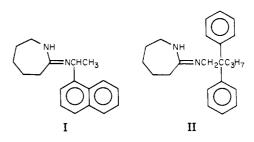
Nilsson, Adv. Cyclic Nucleotide Res., 1, 213 (1972).

- (5) H. P. Bar, Adv. Cyclic Nucleotide Res., 4, 195 (1974).
- (6) L. Triner, G. G. Nahas, Y. Vulliemoz, N. I. A. Overweg, M. Verosky, D. V. Habif, and S. H. Ngai, Ann. N.Y. Acad. Sci., 185, 458 (1971).
- (7) T. P. Lee, J. F. Kuo, and P. Greengard, Proc. Natl. Acad. Sci. U.S.A., 69, 3287 (1972).
- (8) G. Schultz, J. G. Hardman, and E. W. Sutherland in "Asthma, Physiology, Immunopharmacology and Treatment", K. F. Austen and L. M. Lichtenstein, Ed., Academic Press, New York, N.Y., 1973, p 123.
- (9) G. Schultz, J. G. Hardman, K. Schultz, J. W. Davis, and E. W. Sutherland, Proc. Natl. Acad. Sci. U.S.A., 70, 1721 (1973).
- (10) G. Schultz, J. G. Hardman, K. Schultz, C. E. Baird, and E. W. Sutherland, *Proc. Natl. Acad. Sci. U.S.A.*, **70**, 3889 (1973).
- (11) N. D. Goldberg, R. F. O'Dea, and M. K. Haddox, Adv. Cyclic Nucleotide Res., 3, 155 (1973).
- (12) J. A. Beavo, N. L. Rodgers, O. B. Crofford, C. E. Baird, J. G. Hardman, E. W. Sutherland, and E. V. Newman, Ann. N.Y. Acad. Sci., 185, 129 (1971).
- (13) J. A. Beavo, N. L. Rodgers, O. B. Crofford, J. G. Hardman, E. W. Sutherland, and E. V. Newman, *Mol. Pharmacol.*, 6, 597 (1970).
- (14) A. Peytremann, W. E. Nicholson, G. W. Liddle, J. G. Hardman, and E. W. Sutherland, *Endocrinology*, 92, 525 (1973).
- (15) C. A. Sutherland, G. Schultz, J. G. Hardman, and E. W. Sutherland, Fed. Proc., Fed. Am. Soc. Exp. Biol., 32, 773 (1973).
- (16) C. A. Sutherland and J. G. Hardman, unpublished observation.
- (17) J. N. Wells, C. E. Baird, Y. J. Wu, and J. G. Hardman, Biochim. Biophys. Acta, 384, 430 (1975).
- (18) W. J. Thompson and M. M. Appleman, J. Biol. Chem., 246, 3145 (1971).
- (19) R. Buchman, P. F. Heinstein, and J. N. Wells, J. Med. Chem., 17, 1168 (1974).
- (20) Compound 2a has been reported.²¹ Compounds 3a and 4d have been prepared previously²² but physical data have not been reported. Ir and NMR spectral data were consistent

with structures. Structures were further confirmed by conversion to the known xanthine. **3a** has mp 185.5-188°. **4d** has mp 178-185° dec. Compound 4c is available commercially.²³

- (21) T. B. Johnson and S. H. Clapp, J. Biol. Chem., 5, 49 (1908).
- (22) V. Papesch and E. F. Schroeder, J. Org. Chem., 16, 1879 (1951).
- (23) Available from the Aldrich Chemical Co., Inc., Milwaukee, Wis.
- (24) Reaction of theophylline with benzyl bromide and K₂CO₃ in dimethylformamide gave excellent yields of 7-benzyltheophylline, mp 156.5-158° (lit.²⁷ mp 154-155°).
- (25) R. Zelnick, M. Pesson, and M. Polonovski, Bull. Soc. Chim. Fr., 888 (1956).
- (26) J. A. Montgomery and K. Hewson, J. Org. Chem., 26, 4469 (1961).
- (27) G. P. Hager, J. C. Krantz, Jr., and J. B. Harmon, J. Am. Pharm. Assoc., 42, 36 (1953).
- (28) K. R. H. Wooldridge and R. Slack, J. Chem. Soc., 1863 (1962).
- (29) R. B. Meyer, Jr., D. A. Shuman, R. K. Robins, J. P. Miller, and L. N. Simon, J. Med. Chem., 16, 1319 (1973).
- (30) "Handbook of Chemistry and Physics", Chemical Rubber Publishing Co., Cleveland, Ohio, 1964, p D-76.
- (31) B. R. Baker and W. Rzeszotarski, J. Med. Chem., 11, 639 (1968).
- (32) A. K. Armitage, J. Boswood, and B. J. Large, Br. J. Pharmacol., 17, 196 (1961).
- (33) A. K. Armitage, J. Boswood, and B. J. Large, Br. J. Pharmacol., 16, 59 (1961).
- (34) C. G. Smith, Adv. Enzyme Regul., 12, 187 (1974), and references cited therein.
- (35) L. Doub, U. Krolls, J. M. Vandenbelt, and M. W. Fisher, J. Med. Chem., 13, 242 (1970).
- (36) D. J. Brown, E. Hoerger, and S. F. Mason, J. Chem. Soc., 211 (1955).
- (37) D. M. Besly and A. A. Goldberg, J. Chem. Soc., 4997 (1957).
- (38) G. Nubel and W. Pfleiderer, Chem. Ber., 98, 1060 (1965).
- (39) V. Papesch and E. F. Schroeder (G. D. Searle and Co.), U.S. Patent 2,602,795 (1952); Chem. Abstr., 47, 4920f (1953).
- (40) E. F. Schroeder (G. D. Searle and Co.), U.S. Patent 2,731,465 (1956); Chem. Abstr., 51, 1257e (1957).


Substituted α -Methylbenzyl and Tricyclic Arylalkyl Lactamimides as Inhibitors of Blood Platelet Aggregation

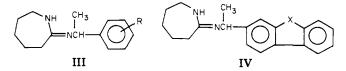
J. Martin Grisar,* George P. Claxton, and Robert D. MacKenzie

Merrell-National Laboratories, Division of Richardson-Merrell Inc., Cincinnati, Ohio 45215. Received August 28, 1975

N-[1-(p-Phenoxyphenyl)ethyl]hexahydro-2H-azepin-2-imine hydrochloride (10) and N-[1-(2-dibenzothienyl)ethyl]hexahydro-2H-azepin-2-imine hydrochloride (22) were found to inhibit in vitro aggregation of human blood platelets induced by ADP with minimal release of procoagulant platelet factor 3. The compounds were selected from a series of substituted α -methylbenzyl and tricyclic arylalkyl lactamimides that were free of hypoglycemic and diuretic effects. Compounds 10 and 22, as well as N-[1-(1-naphthyl)ethyl]hexahydro-2H-azepin-2-imine hydrochloride (I) and N-(2,2-diphenylpentyl)hexahydro-2H-azepin-2-imine hydrochloride (II), were evaluated for effects on ADP-induced platelet aggregation after repeated oral administration to guinea pigs. Compound II (RMI 12,366A) showed in vivo activity in this system 2 h after the last of four daily doses of 100 mg/kg po.

Naphthylalkyl lactamimides, especially I (RMI 7822A), were found earlier to inhibit adenosine diphosphate (ADP) and collagen-induced aggregation of human blood platelets.¹ Later it was found that I also has hypoglycemic and diuretic properties in rats.² We therefore set out to find lactamimides that inhibit platelet aggregation without causing hypoglycemia or diuresis. Compound II (RMI 12,366A), which was reported earlier,² meets these requirements. In this paper, we report preparation and evaluation of a series of substituted α -methylbenzyl lactamimides III, in which the substituent R is large and imparts lipophylic properties to the molecules, and tricyclic

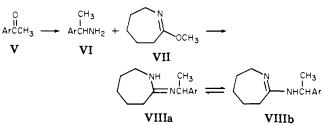
arylalkyl lactamimides IV. Compounds of this type inhibit aggregation of platelets but are free of hypoglycemic ef-


Table I. Arylalkyl Lactamimides and Their Effect on Human Blood Platelets

			-					
Ar	R	n	Mp, °C ^a	Yield, %	Mol formula ^b		% inhibn	n platelets ^c % PF3 release
$-C_{6}H_{5}$ $-C_{6}H_{4}-p-n-C_{1,3}H_{2,7}$	H H	5 5	245-247 183-185	41 81	$\begin{array}{c} C_{14}H_{20}N_2 \cdot HCl \\ C_{27}H_{46}N_2 \cdot HCl \end{array}$	100 100 30	0 100 33	
$-C_{6}H_{4}-p-O-n-C_{12}H_{25}$ $-C_{6}H_{4}-p-C_{6}H_{11}$	H H	5 5	186-188 dec 245-247	81 64	$\begin{array}{c} C_{_{26}}H_{_{44}}N_{_{2}}O \cdot HCl \\ C_{_{20}}H_{_{30}}N_{_{2}} \cdot HCl \end{array}$	100 300 100 30	64 100 31	0.62 0.004
$-C_6H_4$ - p - C_6H_5	н	5	245-247	80	$C_{20}H_{24}N_2$ ·HCl	300 100 30	100 44 (2)	0.76 (2) 0.04 (2)
$-C_6H_4\cdot p\cdot CH_2CH_2C_6H_5$	Н	5	230-232	76	$C_{22}H_{28}N_2$ ·HCl	300 100 30	78 (2) 37	0.91 (2) 0.013 (2) 0.00
$-C_6H_4-p-CH_2CH_2C_6H_5$	Me	3	$87 - 89^{d}$	32	$C_{21}H_{26}N_2 \cdot HCl \cdot H_2O$	100	100	
$-C_{6}H_{4}-p-CH=C(C_{6}H_{5})_{2}$	н	5	219-221	55	$C_{28}H_{36}N_2$ ·HCl	300 100 30 10	29 100 21 (2) 0	2.30 0.23
	н	5	266-268 dec	59	$C_{28}H_{28}N_2$ ·HCl	$300 \\ 100 \\ 30 \\ 10$	100 38 6	0.42 0.02
$-C_{6}H_{4}-p-OC_{6}H_{5}$	Н	ъ	210–21 2 dec	68 (80)	C ₂₀ H ₂₄ N ₂ O·HCl	300 100 30	100 25	0.26 (2) 0.01 (2)
$-\mathbf{C}_{6}\mathbf{H}_{4}\text{-}o\text{-}\mathbf{OCH}_{2}\mathbf{CH}_{2}\mathbf{C}_{6}\mathbf{H}_{5}$	н	5	189-190 dec	28	C ₂₂ H ₂₈ N ₂ O·HCl	100 30 10	81 30 11	
-C ₆ H ₄ - <i>p</i> -O(CH ₂) ₃ C ₆ H ₅ -C ₆ H ₄ - <i>p</i> -O(CH ₂) ₃ - OC ₆ H ₅	H H	5 5	202-205 162-164	76 58	C ₂₃ H ₃₀ N ₂ O·HCl C ₂₃ H ₃₀ N ₂ O ₂ ·HCl	$\begin{array}{c}100\\30\end{array}$	100 14	
$-C_{\delta}H_{4}-m-O(CH_{2})_{4}-OC_{\delta}H_{5}$	Н	3	136–138 dec ^e	46	$C_{22}H_{28}N_2O_2$ ·HCl	100 30 10	100 16 0	
	н	5	257–258 dec	65	$C_{23}H_{26}N_2 \cdot HCl$	100 30 10	100 22 0	
-\$	н	5	247-248 dec ^e	29	$C_{24}H_{38}N_2$ ·HCl	100	77	
	н	5	274-276 dec	61	$C_{21}H_{24}N_2 \cdot HCl$	300 100 30 10	100 43(2) 0	1.50 0.06
	н	7	276-277 dec	60	$C_{23}H_{28}N_2 \cdot HCl$	$100 \\ 30 \\ 10$	100 (2) 62 6	
-540	н	5	262-264 dec	72	$C_{22}H_{24}N_2 \cdot HCl$	300 100 30 10	$\begin{array}{c}100\\43\left(2\right)\\4\end{array}$	2.60 0.06
	$-C_{6}H_{5} - C_{6}H_{4} - p - n - C_{13}H_{27}$ $-C_{6}H_{4} - p - 0 - n - C_{12}H_{25} - C_{6}H_{4} - p - C_{6}H_{11}$ $-C_{6}H_{4} - p - C_{6}H_{5}$ $-C_{6}H_{4} - p - C_{12}CH_{2}C_{6}H_{5}$ $-C_{6}H_{4} - p - CH_{2}CH_{2}C_{6}H_{5}$ $-C_{6}H_{4} - p - OC_{6}H_{5}$ $-C_{6}H_{4} - p - OC_{6}H_{5}$ $-C_{6}H_{4} - p - O(CH_{2})_{3}C_{6}H_{5}$ $-C_{6}H_{4} - p - O(CH_{2})_{3} - C_{6}H_{5}$ $-C_{6}H_{4} - p - O(CH_{2})_{3} - C_{6}H_{5}$	$\begin{array}{c} -C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot n \cdot C_{13}H_{27} & H \\ H \\ -C_{6}H_{4}\cdot p \cdot O \cdot n \cdot C_{12}H_{25} & H \\ -C_{6}H_{4}\cdot p \cdot C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot C_{12}CH_{2}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot CH_{2}CH_{2}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot OCH_{2}CH_{2}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot OCH_{2}CH_{2}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot OCH_{2}CH_{2}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot O(CH_{2})_{3}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot O(CH_{2})_{3}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot p \cdot O(CH_{2})_{3}C_{6}H_{5} & H \\ -C_{6}H_{4}\cdot m \cdot O(CH_{2})_{4}C_{6}H_{5} & H \\ -C_{6}H_{5} & H \\ -C_{6}H_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} -C_{e}H_{s} & -n \cdot C_{1,3}H_{2,7} & H & 5 & 245 - 247 \\ -C_{e}H_{s}P \cdot n \cdot C_{1,3}H_{2,7} & H & 5 & 186 - 188 & dec \\ -C_{e}H_{s}P \cdot C_{e}H_{1,1} & H & 5 & 245 - 247 \\ \hline \\ -C_{e}H_{s}P \cdot C_{e}H_{3} & H & 5 & 245 - 247 \\ \hline \\ -C_{e}H_{s}P \cdot CH_{2}CH_{2}C_{e}H_{3} & H & 5 & 230 - 232 \\ \hline \\ -C_{e}H_{s}P \cdot CH_{2}CH_{2}C_{e}H_{3} & Me & 3 & 87 - 89^{d} \\ \hline \\ -C_{e}H_{s}P \cdot CH = C(C_{e}H_{3})_{2} & H & 5 & 219 - 221 \\ \hline \\ \hline \\ \hline \\ -C_{e}H_{s} \cdot P - OC_{e}H_{3} & H & 5 & 266 - 268 & dec \\ \hline \\ -C_{e}H_{s} \cdot P - OC_{e}H_{5} & H & 5 & 210 - 212 & dec \\ \hline \\ -C_{e}H_{s} \cdot P - OC_{e}H_{5} & H & 5 & 189 - 190 & dec \\ \hline \\ -C_{e}H_{s} \cdot P - O(CH_{2})_{3}C_{e}H_{3} & H & 5 & 189 - 190 & dec \\ \hline \\ -C_{e}H_{s} \cdot P - O(CH_{2})_{3} \cdot C_{e}H_{3} & H & 5 & 162 - 164 \\ \hline \\ \hline \\ OC_{e}H_{5} & H & 5 & 257 - 258 & dec \\ \hline \\ $	Ar R n Mp, °C° % -C _e H ₄ , p-n-C ₁₃ H ₂₇ H 5 245-247 41 -C _e H ₄ , p-O-n-C ₁₃ H ₂₇ H 5 188-188 81 -C _e H ₄ , p-O-n-C ₁₃ H ₂₇ H 5 186-188 dec 81 -C _e H ₄ , p-C _e H ₃ H 5 245-247 64 -C _e H ₄ , p-C ₄ H ₁₁ H 5 245-247 80 -C _e H ₄ , p-C ₄ H ₁₁ H 5 245-247 80 -C _e H ₄ , p-CH ₂ CH ₂ C ₄ H ₅ H 5 230-232 76 -C _e H ₄ , p-CH ₂ CH ₂ C ₄ H ₅ Me 3 87-89 ^d 32 -C _e H ₄ , p-CH ₂ CH ₂ C ₄ H ₅ Me 3 87-89 ^d 32 -C _e H ₄ , p-OCH ₂ CH ₂ C ₄ H ₅ Me 5 219-221 55 -O -O H 5 266-268 68 (80) -C _e H ₄ , -p-O(C ₄ H ₅ H 5 182-190 28 -C _e H ₄ , -p-O(CH ₃) ₅ H 5 202-205 76	Ar R n Mp, °C° % Mol formula ^b -C ₄ H ₄ , p-0, -C ₁ , H ₂ , H 5 245-247 41 C ₁ , H ₂ , N, HCl -C ₄ H ₄ , p-0, -C ₁ , H ₂ , H 5 188-185 81 C ₁ , H ₂ , N, HCl -C ₄ H ₄ , p-0, -C ₁ , H ₂ , H 5 245-247 64 C ₁₀ , H ₄ , N ₂ , OHCl -C ₄ H ₄ , p-C ₄ , H ₁ H 5 245-247 80 C ₂₀ H ₄ , N ₂ , HCl -C ₄ H ₄ , p-C ₄ , H ₁ H 5 245-247 80 C ₂₀ H ₄ , N ₂ , HCl -C ₄ H ₄ , p-CH ₂ , C ₄ H ₁ H 5 230-232 76 C ₂₀ H ₂₀ , N ₂ , HCl -C ₄ H ₄ , p-CH ₂ , CH ₂ C ₄ H ₄ H 5 230-232 76 C ₂₀ H ₂₀ , N ₂ , HCl -C ₄ H ₄ , p-CH ₂ , CH ₂ C ₄ H ₄ Me 3 87-89 ^d 32 C ₂₁ H ₂₀ , N ₂ , HCl -C ₄ H ₄ , p-CH ₂ , CH ₂ , C ₄ H ₄ Me 3 87-89 ^d 32 C ₂₁ H ₂₀ , N ₂ , HCl -C ₄ H ₄ , p-CH ₂ , CH ₂ , C ₄ H ₄ H 5 210-212 68 (80) C ₂₀ H ₂₀ N ₂ , N ₂ , H	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ar R n Mp, °C '' Yield, % Mol formula $rad control contro contro contro control contro control control contro control co$

				Effects on human platelets ^c					
No.	No. Ar	R	n	Mp, °C ^a	Yield, %	Mol formula ^b	Concn, µg/ ml	% inhibn of ADP- induced aggregation	% PF3 release
20		н	3	188-191 dec	44	C ₁₈ H ₁₈ N ₂ O·HCl	100 30	100 42	
21		н	5	304-306 dec ^e	83	C ₂₀ H ₂₂ N ₂ O·HCl	10 100	10 67	
22		н	5	272-274	78	C ₂₀ H ₂₂ N ₂ S·HCl	300 100	100	0.18 0.013
							30 10	52 2	
Iţ	See text						$300 \\ 100 \\ 30$	70 (2)	0.037 0.003
II ^g	See text						$\begin{array}{c} 10\\ 300 \end{array}$	46 (2) 0 (2)	0.130
							100 30 10	100 57 1	
α-[p·	-(Fluoren-9-ylidenemetl	hyl)phe	nyl]-	2-piperidineetha	nol glycol	ate (R MI 10,393) ^h	300	_	0.747 (6)
							$\begin{array}{c}100\\30\\10\end{array}$	99 (4) 28 (6)	0.162 (6) 0.003 (7)
N-(2	-Diethylaminoethyl)-N-	(2-hydr	оху	2-phenylethyl)2	,5-dichlor	paniline (AN 162) ⁱ	10 300 100 30	1 (6) 62 (118) 10 (104)	0.52 (42) 0.10 (47)

^a Compounds were recrystallized from methanol-acetone unless otherwise indicated. ^b All compounds were analyzed for C, H, and one other element. Analytical results obtained for these elements were within ±0.4% of the calculated values. ^c In vitro effect of test compound on the inhibition of platelet aggregation caused by ADP in human platelet-rich plasma. **PF3** activity is given as percent of maximum. Number in parentheses indicates number of determinations. ^d Recrystallized from acetone. ^e Recrystallized from absolute ethanol. ^f Reference 1. ^g Reference 2. ^h References 11 and 12. ⁱ Reference 8.



fects. In vivo evaluation of a compound each of type III and IV, as well as of I and II, is also reported.

Chemistry. Compounds of type III and IV were prepared as shown in Scheme I. Primary amines VI were allowed to react with O-methylcaprolactim $(VII)^3$ by the method of Benson and Cairns⁴ to give the lactamimides listed in Table I. These occur in two tautomeric forms VIIIa and VIIIb. The amines VI were prepared from aryl methyl ketones by Leuckart reaction and are listed in Table II. Representative examples of these reactions are given in the Experimental Section.

Biological Evaluation. The compounds listed in Table I were evaluated for inhibition of ADP-induced aggregation of human blood platelets by the method of Mustard et al.⁵ and for release of platelet factor 3 (PF3) by the method of MacKenzie et al.⁶ PF3 is a procoagulant factor and its release is an undesired property.⁷ Because MacKenzie et

Scheme I

al.⁶ showed that PF3-like activity of 0.1-0.3% is caused by a normal breakfast, we adopted these values as our limit of acceptability. Data are given in the last three columns of Table I.

Compounds 10, 22, I, and II were evaluated in guinea pigs by the method of MacKenzie et al.^{7,8} The test compounds were administered for 4 days and blood samples were obtained 2 h after the last dose and citrated platelet-rich plasma was isolated. The degree of aggregation induced by ADP was then determined in vitro and was compared to a value obtained at the same time from an untreated control group. Data are given in Table III.

Most compounds listed in Table I were evaluated for hypoglycemic activity by the method of Gerritsen and Dulin^{9a} in fasted, glucose-primed rats at 100 mg/kg po and were found to be inactive.^{9b} A representative number of compounds were also evaluated for diuretic activity in rats by the method of Lipschitz et al.^{10a} and were found to have little or no activity.^{10b}

Discussion

The compounds shown in Table I all have an α -methyl group because it was shown earlier that this enhances activity.¹ It was also shown earlier that seven-membered lactam ring congeners had optimal activity with least effect on PF3 release and therefore only a few congeners with smaller or larger lactam rings were prepared. Compounds 2-7 are simple alkyl-, alkoxy-, cycloalkyl-, phenyl-, and phenethyl-substituted α -methylbenzyl lactamimides. Compounds 8 and 9 are triphenylethylene and benzylidenefluorene congeners that were prepared in analogy to α -[p-(fluoren-9-ylidenemethyl)phenyl]-2-piperidineethanol, reported earlier from our laboratories.^{11,12} (For data see end of Table I.) Compounds 10-14 are phenoxy-,

		CH ₃								
RCHNH₂ HCl										
No.	R	Mp (lit. mp), $^{\circ}C^{a}$	Yield, %	Mol formula ^b	ν max, cm ⁻¹					
23	$-C_{6}H_{4}-p-n-C_{13}H_{27}$	110-112	10 ^c	C ₂₁ H ₃₅ N·HCl	2020					
24	$-C_{6}H_{4}-p-O-n-C_{12}H_{25}$	99-112 ^d	50	C ₂₀ H ₃₃ NO·HCl						
25	$-C_{6}H_{4}-p-C_{6}H_{11}$	$232-236 \text{ dec} (253-254)^e$		$C_{14}H_{19}N \cdot HCl$	2000					
26 27	C, H, -p-C, H, C, H, -p-CH, CH, C, H,	223-226 (224-226) ^f 212-214	73	$C_{14}H_{13}N \cdot HCl \\ C_{16}H_{17}N \cdot HCl$	2010					
28	$-C_{6}H_{4}-p-CH=C(C_{6}H_{5})_{2}$	241-245	46	$C_{22}H_{19}N \cdot HCl$	2010					
29		259-261	72	C ₂₂ H ₁₇ N·HCl	2010					
30	-C,H,-p-OC,H,	189-194 (180-181) ^g	75	C ₁₄ H ₁₃ NO·HCl	2040					
31	-C,H,-o-OCH,CH,CH,C,H,	120-133 dec	43	C ₁₆ H ₁₇ NO·HCl	2040					
32	$-C_{6}H_{4}-p-O(CH_{2})_{3}C_{6}H_{5}$	142-145	51^{h}	C ₁₇ H ₁ ,NO·HCl						
33 34	$-C_{6}H_{4}-p-O(CH_{2})_{3}OC_{6}H_{5}$	71-81 70 81 dec	39	C ₁₇ H ₁₉ NO ₂ ·HCl	2000					
04	$-C_6H_4-m-O(CH_2)_4OC_6H_5$	79–81 dec	39	$C_{18}H_{21}NO_2$ HCl	2000					
35	$-\overline{O}$	254-255 dec		C ₁₇ H ₂₅ N·HCl						
36		261–263 dec	22	$C_{18}H_{27}N\cdot HCl$						
37		251–254 dec	74	$C_{15}H_{13}N \cdot HCl$	2000					
38	-040	266-267	60	$C_{16}H_{13}N\cdot HCl^{i}$	2010					
39		213-218 (222-223) ^j	63	C ₁₄ H ₁₁ NO·HCl						
40		281–283 dec	60	C ₁₄ H ₁₁ NS·HCl	2040					

Table II. Arylalkylamine Hyd	drochlorides
------------------------------	--------------

^a Recrystallized from *i*-PrOH-H₂O unless otherwise indicated. ^b Microanalyses were not obtained for these compounds since products from the Leuckart reaction were found to generally contain small amounts of impurities, presumably secondary amines that were difficult to remove by recrystallization. Formation of lactamimides from these amines may be regarded as derivatization and therefore proof of structure. ^c In addition to product, 69% of the starting ketone was recovered. ^d For the base see Belgian Patent 596,509 (1961); *Chem. Abstr.*, 60, 16033 (1964). ^e A. de Rooker and P. de Radzitsky, *Bull. Soc. Chim. Belg.*, 72, 195 (1963). ^f A. de Rooker and P. de Radzitsky, *ibid.*, 73, 181 (1964). ^e J. H. Brown, C. K. Kim, D. Beauchamp, and G. Jennings, *J. Am. Chem. Soc.*, 58, 1808 (1936). ^h In addition to product, 45% of the starting ketone was recovered. ⁱ Anal. (C₁₆H₁₃N·HCl) C, H, Cl. ^j H. Gilman, P. T. Parker, J. C. Bailie, and G. E. Brown, *J. Am. Chem. Soc.*, 61, 2836 (1939).

phenylalkoxy-, and phenoxyalkoxy-substituted congeners. Compounds 15 and 16 are bicyclic and 17-22 tricyclic arylalkyl lactamimides.

A comparison of the data in Table I shows that the activity is broadly distributed throughout the series; this is all the more surprising if one considers that only gross structural variations are represented. It can be concluded from this finding that apart from the lactamimide function and the α -methyl-substituted carbon atom to which it is attached, almost any large lipophylic group will impart platelet aggregation inhibitory activity to this type of compound. Hypoglycemic activity, on the other hand, is associated with more definitive structural parameters (steric hindrance, α, α -diarylmethyl group) in lactamimides of generally lower molecular weight;^{2,13-15} these compounds showed little or no effects on platelets.² Compounds with large, lipophilic groups showed a tendency to cause relatively high PF3 release or to possess PF3-like procoagulant activity. A similar observation was made earlier in another series.7 Compounds 10 and 22 showed good activity with minimal release of PF3 and were selected for in vivo evaluation.

The effect of oral administration of compounds 10, 22, I, and II to guinea pigs over a period of 4 days on the degree of platelet aggregation induced by ADP is shown in Table III. Only one of the four compounds (II, RMI 12,366A) inhibited ADP-induced platelet aggregation in this test model at 100 mg/kg; aggregation induced by low levels of ADP was also inhibited at 30 mg/kg. At 300 mg/kg the animals died after administration of the third daily dose. Further pathologic-toxicologic evaluation is in progress. It is planned to evaluate II in additional antithrombotic test models for comparison with other platelet aggregation inhibitors.¹⁶

Experimental Section

Melting points were determined in open capillaries in a Thomas-Hoover apparatus and are corrected. Infrared spectra were taken on a Perkin-Elmer 521 instrument. NMR spectra were taken on a Varian Model A-60 instrument (Me4Si as internal standard). Where analyses are indicated only by symbols of the

Table III.	Effect of Ora	l Administration	to Guinea Pi	gs on in Vitro	ADP-Induced Pla	atelet Aggregation ^a

Concn Daily No. of of dose animals ADP,			Inhibition of aggregation						
		Av total response (cm ² ±			± SEM)				
	(days),	treated	$\mu g/ml$	Av ΔT (9	6 ± SEM)			%	
No.	mg/kg po	(control)		Control	Treated	Control	Treated	inhibn	<i>p</i> value
10	30 (4)	3(6)	0.45	28.3 ± 4.4	24.4 ± 4.9	9.3 ± 1.9	4.4 ± 2.6	53	NS
	30 (4)	4(6)	0.80	62.8 ± 4.2	42.2 ± 7.1	13.0 ± 0.7	8.1 ± 1.7	38	< 0.05
	100 (4)	4 (6)	0.45	32.1 ± 6.6	17.7 ± 4.2	6.2 ± 1.6	4.4 ± 2.2	29	NS
	100 (4)	4 (6)	0.80	50.7 ± 6.0	49.0 ± 7.3	10.7 ± 1.3	9.8 ± 1.6	8	NS
22	30 (4)	6 (6)	0.45	20.0 ± 4.1	20.4 ± 3.7	28.7 ± 16.8	52.8 ± 21.4	0	
	30 (4)	6 (6)	0.80	41.4 ± 2.8	43.6 ± 3.4	10.8 ± 0.8	10.5 ± 1.1	3	NS
	100 (4)	6 (6)	0.45	24.2 ± 3.7	32.0 ± 4.5	2.2 ± 0.5	4.4 ± 1.6	0	
	100 (4)	6 (6)	0.80	43.8 ± 3.7	53.6 ± 7.0	9.1 ± 1.1	10.8 ± 1.6	0	
Ip	30 (4)	5 (6)	0.45	8.5 ± 2.7	7.0 ± 2.9	0.45 ± 0.18	0.30 ± 0.14	33	NS
	30 (4)	5 (6)	0.80	25.5 ± 2.7	29 .0 ± 3.8	4.6 ± 1.0	5.3 ± 1.6	0	NS
	100 (4)	5 (6)	0.45	5.2 ± 1.8	7.1 ± 3.7	0.20 ± 0.08	0.39 ± 0.27	0	
	100 (4)	5 (6)	0.80	17.5 ± 2.7	21.6 ± 2.9	1.73 ± 0.61	1.88 ± 0.54	0	
II ^c	10 (4)	7 (8)	0.40	18.6 ± 4.3	14.6 ± 5.6	30.3 ± 13.0	23.9 ± 15.0	21	NS
	10 (4)	7 (8)	0.80	44.9 ± 5.4	35.2 ± 4.4	106 ± 9.3	78.5 ± 14.0	26	< 0.2
	30 (4)	3 (3)	0.45	24.0 ± 3.0	19.7 ± 3.5	1.61 ± 0.5	1.41 ± 0.49	18	NS
	30 (4)	3 (3)	0.80	42.7 ± 1.4	35.3 ± 3.2	8.35 ± 1.3	7.10 ± 1.5	14	NS
	30 (4)	8 (8)	0.25	30.3 ± 7.0	21.2 ± 3.8	61.4 ± 22.5	22.7 ± 7.3	63	0.1
	30 (4)	8 (8)	0.35	34.6 ± 7.4	24.8 ± 4.3	70.2 ± 20.6	31.5 ± 8.9	55	0.1
	100 (4)	3 (5)	0.45	59.0 ± 6.8	34.3 ± 2.6	12.3 ± 2.1	3.6 ± 0.5	70	< 0.01
	100 (4)	2(2)	0.80	83.6 ± 1.1	62.7 ± 2.7	18.7 ± 0.8	14.6 ± 0.7	20	< 0.01
	100 (1)	8 (8)	0.45	24.7 ± 7.9	21.4 ± 6.9	48.5 ± 22.0	42.1 ± 17.0	13	NS
	100 (1)	8 (8)	0.80	40.3 ± 5.2	36.0 ± 4.4	86.3 ± 12.0	76.4 ± 14.0	12	NS

^a Compound administered for 4 days. Blood taken 2 h after the last dose. See Experimental Section and ref 8. ^b RMI 7822A; cf. ref 1. ^c RMI 12,366A; cf. ref 2.

elements, results obtained were within $\pm 0.4\%$ of theoretical values. N-[1-(p-Phenoxyphenyl)ethyl]hexahydro-2H-azepin-2-

imine Hydrochloride (10). A mixture of 200 g (0.944 mol) of p-phenoxyacetophenone and 239 g (3.78 mol) of HCOONH4 was heated slowly to 160°. After the initial foaming had subsided, the temperature of the heating bath was raised to 185-190° and stirring was continued for 5 h. Upon cooling, the mixture was washed with H₂O, the washes were extracted with a small amount of C₆H₆, and the extract was added to the residue along with 250 ml of concentrated HCl. This mixture was heated on a steam bath for 4 h and cooled, and the product that precipitated was collected, washed with (CH₃CH₂)₂O, and recrystallized from (CH₃)₂CHOH-H₂O to give 177.3 g (75%) of 30 (Table II). The ir (KBr) showed the weak, but characteristic primary amine hydrochloride band at 2040 cm⁻¹. The other compounds listed in Table II were prepared similarly.

To 177.3 g (0.71 mol) of **30** was added 180 ml (ca. 1.26 mol) of O-methylcaprolactim³ and the mixture was stirred into a slurry and was allowed to stand at room temperature for 5 days. During the first 6 h, the mixture was stirred at frequent intervals and small portions of absolute CH₃CH₂OH were added (300 ml total) to keep the mixture stirrable. When the mixture ceased to further solidify, it was cooled (-20°), and the solid was collected, washed with (CH₃CH₂)₂O, and recrystallized from CH₃OH-CH₃COCH₃ to give 176.0 g (72%) of 10 (Table I); a second crop of 18.4 g (8%) was recovered from the mother liquor.

Other compounds listed in Table I (with the exception of 7) were similarly prepared, although generally at one-tenth the scale.

N-[1-(2-Dibenzothienyl)ethyl]hexahydro-2H-azepin-2imine Hydrochloride (22). To a mixture of 368.6 g (2 mol) of dibenzothiophene and 533.4 g (4 mol) of anhydrous AlCl₃ under 2 l. of CS₂ at 0 to -10° was added dropwise over 2.5 h 157.0 g (2 mol) of CH₃COCl at such a rate as to keep the temperature below 0°. Stirring was continued at 0 to -10° for 2 h. The mixture was then poured into 2 N HCl-ice, the CS₂ layer was separated, the aqueous layer was extracted with CHCl₃, and the combined organic layers were washed (2 N HCl, 1.9 N Na₂CO₃) and dried (Na₂SO₄). The solvent was evaporated and the residue was distilled to give 318.1 g, bp 164-238° (0.02 mm); NMR indicated that this material was predominantly the 2-acetyl isomer. Crystallization from 1.8 l. of CH₃OH gave 121.4 g (28%): mp 105-109° (lit. mp 111-112°);¹⁷ NMR (CDCl₃) δ 2.68 (s, 3), 7.3-8.3 (m, 6), 8.65-8.72 (m, 1).

A mixture of 121.4 g (0.536 mol) of 2-dibenzothienyl methyl ketone and 135.5 g (2.145 mol) of HCOONH4 was heated to 185° for 6 h and in the manner described for 30, 1-(2-dibenzothienyl)ethylamine hydrochloride (40) was isolated and recrystallized from 2-propanol-water: 84.1 g (60%); mp 281-283° dec; ir (KBr) 2040 cm⁻¹.

A mixture of 77.3 g (0.293 mol) of finely powdered 40 (hydrochloride salt) and 78 ml (ca. 0.54 mol) of O-methylcaprolactim was stirred to form a slurry. As the reaction mixture hardened, six 30-ml portions of absolute C₂H₅OH were added during the first 6 h of standing at room temperature. After 5 days of standing and addition of another 200 ml of absolute C₂H₅OH in portions, the mixture no longer solidified and the reaction was complete. The mixture was cooled (-20°), and the product was collected, washed with ether, and recrystallized twice from CH₃OH-(C-H₃)₂CO to give 76.5 g (71%) of **22** (Table I).

1-Methyl-N-[1-[p-(phenylethyl)phenyl]ethyl]pyrrolidin-2-imine Hydrochloride Hydrate (7). To 9.9 g (0.1 mol) of N-methylpyrrolidin-2-one in 200 ml of C₆H₆ was added dropwise 7.7 g (0.05 mol) of POCl₃. The mixture was stirred at room temperature for 4 h. To the resulting solution was added 13.1 g (0.05 mol) of 27 (hydrochloride salt). The mixture was stirred at room temperature for 1 h, and at the reflux temperature for 4 h, and was allowed to stand overnight. The resulting solution was transferred to a separatory funnel and was shaken with 200 ml of 2 N HCl. Three phases resulted. The two bottom layers were separated, washed with C₆H₆, made alkaline with 2 N NaOH, and extracted with ether. The extract gave 15.5 g of oil, to which 1 equiv of methanolic HCl was added. The product was crystallized and recrystallized three times from acetone to give 5.8 g (32%) of 7 (Table I).

1-[3-(4-Phenoxybutoxy)phenyl]ethan-1-one. A mixture of $59.3~{\rm g}$ (0.437 mol) of 1-(3-hydroxyphenyl)ethan-1-one, $100~{\rm g}$ (0.437 mol) of 4-phenoxybutyl bromide, and 60.2 g (0.437 mol) of K₂CO₃ in 500 ml of anhydrous acetone was stirred at reflux temperature for 18 h. The mixture was poured into water, the product was extracted into ether, the extract was washed (H₂O, 2 N Na₂CO₃, saturated NaCl solution) and dried (Na2SO4), and the solvent was evaporated. The product crystallized from 2-propanol to give 101.8 g (82%), mp 48-59°. A sample was recrystallized twice from 2-propanol to give the title compound, mp 60-61°. Anal. (C18H20O3) C, H. 1-[4-(3-Phenoxypropoxy)phenyl]ethan-1-one, [mp 78-79°. Anal. (C17H18O3) C, H], 1-[2-(2-phenylethoxy)phenyl]ethan-1-one [mp 40-43°, bp 204-216° (2.6 mm). Anal. (C16H16O2) C, H], and 1-[4-(3-phenylpropoxy)phenyl]ethan-1-one [mp 80-81° (no lit. mp given in abstract)]¹⁸ were similarly prepared in 70, 17, and 58% yield, respectively.

Biological Methods. Blood Collection and Isolation of Plasma. Whole blood was obtained from voluntary, experienced donors before breakfast. Donors were instructed to take no drugs, specifically aspirin, for 5 days before giving blood. No plasma was used that was lipidemic or, in a preliminary aggregation experiment, showed no second-phase aggregation (aspirin-like effect). Blood was collected by the two-syringe technique. It was decalcified with 3.8% sodium citrate solution, one part to nine parts of blood. The citrated blood was centrifuged at 100g for 10 min and citrated platelet-rich plasma (PRP) was isolated. The residue was recentrifuged at 1500g for 15 min to give platelet-poor plasma (PPP).

Inhibition of ADP-Induced Platelet Aggregation. Compounds were tested for inhibition of ADP-induced aggregation in a Bryston platelet aggregometer by the procedure of Mustard et al.⁵ Human PRP was diluted with autologous PPP to 400000 platelets/mm³. Saline was added to another aliquot of the same plasma sample to serve as control. After incubation for 20 min at 37°, ADP (2 μ g/ml final concentration) was added to induce aggregation. The increase in light transmittance (ΔT) through the plasma sample in the aggregometer, produced by platelet aggregating, was recorded. The maxima of the ΔT responses for control and test samples were then used to calculate percent inhibition of platelet aggregation by the test compound. More detail on the method and its variability is discussed elsewhere.⁸

Platelet Factor 3 Activation. Test compound solution was added to human citrated PRP and incubated at 37° for 20 min; a modified Stypven test was then performed. Plasma was diluted 1:10 for this modified test.⁶

In Vivo Effect on in Vitro ADP-Induced Aggregation.⁸ Test compound was given to guinea pigs by a stomach tube at the indicated dose for 4 days. An untreated control group was maintained alongside. Blood was removed by heart pucture 2 h after the last dose and citrated PRP was isolated and adjusted for in vitro ADP-induced platelet aggregation. ADP was added at the concentration indicated in Table III. Max ΔT were obtained as described above. Total response was obtained by measuring the area between the aggregation curve and baseline transmittance for the 5-min period following ADP addition with a planimeter. Percent inhibition was calculated from the average total response of treated vs. control group.

Acknowledgment. We thank Mr. W. T. Lakatos for assistance in the synthetic work, Miss L. M. Lancaster, Messrs. E. M. Gleason, W. M. Selenke, J. M. Steinbach, and E. M. Auxier for help in the biological evaluations, and Mr. M. J. Gordon and associates for microanalyses and spectra.

References and Notes

- (1) E. M. Roberts, J. M. Grisar, R. D. MacKenzie, G. P. Claxton, and T. R. Blohm, J. Med. Chem., 15, 1270 (1972).
- (2) J. M. Grisar, G. P. Claxton, N. L. Wiech, R. W. Lucas, R. D. MacKenzie, and S. Goldstein, J. Med. Chem., 16, 885 (1973).
- (3) R. E. Benson and T. L. Cairns, "Organic Syntheses", Collect. Vol. IV, Wiley, New York, N.Y., 1963, p 588.
- (4) R. E. Benson and T. L. Cairns, J. Am. Chem. Soc., 70, 2115 (1948).
- (5) J. F. Mustard, B. Hegardt, H. C. Rowsell, and R. L. MacMillan, J. Lab. Clin. Med., 64, 548 (1964).
- (6) R. D. MacKenzie, T. R. Blohm, and E. M. Auxier, Am. J. Clin. Pathol., 55, 551 (1971).
- (7) C. H. Tilford, R. D. MacKenzie, T. R. Blohm, and J. M. Grisar, J. Med. Chem., 16, 688 (1973).
- (8) R. D. MacKenzie and T. R. Blohm, Thromb. Diath. Haemorrh., 26, 577 (1971).
- (9) (a) G. C. Gerritsen and W. E. Dulin, *Diabetes*, 14, 507 (1965).
 (b) We thank Dr. N. L. Wiech and associates for these determinations. For methods, see ref 13.
- (10) (a) W. L. Lipschitz, Z. Hadidian, and A. Kerpcsar, J. Pharmacol. Exp. Ther., 79, 97 (1943). (b) We thank Dr. J. K. Woodward and associates for these determinations. For methods, see ref 2.
- (11) G. P. Claxton, J. M. Grisar, E. M. Roberts, and R. W. Fleming, J. Med. Chem., 15, 500 (1972).
- (12) R. D. MacKenzie, T. R. Blohm, E. M. Auxier, J. G. Henderson, and J. M. Steinbach, Proc. Soc. Exp. Biol. Med., 137, 662 (1971).
- (13) J. M. Grisar, G. P. Claxton, A. A. Carr, and N. L. Wiech, J. Med. Chem., 16, 679 (1973).
- (14) G. P. Claxton, J. M. Grisar, and N. L. Wiech, J. Med. Chem., 17, 364 (1974).
- (15) J. M. Grisar, G. P. Claxton, and N. L. Wiech, J. Med. Chem., 19, 365 (1976).
- (16) R. D. MacKenzie in "Platelets and Thrombosis", S. Sherry and A. Scriabine, Ed., University Park Press, Baltimore, Md., 1974, pp 235-246.
- (17) A. Burger, W. B. Wartman, Jr., and R. E. Lutz, J. Am. Chem. Soc., 60, 2628 (1938).
- (18) N. Oshima, K. Sato, and S. Mitsui, Nippon Kagaku Zasshi, 84, 177 (1963); Chem. Abstr., 59, 13852 (1963).

Central Nervous System Active 5-Oxo-1,4,5,6,7,8-hexahydrocinnolines¹

Kuppuswamy Nagarajan,* Joy David, and Rashmi K. Shah

Ciba-Geigy Research Centre, Bombay 63, India. Received August 4, 1975

Among a series of $5-\infty o-1,4,5,6,7,8$ -hexahydrocinnolines examined for their CNS activity, 1-(2-diethylaminoethyl)-3-(p-fluorophenyl)-5- $\infty o-7,7$ -dimethyl-1,4,5,6,7,8-hexahydrocinnoline (23) and 1-(2-dimethylaminoethyl)-3-phenyl-5- $\infty o-7,7$ -dimethyl-1,4,5,6,7,8-hexahydrocinnoline (27) had sedative and anticonvulsant properties and were also active in tests used to characterize antidepressants. But their narrow safety margin precluded further follow-up studies. Derivatives 35-38 of 2-(ω -phenacyl)-3-hydrazino-5,5-dimethyl-2-cyclohexenone were active in tests used to characterize antidepressants and were weakly sedative but not anticonvulsant.

The multifactorial etiology of the depressive syndrome calls for "wide-spectrum antidepressants", encompassing depression-relieving, drive-enhancing, and anxiolytic effects.^{2a} The pharmacological profile of maprotiline demonstrates such bipolar activity with both antidepressant as well as sedative tranquillizing properties.^{2b} In the course of our continuing work on CNS-active drugs,³ we encountered moderately interesting wide-spectrum activity in the CNS profile in a series of novel 5-oxo-1,-4,5,6,7,8-hexahydrocinnolines. We report briefly the results of our study of this series.

Chemistry. The title compounds 13-32 were synthesized in moderate to good yields from ketones 1-8 by reaction with appropriate hydrazines and are listed in Table I. The ketones became available from cyclohexane-1,3-diones by alkylation with phenacyl bromides