54	0.14	0.0	0. 79	0.0	15b		
19	49		3.38	0.04	0.0	0.10	0.0	15b		
20	8-CH ₂ C ₆ H ₅	3.47	3.38	0.09	0.0	0.10	0.0	15c		
21	8-Cl 8-Br	3.48	3.38	0.10	0.0	0.10	0.0	15a		
22 23		3.48 3.48	3.38 3.82	0.10 0.34	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.10 4.37	0.0 1.0	15a 15c		
23	$1 - CH_3 - 0 - O(CH_2)_3 - OC_6 H_5$	3.48	3.38	0.10	0.0	0.10	0.0	15c		
25	$\begin{array}{c} 1-CH_{3}-6-O(CH_{2})_{3}OC_{6}H_{5} \\ 1-CH_{3}-8-CH_{2}C_{6}H_{5} \\ 1-CH_{3}-8-OCH_{3} \\ 5,8-Cl_{2} \\ 6,8-Cl_{2} \\ 6-NHCOCH_{3} \\ 0 \\ CH_{3} \\ 0 \\ 0 \\ \end{array}$	3.49	3.38	0.11	0.0	0.10	0.0	15b		
26	5,8-Cl,	3.51	3.73	0.22	0.71	0.10	0.0	15a		
27	6,8-Cl ₂	3.52	3.49	0.03	0.0	0.60	0.0	15a		
28	6-NHCOCH ₃	3.54	3.70	0.16	0.0	1.49	0.0	15a		
29	1.CH ₃ -8-Cl	3.54	3.38	0.16	0.0	0.10	0.0	15b		
30	$1 \cdot (CH_2)_3 C_6 H_5 \cdot 6 \cdot OCH_3$	3.54	3.54	0.00	0.0	0.79	0.0	15b		
31	$1-(CH_2)_2OC_6H_5-6-OCH_3$	3.54	3.54	0.00	0.0	0.79	0.0	15b		
32	$1-(CH_{2})_{3}C_{6}H_{5}-6-OCH_{3}$ $1-(CH_{2})_{2}OC_{6}H_{5}-6-OCH_{3}$ $1-CH_{2}C_{6}H_{5}$ $1-CH_{3}-8-C_{6}H_{5}$ $1-CH_{3}-6-OCH_{3}$ $1-CH_{2}C_{6}H_{5}-6-OCH_{3}$ $1-CH_{2}C_{6}H_{4}-4'-COOH-6-OCH_{3}$ $1-(CH_{2})_{3}OC_{6}H_{5}-6-OCH_{3}$ $1-CH_{2}C_{6}H_{5}-6-OCH_{3}$ $1-CH_{2}C_{6}H_{5}-6-OCH_{3}$ $1-CH_{2}C_{6}H_{5}-6-OCH_{3}$ $1-CH_{3}-5-C_{6}H_{5}-8-C1$ $6-O(CH_{2})_{3}OC_{6}H_{5}$	3.55 3.57	3.38 3.38	0.17 0.19	0.0	0.10 0.10	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	15b 15c		
33 34	7-C H	3.57	3.38	0.19	0.0 0.0	0.10	0.0	15c		
35	1-CH -6-OCH	3.57	3.54	0.03	0.0	0.79	0.0	15b		
36	1-C.H6-OCH.	3.60	3.54	0.06	0.0	0.79	0.0	15b		
37	1-CH,C,H,-4'-COOH-6-OCH	3.60	3.54	0.06	0.0	0.79	0.0	15b		
38	1-(CH ₂) ₃ OC ₆ H ₅ -6-OCH ₃	3.62	3.54	0.08	0.0	0. 79	0.0	15b		
39	1-CH ₂ C ₆ H ₅ -6-OCH ₃	3.64	3.54	0.10	0.0	0.79	0.0	15b		
40 ^c	1-CH ₃ -5-C ₆ H ₅ -8-Cl	3.64	4.34	0.70	1.96	0.10	0.0	15d		
41	$6 \cdot O(CH_2)_3 OC_6 H_5$	3.68 3.70	3.82 3.53	0.14 0.17	0.0	4.37 0.74	1.0 0.0	15c		
42 43	6-NO ₂	3.70	3.54	0.17	0.0 0.0	0.74	0.0	15a 15b		
43	1-(CH ₂) ₄ OC ₆ H ₅ -6-OCH ₃ 1-C ₆ H ₁₃ -6-OCH ₃ 5-O(CH ₂) ₂ OC ₆ H ₅ -8-CH ₃ 6-C ₄ H ₅ 1-CH ₂ -6-OCH ₂ CH ₂	3.72	3.54	0.18	0.0	0.79	0.0	15b		
45	5-O(CH ₂), OC ₂ H ₂ -8-CH ₂	3.82	3.85	0.03	2.09	0.10	1.0	15d		
46	6-C, H,	3.85	3.81	0.04	0.0	1.96	0.0	15c		
47		5.05	4.11	0.26	0.0	3.22	0.0	15c		
48	1-CH ₃ -5-O(CH ₂) ₃ OC ₆ H ₅	3.89	4.10	0.21	2.59	0.10	1.0	15d		
49	$6-O(CH_2)_4OC_6H_5$	3.92 3.96	3.93 3.62	0.01	0.0 0.50	4.83 0.10	1.0 0.0	15c 15a		
50 51	$5 - CH_3 - 8 - Cl$ 7,8-(CH=CH),	4.00	3.38	0.34 0.62	0.30	0.10	0.0	15a 15c		
52	$5 - O(CH_2)_3 OC_6 H_5$	4.00	4.10	0.10	2.59	0.10	1.0	15d		
53	$1 - (CH_2)_4 OC_6 H_4 - 4' - NO_2 - 6 - OCH_3$	4.01	3.54	0.47	0.0	0.79	0.0	15b		
54	6-OCH ₂ C ₆ H ₅	4.01	4.11	0.10	0.0	3.22	0.0	15c		
55	6-C ₆ H ₅	4.03	3.95	0.08	0.0	2.54	0.0	15c		
56	5-O(CH ₂) ₄ OC ₆ H ₅ -8-CH ₃	4.11	4.34	0.23	3.09	0.10	1.0	15d		
57	6-OC, H,	4.12 4.12	4.05	0.07	0.0	3.00	0.0	15c		
58 59	6-O(ČH ₂),OC ₆ H ₅ 1-CH ₃ -5-O(CH ₂) ₃ OC ₆ H ₅ -8-Cl	4.12	4.04 4.10	0.08 0.05	0.0 2.59	5.29 0.10	1.0 1.0	15c 15d		
60	6-CH ₂ C ₆ H ₅	4.25	4.05	0.20	0.0	3.00	0.0	15c		
61	6-O(CH ₂) ₂ C ₆ H ₅	4.26	4.21	0.05	0.0	3.68	0.0	15c		
62	6-O(CH ₂) ₃ C ₆ H ₅	4.26	4.32	0.06	0.0	4.14	0.0	15 c		
63	5-O(CH ₂) ₄ OC ₆ H ₅ -8-Cl	4.27	4.10	0.17	2.59	0.10	1.0	15d		
64	6-O(CH ₂) ₂ OC ₆ H ₅	4.30	3.71	0.59	0.0	3.90	1.0	15c		
65	5-C ₆ H ₅ -8-Cl	4.43	4.34	0.09	1.96	0.10	0.0	15d		
66 67	5-O(CH ₂) ₄ OC ₆ H ₅ -8-Cl 5-CH ₂ CH ₂ C ₆ H ₄ -3'-F-8-Cl	4.52 4.55	4.34 4.75	0.18 0.20	3.09 2.80	0.10 0.10	1.0 0.0	15d 15e		
68	5-CH ₂ C ₆ H ₂ -5-F·6-Cl 5-CH ₂ C ₆ H ₅ -8-Cl	4.33	4.73	0.20	2.00	0.10	0.0	15d		
00				0.04		0.10	0.0			

Table XXVII	(Continued)
-------------	-------------

No.	Substituents	Obsd ^a	Calcd ^b	$ \Delta \log 1/C $	π-5	MR-6	<i>I</i> -1	Ref					
69	5-CH2CH2C6H4-4'-Cl-8-Cl	4.89	5.03	0.14	3.37	0.10	0.0	15e					
70 ^c	5-CH ₂ CH ₂ C ₆ H ₄ -4'-C ₆ H ₅ -8-Cl	4.92	5.65	0.73	4.62	0.10	0.0	15e					
71	5-CH=CHC, H ₃ -3',4'-(OCH ₂ O)-8-Cl	4.92	4.71	0.21	2.72	0.10	0.0	15e					
72	5-CH ₂ CH ₂ C ₆ H ₅ -8-Cl	4.96	4.69	0.27	2.66	0.10	0.0	15d					
73	1-CH ₃ -5-(CH ₂) ₆ C ₆ H ₅	5.00	5.67	0.67	4.66	0.10	0.0	15d					
74	5-CH ₂ CH ₂ C ₆ H ₃ -3',4'-(OCH ₂ O)-8-Cl	5.00	4.66	0.34	2.61	0.10	0.0	15e					
75	5-CH,CH,C,H,-4'-CH,-8-Cl	5.05	4.93	0.12	3.16	0.10	0.0	15e					
76	5-CH2CH2C6H3-2',4'-C12-8-Cl	5.06	5.38	0.32	4.08	0.10	0.0	15e					
7 7	5-CH2CH2C6H4-3'-CI-8-C1	5.10	5.03	0.07	3.37	0.10	0.0	15e					
78	5-CH=CH-(1-C ₁₀ H ₇)-8-Cl	5.17	5.39	0.22	4.09	0.10	0.0	15e					
7 9	5-CH ₂ CH ₂ C ₆ H ₃ -3',4'-Cl ₂ -8-Cl	5.19	5.38	0.19	4.08	0.10	0.0	15e					
80	5-CH2CH2C6H3-2',6'-Cl2-8-Cl	5.26	5.38	0.12	4.08	0.10	0.0	15e					
81	5-CH=CHC, H, -8-Cl	5.28	4.74	0.54	2.77	0.10	0.0	15d					
82	5-(CH ₂) ₄ C ₆ H ₅ -8-Cl	5.28	5.18	0.10	3.66	0.10	0.0	15d					
83	5-CH=CHC ₆ H ₃ -2',6'-Cl ₂ -8-Cl	5.40	5.44	0.04	4.19	0.10	0.0	15e					
84	5-CH ₂ CH ₂ -(2-C ₁₀ H ₇)-8-Cl	5.47	5.33	0.14	3.98	0.10	0.0	15e					
8 5	5-CH2CH2C6H3-3'-C6H5-8-CI	5.55	5.65	0.10	4.62	0.10	0.0	15e					
86	5-CH ₂ CH ₂ -(1-C ₁₀ H ₇)-8-Cl	5.55	5.33	0.22	3.98	0.10	0.0	15e					
87	5-(CH ₂) ₆ C ₆ H ₅ -8-Cl	5.62	5.67	0.05	4.66	0.10	0.0	15d					
88	5-CH ₂ CH ₂ C ₆ H ₃ -2',5'-Cl ₂ -8-Cl	5.70	5.38	0.32	4.08	0.10	0.0	15e					
89	5-CH ₂ CH ₂ C ₆ H ₄ -2'-C ₆ H ₅ -8-Cl	5.74	5.65	0.09	4.62	0.10	0.0	15e					

[an 1/C

^a Calculated from results of Baker et al.¹⁵ ^b Calculated using eq 12. ^c These molecules not used in deriving equations.

Table XXVIII. Squared Correlation Matrix for Variables Pertaining to Eq 12 for Glutamate Dehydrogenase

	π-5	MR-5	π-6	MR-6	<i>I</i> -1	_
π-5 MR-5 π-6 MR-6 <i>I</i> -1	1.00	0.97 1.00	0.08 0.09 1.00	0.15 0.15 0.88 1.00	0.01 0.04 0.14 0.13 1.00	

Up to now, those doing QSAR studies have paid little attention to the use of MR: indeed, the importance of this parameter may be difficult to establish outside of the area of interaction of ligands with purified macromolecules. In the analysis of Baker's work we have observed that there is often such high collinearity between π or log P and MR that one cannot say with much confidence that MR models interactions in nonhydrophobic macromolecular space. An important exception to this is eq 2.

We have scaled MR by 0.1 in the analysis of Baker's work. This makes MR and π approximately equiscalar for apolar functions; e.g.

substituent	C1	Br	I	Me	C,H,	CF,	Н
π	0.71	0.86	1.12	0.56	2.13	0.88	0 .0 0
0.1 MR	0.60	0.89	1.39	0.56	2.54	0.5 0	0.10

Hence, when π and MR are highly collinear, one can compare their coefficients. This equivalence between π and MR is not present in polar substituents; e.g.

						NHC-
substituent	ОН	CN	$N(Me)_2$	NH ₂	C, H,	ONH;
π	- 0. 67		0.18			
0.1 MR	0.28	0.63	1.55	1.23	3.32	1.37

Therefore, with a proper selection of substituents, one should be able to establish the utility of MR for characterizing nonhydrophobic space. We now have such experiments in progress.

After a set of congeners has been studied using the continuous variables π , MR, σ , and E_s (when feasible), the best correlation equation may often leave a relatively large amount of variance in the data unaccounted for. At this point the study of the residuals from the "best" equation can yield new insights into the SAR which are not at all apparent from a study of the untreated data. These more specific interactions cannot be established with confidence until the large amount of relatively nonspecific variance

Table VVIV	Development of QSAR of Eq 12 for						
TAULE AAIA.	Development of QSAR of Eq 12 for						
Glutamate Dehydrogenase							
Giutainate De	nyurogenase						

Intercept	π-5	MR-6	<i>I</i> -1	r	S
3.56	0.41			0.886	0.363
3.37	0.46	0.16		0.922	0.306
3.35	0.49	0.23	-0.55	0.948	0.253

usually present in SAR studies is greatly reduced. The use of indicator variables enormously extends the use of correlation analysis for structuring SAR studies where gross structural changes have been made.

From a comparison of the structure of inhibitors Baker chose to study with the structure of the normal enzyme substrate, Baker's modus operandi is quite evident. He normally selected a basic moiety closely resembling the normal substrate and then proceeded to make gross changes to produce what he called nonclassical antimetabolites. It is these gross changes which present such a challenge to the formulation of QSAR. It is exciting that the enormous range of structural changes can be dealt with rationally with a wide variety of enzymes.

From the point of view of medicinal chemistry, the study of purified enzymes offers the clearest opportunity to design drugs with high selective toxicity. When this can be achieved with enzyme from host and pathogen in vitro. one has at least some assurance for in vivo success even before in vivo testing is started.

There are several cases in the present study where we can compare inhibition of different enzymes by the same set of inhibitors or the same enzyme by different inhibitors. The QSAR for two types of pyrimidine nucleoside phosphorylase inhibited by uracils is such an example. The mammalian tumor cell enzyme (eq 7) has hydrophobic space which can be reached by substituents in either the 1 or 5 position but the evidence in hand suggests that substituents in both positions cannot simultaneously occupy hydrophobic space. Hydrophobic space does not appear to be adjacent to the 1 or 5 position in bacterial enzyme (eq 6) but is more remote and best reached from the ortho and meta positions of the 6-XC₆H₅ group. Rotation of this group through 360° would allow substituents to reach different parts of enzymic space and makes establishment of the hydrophobic pocket impossible as of the present. There is only one highly specific parameter for 6-substituents with mammalian enzyme. The

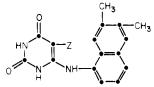
R^{6} R^{7} R^{7} R^{8} R^{7} R^{8} R^{1} R^{8} R^{1} R^{1

$\frac{\log 1/C}{\log 1/C}$ MR-										
	No.	Substituents	Ob sd ^a	Calcd ^b	$ \Delta \log 1/C $	1,5,6,8	<i>I</i> -1	<i>I</i> ·2	Ref	
	10	8-CH ₃	2.33	3.06	0.73	0.87	0.0	1.0	15a	
	2	6-CH ₃	2.52 2.80	3.06	0.54	0.87	$\begin{array}{c} 0.0\\ 0.0\end{array}$	1.0	15a	
	3 4 ^c	H 6-CH ₂ C ₆ H ₅	2.80	3.01 3.28	0.21 0.43	0.40 3.30	0.0	1.0 1.0	15a 15c	
	5	8-CF ₃	2.83	3.05	0.13	0.80	0.0	1.0	15c 15a	
	6	6-C1	2.96	3.06	0.10	0.90	0.0	1.0	15a 15a	
	7	8-NO ₂	2.96	3.08	0.12	1.09	0.0	1.0	15a	
	8	6-C₄H,	2.96	3.18	0.22	2.26	0.0	1.0	15c	
	9	7-O(CH ₂) ₃ OC ₆ H ₅	2.96	3.16	0.20	0.40	0.0	0.0	15c	
	10	1-CH ₃ -7-CH ₂ C ₆ H ₅	2.96	3.21	0.25	0.87	0.0	0.0	15c	
	11	8-CH ₂ C ₆ H ₅	3.00	3.28	0.28	3.30	0.0	1.0	15c	
	12	7-C1	3.06 3.07	3.16	0.10	0.40	0.0	0.0	15a	
	13 14	8-Br 1-CH ₂ C ₆ H ₅	3.11	3.09 3.43	0.02 0.32	1.19 3.30	$\begin{array}{c} 0.0\\ 0.0\end{array}$	1.0 0.0	15a 15b	
	14	8-Cl	3.12	3.06	0.06	0.90	0.0	1.0	150 15a	
	16	7,8-(CH=CH) ₂	3.17	3.23	0.06	1.17	0.0	0.0	15e	
	17	7,8-(NCH=CHCH=)	3.17	3.23	0.06	1.17	0.0	0.0	15c	
	18	7-C,H,	3.19	3.16	0.03	0.40	0.0	0.0	15c	
	19	1-CH ₃	3.23	3.21	0.02	0.87	0.0	0.0	15a	
	20	8-OCH ₃	3.26	3.08	0.18	1.09	0.0	1.0	15a	
	21	6-NO ₂	3.26	3.07	0.19	1.04	0.0	1.0	15a	
	22	1-C₄H,	3.28	3.33	0.05	2.26	0.0	0.0	15b	
	23 24	6-OC ₆ H ₅ 6-O(CH ₂) ₂ C ₆ H ₅	3.28 3.28	3.26 3.34	0.02 0.06	3.07 3.98	$\begin{array}{c} 0.0\\ 0.0\end{array}$	1.0 1.0	15c 15c	
	24	$8-C_6H_5$	3.28	3.23	0.04	2.84	0.0	1.0	15c	
	26	6,8-Cl ₂	3.30	3.10	0.19	1.40	0.0	1.0	15a	
	27	6-NHCOCH	3.33	3.14	0.19	1.79	0.0	1.0	15a	
	28	6-OCH ₃	3.34	3.08	0.26	1.09	0.0	1.0	15a	
	29	6-O(CH ₂) ₂ OC ₆ H ₅	3.36	3.36	0.00	4.20	0.0	1.0	15c	
	30	5-O(CH ₂) ₄ OC ₆ H ₅ -8-Cl	3.37	3.64	0.27	5.63	0.0	0.0	15d	
	31	5-O(CH ₂) ₃ OC ₆ H ₅	3.37 3.39	3.55 3.47	$\begin{array}{c} 0.18 \\ 0.08 \end{array}$	4.67 3.80	0.0 0.0	0.0	15d	
	32 33	5-CH ₂ C ₆ H ₅ -8-Cl 6-O(CH ₂) ₃ OC ₆ H ₅	3.39	3.47	0.08	3.80 4.67	0.0	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	15d 15c	
	34	$1-CH_3+8-CH_2C_6H_5$	3.40	3.40	0.07	3.77	0.0	0.0	15c	
	35	5-C ₆ H ₅ -8-Cl	3.40	3.43	0.03	3.34	0.0	0.0	15d	
	36	6-C ₆ H ₅	3.41	3.23	0.17	2.84	0.0	1.0	15c	
	37	$6-O(CH_2)_3C_6H_5$	3.44	3.38	0.06	4.44	0.0	1.0	15c	
	38	5-O(CH ₂) ₃ OC ₆ H ₅ -8-Cl 1-CH ₃ -5-O(CH ₂) ₃ OC ₆ H ₅ -8-Cl	3.47	3.60	0.13	5.17	0.0	0.0	15d	
	39	1-CH ₃ -5-O(CH ₂) ₃ OC ₆ H ₅ -8-Cl	3.47 3.48	3.64	0.17	5.64 1.40	0.0 0.0	0.0 0.0	15d	
	40 41	5,8-Cl ₂ 1-CH ₃ -6-OCH ₃	3.48	3.25 3.27	0.23 0.21	1.40	0.0	0.0	15a 15b	
	42	6-O(CH.).OC.H.	3.48	3.44	0.04	5.13	0.0	1.0	15c	
	43	6-O(CH ₂) ₄ OC ₆ H ₅ 1-(CH ₂) ₃ OC ₆ H ₅ -6-OCH ₃ 1-CH ₃ -5-C ₆ H ₅ -8-Cl	3.49	3.59	0.10	5.13	0.0	0.0	15b	
	44	1-CH ₃ -5-C ₆ H ₅ -8-Cl	3.49	3.47	0.02	3.81	0.0	0.0	15d	
	45	1-CH ₃ -8-Cl	3.51	3.25	0.26	1.37	0.0	0.0	15b	
	46	1-C ₄ H ₉ -6-OCH ₃	3.51	3.39	0.12	2.95	0.0	0.0	15b	
	47	$1 \cdot (CH_2)_3 C_6 H_5 \cdot 6 \cdot OCH_3$	3.51	3.57	0.06	4.92	0.0	0.0	15b	
	48 49	$1 \cdot (CH_2)_2 OC_6 H_5 \cdot 6 \cdot OCH_3$ $1 \cdot (CH_2)_4 OC_6 H_5 \cdot 6 \cdot OCH_3$	3.51 3.51	3.55 3.63	0.04 0.12	4.67 5.59	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	15b 15b	
	50	1-CH ₂ C ₆ H ₄ -4'-COOH-6-OCH ₃	3.51	3.53	0.02	4.49	0.0	0.0	15b	
	51	5-CH,CH,C,H,-8-Cl	3.51	3.51	0.00	4.27	0.0	0.0	15d	
	52	1-CH ₃ -8-OCH ₃	3.52	3.27	0.25	1.56	0.0	0.0	15b	
	53	1-C ₆ H ₁₃ -6-OCH ₃	3.52	3.48	0.04	3.88	0.0	0.0	15b	
	54	1-CH ₂ C ₆ H ₅ -6-OCH ₃	3.52	3.49	0.03	3.99	0.0	0.0	15b	
	55	$1 \cdot CH_2C_6H_4 \cdot 3' \cdot NH_2 \cdot 6 \cdot OCH_3$	3.52	3.53	0.01	4.43	0.0	0.0	15b	
	56	$1-CH_{3}-8-O(CH_{2})_{3}OC_{6}H_{5}$	3.52	3.59	0.07 0.01	5.14 4.62	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	15c 15b	
	57 58	1-CH ₂ C ₆ H ₄ -3'-NO ₂ -6-OCH ₃ 6-OCH ₂ C ₆ H ₅	3.54 3.55	3.55 3.30	0.25	3.52	0.0	1.0	150 15c	
	59	1-CH ₃ -6-OCH ₂ C ₆ H ₅	3.55	3.49	0.06	3.99	0.0	0.0	15c	
	60	$1-CH_{2}-(1-C_{10}H_{2})-6-OCH_{3}$	3.59	3.85	0.26	7.97	0.0	0.0	15b	
	61	5-CH ₂ CH ₂ C ₆ H ₄ -2'-C ₆ H ₅ -8-Cl	3.59	3.73	0.14	6.70	0.0	0.0	15e	
	62	5-CH,CH,C,H,-2',6'-Cl,-8-Cl	3.62	3.60	0.02	5.27	0.0	0.0	15e	
	63	$1-CH_2C_6H_4-4'-NO_2-6-OCH_3$	3.64	3.55	0.09	4.62	0.0	0.0	15b	
	64 ^c 65	5-CH ₂ CH ₂ C ₆ H ₄ -4′-C ₆ H ₅ -8-Čl 1-CH ₃ -5-O(CH ₂) ₃ OC ₆ H ₅	3.64 3.66	4.23 3.59	0.59 0.07	6.70 5.14	$1.0 \\ 0.0$	$\begin{array}{c} 0.0\\ 0.0\end{array}$	15e 15d	
	66	$1-(CH_2)_3OC_6H_4$ $1-(CH_2)_4OC_6H_4$ -4'-NH ₂ -6-OCH ₃	3.00	3.59	0.07	6.03	0.0	0.0	15u 15b	
	67	5-CH=CHC ₆ H ₅ -8-Cl	3.77	3.51	0.26	4.22	0.0	0.0	15d	
	68 ^c	5-CH ₃ -8-Cl	3.82	3.25	0.57	1.37	0.0	0.0	15a	

		$\log 1/C$			MR-			
No.	Substituents	Obsd ^a	Calcd ^b	$ \Delta \log 1/C $	1,5,6,8	<i>I</i> -1	<i>I</i> -2	Ref
69	5-(CH ₂) ₄ C ₆ H ₅ -8-Cl	3.85	3.60	0.25	5.19	0.0	0.0	15d
70	5- $\dot{C}H = \dot{C}H - (1 - \dot{C}_{10}H_7) - 8 - C1$	3.89	3.65	0.24	5.76	0.0	0.0	15e
71	5-CH ₂ CH ₂ -(1-C ₁₀ H ₇)-8-Cl	3.92	3.65	0.27	5.81	0.0	0.0	15e
7 2	5-CH ₂ CH ₂ -(2-C ₁₀ H ₇)-8-Cl	4.00	4.15	0.15	5.81	1.0	0.0	15e
73	$1-(CH_2)_4OC_6H_4-4'-NO_2-6-OCH_3$	4.02	3.69	0.33	6.23	0.0	0.0	15b
74	5-CH ₂ CH ₂ C ₆ H ₄ -4'-CH ₃ -8-Cl	4.05	4.05	0.00	4.73	1.0	0.0	15e
75	5-CH ₂ CH ₂ C ₆ H ₃ -3',4'-Cl ₂ -8-Cl	4.24	4.10	0.14	5.27	1.0	0.0	15e
76	5-CH ₂ CH ₂ C ₆ H ₄ -3'-C ₆ H ₅ -8-Cl	4.25	4.23	0.02	6.70	1.0	0.0	15e

^a Calculated from results of Baker et al.¹⁵ ^b Calculated using eq 13. ^c These molecules not used in deriving equations.

 Table XXXI.
 Squared Correlation Matrix for Variables Pertaining


 to Eq 13 Glyceraldehyde-3-phosphate Dehydrogenase

	MR-1,5,6,	8 <i>I</i> -1	<i>I</i> -2	MR-5	π-5
MR-1,5,6,8	1.00	0.07	0.17	0.30	0.29
<i>I</i> -1		1.00	0.03	0.21	0.26
I-2			1.00	0.16	0.16
MR-5				1.00	0.98
π-5					1.00

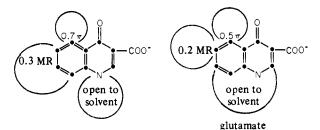
coefficient of 0.56 with I-4 indicates a small activating effect by the NH function [groups such as (CH₂)_nC₆H₅ are not parameterized by this variable]. Long-chain groups in this position may make some contact with the enzyme since $NH(CH_2)_5C_6H_5$ (68 in Table XII) is underpredicted by a factor of about 5. The 6 position is an excellent spot to attach hydrophilic groups to modulate overall lipophilicity for in vivo activity. With bacterial enzyme, a large contribution to inhibitory activity is made by groups of the type $-XC_6H_5$ and an additional component is added when $X = CH_2$ (*I*-2). Also, a small contribution is made by groups attached to $6 \cdot XC_6H_5$ (π -6). In general, the bacterial enzyme appears to be much more hydrophobic. Equation 6 has four hydrophobic terms while eq 7 has only one. Substituents on the 1 position inhibit mammalian tumor enzyme more than bacterial enzyme.

In eq 7 (mammalian enzyme), I-1 parameterizing 5-CH₂C₆H₅ and 5-SCH₂C₆H₅ has a coefficient of 1.74 and in eq 6 (*E. coli* enzyme), I-1 parameterizing 6-XC₆H₅ has a coefficient of 1.81. There is no parameterization for 6-substituents in eq 7 and there is no parameterization of 5-substituents in eq 6. This would seem to indicate that 6-space in *E. coli* has, during evolution, "moved" into the 5-space of the mammalian enzyme. While this is pure speculation, it will be interesting to compare x-ray crystallographic studies of these two enzymes. Such studies should help us decide whether I-1 is accounting for a hydrophobic interaction, conformational change, or both.

Assuming tumor enzyme is much like normal mammalian enzyme, one might be able to develop suitable drugs against E. coli by taking advantage of the differences in eq 6 and 7. The following type of compound might be interesting to study.

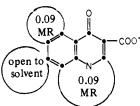
Z in this structure should be strongly hydrophilic to inhibit binding in 5-space of the mammalian enzyme and to place the overall log P for the drug in the range 0–1.0 or possibly lower.

The correlation equations for the four dehydrogenases inhibited by the 4-quinolone-3-carboxylates allow interesting comparisons to be made. Malate and glutamate


 Table XXXII.
 Development of QSAR of Eq 13 for

 Glyceraldehyde-3-phosphate Dehydrogenase

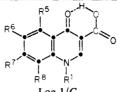
Inter- cept	MR- 1,5,6,8	<i>I</i> -1	I-2	r	s	$F_{1,X}^{a}$
3.00	0.12			0.743	0.215	86.3
3.03	0.10	0.52		0.825	0.182	29.2
3.12	0.09	0.50	-0.15	0.849	0.172	9.8


 ${}^{a}F_{1,60; \alpha 0,001} = 12; \overline{F_{1,60; \alpha 0,005}} = 8.5.$

dehydrogenase display great similarity and sensitivity to these inhibitors. Lactate and glyceraldehyde-phosphate dehydrogenase show similar SAR and are much less sensitive to changes in inhibitor structure. The following schematic drawing can be pictured from eq 11 and 12.

Both enzymes have hydrophobic space of about the same character at the 5 position. Slightly better binding occurs at this position with malate dehydrogenase where the substituents in the 6, 7, and 8 positions make contact with the enzyme while with glutamate dehydrogenase, the 7 and 8 positions are open to the surrounding solvent.

Glyceraldehyde-3-phosphate and lactate dehydrogenase have the same QSAR within the range of the confidence limits and the different character of the not very significant parameter I-1. Pictorially, they can be represented as



The range in inhibitory activity with both of these enzymes is only about 100-fold. The correlation equations appear to be poor in terms of r compared to the malate and glutamate equations but in terms of standard deviation, they are better. It is the large amount of variance in the malate and glutamate data which produce equations with such high values of r.

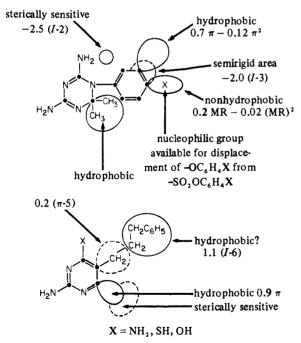
It is not too surprising that malate and glutamate dehydrogenase have such similar QSAR; both are associated with the Krebs cycle and both could have evolved from a common ancestor.

The same can be said for lactate and glyceraldehyde-3-phosphate dehydrogenase. Both of these enzymes are associated with the more primitive process of glycolysis.

Table XXXIII. Constants Used for Deriving Eq 14 for Lactate Dehydrogenase

		R ⁸	R ¹					
		Log	, 1/C	$\Delta \log$				
No.	Substituents	Obsd ^a	Calcd ^b	1/0	MR-1,5,6,8	<i>I</i> -1	I-2	Ref
1 ^c								
2	8-CH ₂ C ₆ H ₅ H	3.11 3.36	4.00 3.77	0.89 0.41	3.30 0.40	0.0 0.0	1.0 1.0	15c 15a
3	8-CH ₃	3.47	3.81	0.34	0.87	0.0	1.0	15a 15a
4	8-C1	3.52	3.81	0.29	0.90	0.0	1.0	15a
5	8-NO ₂	3.52	3.83	0.31	1.09	0.0	1.0	15a
6	7-C1	3.57	3.77	0.20	0.40	0.0	1.0	15a
7	6-OCH ₃	3.64	3.83	0.19	1.09	0.0	1.0	15a
8	6-CH ₃	3.68	3.81	0.13	0.88	0.0	1.0	15a
9	5,8-Cl ₂	3.70	3.85	0.15	1.40	0.0	1.0	15a
10 11	8-CF ₃ 7-C ₆ H ₅	3.77 3.77	3.80 3.77	0.03 0.00	0.80 0.40	0.0 0.0	1.0 1.0	15a 15c
11	7~6H5 6-C₄H9	3.80	3.92	0.12	2.26	0.0	1.0	15c
13	6-CH ₂ C ₆ H ₅	3.80	4.00	0.20	3.30	0.0	1.0	15c
14	1-CH ₃ -6-OCH ₃	3.82	3.98	0.16	1.56	0.0	0.0	15b
15	5-CH ₂ C ₆ H ₅ -8-Cl	3.82	4.04	0.22	3.80	0.0	1.0	15d
16	5-CH ₃ -8-Cl	3.85	3.85	0.00	1.37	0.0	1.0	15a
17 ^c	1-(CH ₂) ₃ OC ₆ H ₅ -6-OCH ₃	3.85	4.26	0.41	5.13	0.0	0.0	15b
18	7,8-(CH=CH) ₂	3.85	3.83	0.02	1.17	0.0	1.0	15c
19	6,8-Cl ₂	3.89	3.85	0.04	1.40	0.0	1.0	15a
20 21	6-C1 6-NO ₂	3.96 3.96	3.81 3.82	0.15 0.14	0.90 1.04	0.0 0.0	1.0 1.0	15a 15a
21 22	6-OCH ₂ C ₆ H ₅	3.96	4.02	0.06	3.52	0.0	1.0	15a 15c
22	7-CH ₂ C ₆ H ₅	3.96	3.77	0.19	0.40	0.0	1.0	15c
23	8-C ₆ H ₅	3.96	3.97	0.01	2.84	0.0	1.0	15c
25	7,8-(NCH=CHCH=)	3.96	3.83	0.13	1.17	0.0	1.0	15c
26	1-CH ₃ -6-OCH ₂ C ₆ H ₅	3.96	4.17	0.21	3.99	0.0	0.0	15c
27	1-CH ₃ -7-O(CH ₂) ₃ OC ₆ H ₅	3.96	3.92	0.04	0.87	0.0	0.0	15c
28	1-CH ₃ -8-CH ₂ C ₆ H ₅	3.96	4.16	0.20	3.77	0.0	0.0	15c
29	8-Br	4.00	3.83	0.17	1.19	0.0	1.0	15a
30	$7-O(CH_2)_3OC_6H_5$	4.00 4.00	3.77 3.92	0.23 0.08	0.40 0.87	0.0 0.0	1.0 0.0	15c 15c
31 32	1-CH ₃ -7-CH ₂ C ₆ H ₅	4.00	4.11	0.08	4.67	0.0	1.0	15d
32	5-O(CH ₂) ₃ OC ₆ H ₅ 1-CH ₃ -5-C ₆ H ₅ -8-Cl	4.00	4.16	0.16	3.81	0.0	0.0	15d
34	8-OCH ₃	4.01	3.83	0.18	1.09	0.0	1.0	15a
35	6-OC ₆ H ₅	4.02	3.99	0.03	3.07	0.0	1.0	15c
36	$1 \cdot (CH_2)_4 OC_6 H_5 \cdot 6 \cdot OCH_3$	4.06	4.30	0.24	5.59	0.0	0.0	15b
37	6-NHCOCH ₃	4.07	3.88	0.19	1.79	0.0	1.0	15a
38	1-CH ₃ -5-O(CH ₂) ₃ OC ₆ H ₅ -8-Cl	4.07	4.31	0.24	5.64	0.0	0.0	15d
39	$1-C_4H_9$	4.08	4.03	0.05	2.26	0 .0	0.0 0.0	15b 15c
40 41	1-CH ₃ -6-O(CH ₂) ₃ OC ₆ H ₅ 1-(CH ₂) ₄ OC ₆ H ₄ -4'-NH ₂ -6-OCH ₃	4.08 4.10	4.27 4.34	0.19 0.24	5.14 6.03	0.0 0.0	0.0	156
41 42	$5 - O(CH_2)_2 OC_6 H_5 - 8 - CH_3$	4.10	4.11	0.01	4.67	0.0	1.0	150 15d
43	5-CH=CH-(1-C ₁₀ H ₇)-8-Cl	4.10	4.20	0.10	5.76	0.0	1.0	15e
44	6-O(CH ₂) ₂ C ₆ H ₅	4.11	4.06	0.05	3.98	0.0	1.0	15c
45	1-CH ₃	4.13	3.92	0.21	0.87	0.0	0.0	15a
46	$1 \cdot (CH_2)_2 OC_6 H_5 - 6 - OCH_3$	4.14	4.23	0.09	4.66	0.0	0.0	15b
47	5-O(CH ₂) ₃ OC ₆ H ₅ -8-Cl	4.14	4.15	0.01	5.17	0.0	1.0	15d
48	$1-CH_2C_6H_4-3'-NH_2-6-OCH_3$	4.16 4.16	4.21 4.65	0.05 0.49	4.43 5.27	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	0.0 1.0	15b 15d
49 ^c	5-CH ₂ CH ₂ C ₆ H ₅ -8-Cl 5-O(CH ₂) ₄ OC ₆ H ₆ -8-Cl	4.16	4.03	0.49	6.63	0.0	1.0	15d
50 51	1-CH ₂ C ₆ H ₅ -6-OCH ₃	4.17	4.17	0.00	3.99	0.0	0.0	156
52	6-C ₆ H ₅	4.17	3.97	0.20	2.84	0.0	1.0	15c
53	1-CH ₂ C ₆ H ₄ -3'-NO ₂ -6-OCH ₃	4.18	4.22	0.04	4.62	0.0	0.0	15b
54	$1-CH_2C_6H_5$	4.20	4.12	0.08	3.30	0.0	0.0	15b
55	1-CH ₃ -8-Cl	4.20	3.96	0.24	1.37	0.0	0.0	15b
56	$1 - C_6 H_{13} - 6 - OCH_3$	4.21	4.16	0.05	3.88	0.0	0.0	15b
57	$6-O(CH_2)_2OC_6H_5$	4.22 4.22	4.08 4.01	0.14 0.21	4.20 3.34	$0.0 \\ 0.0$	$\begin{array}{c} 1.0 \\ 1.0 \end{array}$	15c 15d
58 59	5-C ₆ H ₅ -8-Cl 6-O(CH ₂) ₃ OC ₆ H ₅	4.22	4.01	0.21	4.67	0.0	1.0	15u 15c
60	6-O(CH ₂) ₃ OC ₆ H ₅ 6-O(CH ₂) ₄ OC ₆ H ₅	4.23	4.15	0.08	5.13	0.0	1.0	15c
61	5-O(CH ₂) ₄ OC ₆ H ₅ -8-CH ₃	4.23	4.19	0.05	5.60	0.0	1.0	15d
62	1-CH ₃ -8-OCH ₃	4.24	3.98	0.26	1.56	0.0	0.0	15b
63	1-C₄Hઁ,-6-OCH̃₃	4.24	4.09	0.15	2.95	0.0	0.0	15b
64	1-CH ₃ -8-C ₆ H ₅	4.24	4.12	0.12	3.31	0.0	0.0	15c
65	$1-CH_3-5-O(CH_2)_3OC_6H_5$	4.26	4.27	0.01	5.14	0.0	0.0	15d 15b
66	$1-CH_2C_6H_4-4'-COOH-6-OCH_3$	4.27 4.28	4.21 4.30	0.06 0.02	4.49 5.54	0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\end{array}$	15b 15b
67 68	1-CH ₂ -(1-C ₁₀ H ₇)-6-OCH ₃ 1-CH ₂ C ₆ H ₄ -4'-NO ₂ -6-OCH ₃	4.28 4.29	4.30	0.02	4.62	0.0	0.0	15b
00	1~11 ₂ ~6114 ⁻⁴ -110 ₂ -0-0011 ₃	7.47		0.07	1104	~	0.0	

Table XXXIII (Continued)


	Substituents	Log	g 1/C	∆ log		<i>I</i> -1	<i>I-</i> 2	Ref
No.		Ob sd ^a	Calcd ^b	1/C	MR-1,5,6,8			
69	1-(CH ₂) ₃ C ₆ H ₃ -6-OCH ₃	4.30	4.25	0.05	4.92	0.0	0.0	15b
70 ^c	5-CH ₂ CH ₂ -(1-C ₁₀ H ₇)-8-Cl	4.33	4.69	0.36	5.81	1.0	1.0	15e
71	1-CH ₃ -8-O(CH ₂), OC ₆ H ₅	4.34	4.27	0.07	5.14	0.0	0.0	15c
72	5-CH=CHC ₆ H ₃ -2',6'-Cl ₂ -8-Cl	4.36	4.16	0.20	5.27	0.0	1.0	15e
73	$5-CH=CHC_{6}H_{3}-3',4'-(OCH_{2}O)-8-C1$	4.41	4.13	0.28	4.91	0.0	1.0	15e
74	5-CH ₂ CH ₂ C ₆ H ₃ -3',4'-Cl ₂ -8-Cl	4.42	4.65	0.23	5.27	1.0	1.0	15e
75	6-O(CH ₂), OC ₆ H,	4.43	4.19	0.24	5.59	0.0	1.0	15c
76	$1 \cdot (CH_2)_4 OC_6 H_4 - 4' \cdot NO_2 - 6 \cdot OCH_3$	4.51	4.35	0.16	6.23	0.0	0.0	15b
77	$1-CH_{3}-5-(CH_{2})_{6}C_{6}H_{5}$	4.52	4.34	0.18	6.08	0.0	0.0	15d
78	5-CH, CH, C, H, -3'-C, H, -8-Cl	4.54	4.76	0.22	6.70	1.0	1.0	15e
7 9 °	5-CH=CHC,H,-8-C1	4.62	4.08	0.54	4.22	0.0	1.0	15d
80	5-CH ₂ CH ₂ C ₆ H ₃ -2',5'-Cl ₂ -8-Cl	4.62	4.65	0.03	5.27	1.0	1.0	15e
81 ^c	6-O(CH ₂) ₃ C ₆ H ₅	4.70	4.10	0.60	4.44	0.0	1.0	15c
82	5-CH ₂ CH ₂ C ₆ H ₄ -2'-C ₆ H ₅ -8-Cl	4.74	4.76	0.02	6.70	1.0	1.0	15e
83	5-CH ₂ CH ₂ -(2-C ₁₀ H ₇)-8-Cl	4.74	4.69	0.05	5.81	1.0	1.0	15e
84	5-CH ₂ CH ₂ C ₆ H ₄ -4'-C ₆ H ₅ -8-Cl	4.77	4.76	0.01	6. 70	1.0	1.0	15e
85 ^c	5-(CH ₂) ₄ C ₆ H ₅ -8-Cl	5.17	4.64	0.53	5.19	1.0	1.0	15d
86	5-(CH ₂), C, H, -8-Cl	5.17	4.72	0.45	6.11	1.0	1.0	15d

^a Calculated from results of Baker et al.¹⁵ ^b Calculated using eq 14. ^c These molecules not used in deriving equations.

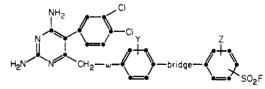
Table XXXIV.Squared Correlation Matrix for VariablesPertaining to Eq 14 for Lactate Dehydrogenase

	MR-1,5,6,8	<i>I</i> -1	I-2
MR-1,5,6,8	1.00	0.17	0.03
<i>I</i> -1		1.00	0.06
I-2			1.00

The correlation of dihydrofolate reductase (pigeon liver) inhibitors by eq 10 can, to a certain extent, be compared with our earlier study²¹ of triazines inhibiting enzyme from L1210 and Walker tumor tissue. The following diagrams illustrate similarities and differences.

Both enzymes and both types of inhibitors point to a large hydrophobic pocket off the 5 position. The evidence is clearer with the triazines than with the pyrimidines. With the pigeon liver enzyme, large hydrophobic groups are best parameterized by the indicator variable *I*-6. Quite a variety of large groups produce a similar effect. An attempt to use $(\pi \cdot 5)^2$ did not improve the correlation; hence, the effect may be largely dependent on a bulky apolar group causing a conformational change.

With small groups in the 5 position of the pyrimidines, typical hydrophobic interaction does not occur and almost Table XXXV. Development of QSAR of Eq 14 for Lactate Dehydrogenase


Inter- cept	MR-1,- 5,6,8	<i>I</i> •1	I-2	r	S	$F_{1,X}^{a}$
3.71	0.11			0.743	0.208	94.6
3.76	0.09	0.41		0.820	0.179	27.9
3.85	0.08	0.49	-0.11	0.836	0.173	6.9
F		10. 0	· · · · · · · · · · · · · · · · · · ·	6.2		

 ${}^{a}F_{1,60;\alpha 0,001} = 12; F_{1,60;\alpha 0,025} = 5.3.$

as good correlation is obtained with MR-2. This is the least important term in eq 10 (Table XXIII) so that it is not surprising that even though π -2 and MR-2 are not collinear, they give similar results. Since groups on pyrimidine such as 5-C₆H₃-3',4'-Cl₂ are well fit by *I*-6, a good part of the 5-phenyl ring must contact hydrophobic space and/or produce a conformational change.

With the triazines, there is clearly a very sterically sensitive spot between the ortho position of the N-phenyl ring and the 4-NH₂ group. The type of substituents used in the pyrimidines does not allow one to draw conclusions about this space in the pigeon enzyme. Rigid groups in the 3 and 4 positions of the N-phenyl ring decrease inhibitory power with the triazines and mammalian enzyme. It is not possible to assess this effect with the pyrimidines.

The above two dihydrofolate reductase QSAR can be compared with a third attempt by Baker using the following basic structure.

The following QSAR has been developed for this set of congeners. $^{\rm 22}$

.

$$\log \frac{1}{C} = 0.36 (I-1) - 1.01 (I-8) - 0.78 (I-9) + 0.42$$

(I-13) - 0.22 (I-15) + 0.51 (I-20) + 0.67 (I-4·I-8) +
7.17 (15)
$$n r s$$

105 0.903 0.229

All of the congeners contained the CH_{2- ω}-C₆H₄- moiety where $\omega = 0$ or CH₂. *I*-1 takes a value of 1 for CH₂; hence, CH₂ is preferable to 0 for ω . The variable *I*-3 takes a value of 1 for the 4-NHSO₂- bridge and *I*-20 takes the value of 1 for enzyme from L1210 leukemia cells. In the cross product term, I-4 is given the value of 1 for Y = 3-CH₃. The variable I-8 is given the value of 1 for the 4-NHCONH- bridge. The cross product indicates that the 3-CH₃ and the NHCONH- bridge have a synergistic effect on inhibitor potency. This is the most important positive contribution. The variable I-9 assumes the value of 1 for the 4-NHCO- bridge and I-15 takes the value of 1 for 4-SO₂F which indicates that 4-SO₂F is slightly less active than 3-SO₂F.

The only significant result of this rather large effort of Baker's is to show that little is to be gained with large substituents in the 6 position of the pyrimidine ring. An ethyl or propyl group in the 6 position would appear to yield maximum activity through hydrophobic interaction. Equation 15 is of interest in that it shows substituent effects to be largely additive but does not offer any positive ideas for better utilization of 6-space.

The correlation equations structuring Baker's massive enzyme inhibitor study clearly show that substituent effects, even for very large groups, are additive to a first approximation. The additivity is far more general than we had anticipated.

Correlation equations such as those discussed above are being developed at a rapid rate. Our own file is approaching 2000. As these equations become systematically organized, they will constitute a new and important way of organizing medicinal chemistry.²³

Acknowledgment. We wish to thank Edward Steller for assistance in some of the regression analyses.

References and Notes

- (a) This investigation was supported by Public Health Service Research Grant CA-11110 from the National Cancer Institute and the Sankyo Company, Tokyo, Japan. (b) Visiting Scientist from the Sankyo Company, Tokyo, Japan.
- (2) C. Silipo and C. Hansch, J. Med. Chem., preceding paper in this issue.
- (3) C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, and E. J. Lien, J. Med. Chem., 16, 1207 (1973).
- (4) (a) A. Leo, C. Hansch, and D. Elkins, Chem. Rev., 71, 525 (1971);
 (b) C. Hansch and C. Silipo, J. Med. Chem., 17, 661 (1974).
- (5) C. Hansch and M. Yoshimoto, J. Med. Chem., 17, 1160 (1974).
- (6) C. Silipo and C. Hansch, Mol. Pharmacol., 10, 954 (1974).
- (7) M. Yoshimoto, C. Hansch, and P. Y. C. Jow, Chem. Pharm. Bull., 23, 437 (1975).
- (8) (a) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 221 (1969); (b) *ibid.*, 12, 902 (1969); (c) B. R. Baker and M. H. Doll, *ibid.*, 14, 793 (1971); (d) B. R. Baker and J. A. Hurlbut, *ibid.*, 10, 1129 (1967); (e) *ibid.*, 11, 233 (1968); (f) *ibid.*, 11, 241 (1968); (g) *ibid.*, 11, 1054 (1968); (h) *ibid.*, 12, 118 (1969).
- (9) (a) B. R. Baker and E. H. Erickson, J. Med. Chem., 10, 1123 (1967);
 (b) ibid., 11, 245 (1968);
 (c) ibid., 12, 112 (1969).
- (10) (a) B. R. Baker, J. Med. Chem., 10, 297 (1967); (b) B. R. Baker and M. Kawazu, *ibid.*, 10, 302 (1967); (c) B. R. Baker,

M. Kawazu, D. V. Santi, and J. T. Schwan, *ibid.*, 10, 304 (1967); (d) B. R. Baker and M. Kawazu, *ibid.*, 10, 311 (1967); (e) *ibid.*, 10, 313 (1967); (f) *ibid.*, 10, 316 (1967); (g) B. R. Baker and W. Rzeszotarski, *ibid.*, 10, 1109 (1967); (h) *ibid.*, 11, 639 (1968); (i) B. R. Baker, M. Kawazu, and J. D. McClure, J. Pharm. Sci., 56, 1081 (1967); (j) B. R. Baker and M. Kawazu, *ibid.*, 56, 1086 (1967); (k) B. R. Baker and S. E. Hopkins, J. Med. Chem., 13, 87 (1970).

- (11) (a) B. R. Baker and J. L. Kelley, J. Med. Chem., 13, 456 (1970); (b) ibid., 13, 458 (1970); (c) ibid., 13, 461 (1970).
- (12) (a) B. R. Baker, B. T. Ho, and T. Neilson, J. Heterocycl. Chem., 1, 79 (1964); (b) B. R. Baker, B. T. Ho, and G. B. Chheda, *ibid.*, 1, 88 (1964); (c) B. R. Baker and J. Novotny, *ibid.*, 4, 23 (1967); (d) B. R. Baker and J. K. Coward, *ibid.*, 4, 195 (1967); (e) *ibid.*, 4, 202 (1967); (f) B. R. Baker and B. T. Ho, J. Pharm. Sci., 53, 1457 (1964); (g) B. R. Baker and J. K. Coward, *ibid.*, 54, 714 (1965); (h) B. R. Baker and B. T. Ho, *ibid.*, 54, 1187 (1965); (i) B. R. Baker and D. V. Santi, *ibid.*, 54, 1252 (1965).
- (13) (a) B. R. Baker and J. L. Kelley, J. Med. Chem., 11, 682 (1968); (b) *ibid.*, 11, 686 (1968); (c) *ibid.*, 12, 1039 (1969); (d) *ibid.*, 12, 1046 (1969).
- (14) (a) B. R. Baker and J. H. Jordan, J. Med. Chem., 8, 35 (1965); (b) B. R. Baker and B. T. Ho, J. Pharm. Sci., 53, 1137 (1964); (c) ibid., 53, 1457 (1964); (d) B. R. Baker and J. K. Coward, ibid., 54, 714 (1965); (e) B. R. Baker and B. T. Ho, *ibid.*, 54, 1187 (1965); (f) B. R. Baker and D. V. Santi, ibid., 54, 1252 (1965); (g) B. R. Baker and B. T. Ho, ibid., 54, 1261 (1965); (h) B. R. Baker, B. T. Ho, J. K. Coward, and D. V. Santi, ibid., 55, 302 (1966); (i) B. R. Baker and H. S. Schapiro, *ibid.*, 55, 308 (1966); (i) B. R. Baker, B. T. Ho, and T. Neilson, J. Heterocycl. Chem., 1, 79 (1964); (k) B. R. Baker, B. T. Ho, and G. B. Chheda, ibid., 1, 88 (1964); (1) B. R. Baker and J. H. Jordaan, *ibid.*, 2, 21 (1965); (m) ibid., 2, 162 (1965); (n) B. R. Baker and B. T. Ho, ibid., 2, 340 (1965); (o) B. R. Baker and G. J. Lourens, ibid., 2, 344 (1965); (p) B. R. Baker and J. Novotny, *ibid.*, 4, 23 (1967); (q) B. R. Baker and J. H. Jordaan, *ibid.*, 4, 31 (1967); (r) B. R. Baker, B. T. Ho, and D. V. Santi, J. Pharm. Sci., 54, 1415 (1965); (s) B. R. Baker, G. L. Lourens, and J. H. Jordaan, J. Heterocycl. Chem., 4, 39 (1967)
- (15) (a) B. R. Baker and R. R. Bramhall, J. Med. Chem., 15, 230 (1972); (b) *ibid.*, 15, 233 (1972); (c) *ibid.*, 15, 235 (1972); (d) *ibid.*, 15, 237 (1972); (e) *ibid.*, 15, 937 (1972).
- (16) (a) C. Hansch and E. Coats, J. Pharm. Sci., 59, 731 (1970);
 (b) C. Hansch, J. Org. Chem., 37, 92 (1972); (c) R. N. Smith and C. Hansch, Biochemistry, 12, 4924 (1973); (d) R. N. Smith, C. Hansch, and T. P. Poindexter, Physiol. Chem. Phys., 6, 323 (1974).
- (17) (a) Actually the following three substrates: thymidine, 2'-deoxyuridine, and FUDR. (b) B. R. Baker, "Design of Active-Site-Directed Irreversible Enzyme Inhibitors", Wiley, New York, N.Y., 1967, p 79.
- (18) J. J. Burchall, J. Infect. Dis., 128, S437 (1973).
- (19) V. S. Shapot, Adv. Cancer Res., 15, 253 (1972).
- (20) C. Hansch, Adv. Pharmacol. Chemother., 13, 45 (1975).
- (21) C. Silipo and C. Hansch, J. Am. Chem. Soc., 97, 6849 (1975).
- (22) C. Hansch, C. Silipo, and E. E. Steller, J. Pharm. Sci., 64, 1186 (1975).
- (23) C. Hansch, A. Leo, and D. Elkins, J. Chem. Doc., 14, 57 (1974).