of MeSH, a 30% excess). 4-Chloro-3-cvanobenzvl trifluoride (20.5 g, 0.1 mol) was then added in one portion and the reaction mixture became slightly exothermic. After stirring for a few minutes, a solid started to precipitate from the reaction mixture and stirring was continued for 2 h. After filtration, the filtrate was diluted with  $H_2O$  (500 ml) and extracted with  $Et_2O$ . This  $Et_2O$  extract was washed with H<sub>2</sub>O (100 ml), dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated in vacuo to give 15.2 g (70%) of crude 4-thiomethyl-3-cyanobenzyl trifluoride as a gummy white solid. This material (15.2 g, 0.07 mol) was dissolved in EtOH (150 ml) and 20% NaOH (200 ml) and heated at 90° for 18 h. At this point the mixture was cooled and acidified with 12 N HCl and the white solids which precipitated were removed by filtration and washed well with H<sub>2</sub>O to give 16.4 g (99%) of 171: a white solid; mp 198-200°. A small sample was sublimed (125°, 0.02 mm) to give the analytical sample: mp 198.5-200°. Anal. (C<sub>9</sub>H<sub>7</sub>F<sub>3</sub>O<sub>2</sub>S) Č, H.

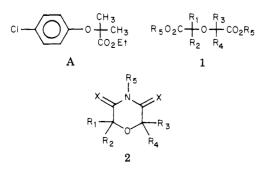
5-Chloro-2-methoxynicotinic Acid (172). Chlorine gas was bubbled into a stirred suspension of 2-methoxynicotinic acid (10.0 g, 0.065 mol) in H<sub>2</sub>O (750 ml) for 30 min at room temperature. The precipitated crystals were collected and dried to give 10.19 g (84%) of 172: mp 149–150°. Anal. (C<sub>7</sub>H<sub>6</sub>ClNO<sub>3</sub>) C, H, N.

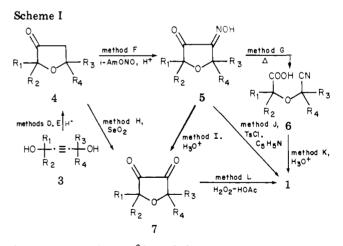
Acknowledgment. The competent technical assistance of Messrs. Herman Griffin, Mark A. Guadliana, Thomas E. Johnson, Werner H. Kappeler, Paul R. Kelbaugh, Charles H. Lamphere, Robert M. McIntyre, Stephen S. Massett, Donald L. Riggs, and Frank W. Rusek is greatly appreciated.

#### **References and Notes**

- (a) J. M. McManus, J. W. McFarland, C. F. Gerber, W. M. McLamore, and G. D. Laubach, J. Med. Chem., 8, 766 (1965);
   (b) J. W. McFarland, C. F. Gerber, and W. M. McLamore, *ibid.*, 8, 781 (1965);
   (c) J. M. McManus and C. F. Gerber, *ibid.*, 9, 256 (1966);
   (d) J. M. McManus, *ibid.*, 9, 967 (1966).
- (2) W. Aumüller, A. Bänder, R. Heerdt, K. Muth, W. Pfaff, F. H. Schmidt, H. Weber, and R. Weyer, Arzneim.-Forsch., 16, 1640 (1966).
- (3) B. Belleau and G. Malek, J. Am. Chem. Soc., 90, 1651 (1968).
- (4) W. J. Dixon and F. J. Massey, "Introduction to Statistical Analysis", McGraw-Hill, New York, N.Y., 1969, pp 114–123.
- (5) J. R. Ryan, F. G. McMahon, and A. K. Jain, Clin. Pharmacol. Ther., 17, 243 (1975).
- (6) L. E. Brady, M. Freifelder, and G. R. Stone, J. Org. Chem., 26, 4758 (1961).
- (7) H. Stetter, J. Mayer, M. Schwarz, and K. Wulff, Chem. Ber., 93, 226 (1960).
- (a) K. Alder, K. Heimbach, and R. Reubke, Chem. Ber., 91, 1516 (1958);
   (b) P. Wilder and D. B. Knight, J. Org. Chem., 30, 3078 (1965).
- (9) R. A. Egli, Helv. Chim. Acta, 53, 47 (1970).

# Synthesis and Biological Evaluation of Substituted 2,2'-Oxybis(propionic acid) Derivatives and Related Compounds


Gregory B. Bennett,\* William J. Houlihan, Robert B. Mason, and Robert G. Engstrom


Medicinal Chemistry Department, Sandoz, Inc., East Hanover, New Jersey 07936. Received September 12, 1975

A series of 2,2'-oxybis(propionic acid) derivatives was prepared and their hypolipidemic activity measured. The lipid lowering activity of various 2,2,5,5-tetrasubstituted furan derivatives was also measured. No significant hypolipidemic activity was observed.

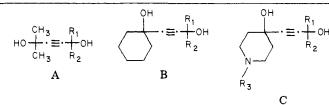
An enormous research effort has been directed at understanding and attacking atherosclerosis and coronary artery disease. Both abnormal serum lipoprotein metabolism<sup>1</sup> and abnormal arterial wall lipid metabolism<sup>2</sup> have been implicated. Whereas it has not been established that lowering serum lipoprotein concentration decreases the rate of deposition of lipid in arterial walls, the elevated serum lipid level associated with abnormal lipoprotein metabolism has been designated as a major risk factor in the atherosclerotic heart disease.<sup>3</sup> That coronary heart disease and cerebral vascular accident are the single largest cause of death in this country has stimulated efforts to discover agents which reduce circulatory lipid levels.

A large number of aryl- and aryloxy-substituted alkylcarboxylic acids have been reported to possess hypolipidemic activity.<sup>4</sup> Among these, clofibrate (A) has been the major drug available for treatment of these hyperlipidemias. The disadvantages of low potency<sup>5</sup> as well as its lack of effectiveness toward type II





hyperlipoproteinemia<sup>6</sup> have led to a concentrated search for superior hypolipidemic agents among compounds containing the structural elements of clofibrate.<sup>7</sup>


In this regard, a synthetic program directed toward 2,2'-oxybis(propionic acid) derivatives of type 1, morpholines of structure 2, and related compounds was initiated.

**Chemistry.** The synthetic pathways used to prepare the 2,2'-oxybis(propionic acid) derivatives 1 are displayed in Scheme I. Of the reported<sup>8-11</sup> conversions of furandiones 7 or furandione monooximes 5 (Table III) into 2,2'-oxybis(propionic acid) derivatives of formula 1 (Table I), oxidative cleavage<sup>8</sup> of  $\alpha$ -dione 7 proved the most general pathway. In several cases (1b,d,f) purification of the diacid

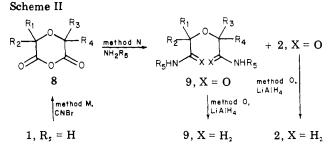
|                 |                      |             | R            | C⊦<br>302C+<br>C⊦      | $R_1$<br>-0 + X<br>$R_2$      |                               | R <sub>1</sub><br>+ CO <sub>2</sub> R <sub>3</sub><br>R <sub>2</sub> |                                |                                                 |          |
|-----------------|----------------------|-------------|--------------|------------------------|-------------------------------|-------------------------------|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------|----------|
|                 |                      |             |              | Α                      |                               | В                             |                                                                      |                                |                                                 |          |
| Compd           | Mp or bp<br>(mm), °C | Yield,<br>% | Meth-<br>od  | Struc-<br>ture<br>type | $\mathbf{R}_{1}$              | R <sub>2</sub>                | R,                                                                   | x                              | Emp formula                                     | Analyses |
| la <sup>a</sup> | 154-155              | 78          | J            | A                      | CH <sub>3</sub>               | CH <sub>3</sub>               | Н                                                                    | CO <sub>2</sub> R <sub>3</sub> | C <sub>8</sub> H <sub>14</sub> O <sub>5</sub>   | С, Н     |
| 1 <b>b</b>      | 132 - 135(0.6)       | 16          | $\mathbf{L}$ | Α                      | CH <sub>3</sub>               | C,H,                          | CH <sub>3</sub>                                                      | $CO_2R_3$                      | $C_{15}H_{20}O_{5}$                             | С, Н     |
| 1c              | 136-137              | 62          | $\mathbf{L}$ | Α                      | C₄H̃₅                         | C <sub>₄</sub> H <sub>₅</sub> | н                                                                    | CO <sub>2</sub> R <sub>3</sub> | $C_{18}H_{18}O_{5}$                             | С, Н     |
| 1d              | 140-153 (0.8)        | 29          | $\mathbf{L}$ | Α                      | CH <sub>3</sub>               | $p \cdot Cl \cdot C_6 H_4$    | CH,                                                                  | CO <sub>2</sub> R <sub>3</sub> |                                                 | C, H, Cl |
| 1e              | 132-134              | 69          | $\mathbf{L}$ | Α                      | C₄Hঁ₅                         | $p-Cl-C_{6}H_{4}$             | н                                                                    | CO <sub>2</sub> R <sub>3</sub> | $C_{18}H_{17}O_{5}Cl$                           | C, H, Cl |
| 6a              | 131-133              | <10         | G            | Α                      | CH₃                           | ĊH, °                         | н                                                                    | CNÍ                            | C <sub>8</sub> H <sub>13</sub> NO <sub>3</sub>  | C, H, N  |
| 6b              | 155-157              | 30          | G            | Α                      | C <sub>6</sub> H <sub>5</sub> | С,Й,                          | н                                                                    | CN                             | Č <sub>18</sub> H <sub>17</sub> NO <sub>3</sub> | C, H, N  |
| 1f              | 96-100(0.2)          | 73          | $\mathbf{L}$ | В                      | CH,                           | CH <sub>3</sub>               | CH,                                                                  | CO <sub>2</sub> R <sub>3</sub> | $C_{13}H_{22}O_{5}$                             | C, H     |
| 1g              | 103-104.5            | 70          | L            | В                      | CH <sub>3</sub>               | C₅Hँ₅                         | Н                                                                    | $CO_2R_3$                      | C <sub>16</sub> H <sub>20</sub> O <sub>5</sub>  | C, N     |

<sup>a</sup> See ref 9.

Table II. Acetylenic Diols 3



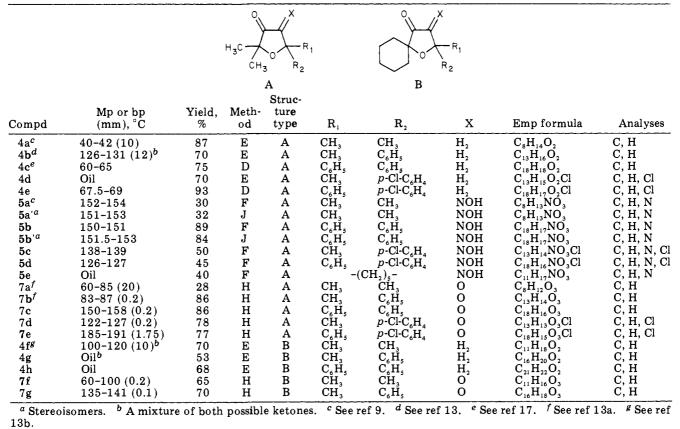
| Compd            | Mp, °C      | Yield,<br>% | Meth-<br>od | Struc-<br>ture<br>type | R,              | $R_2$                         | R <sub>3</sub>  | Emp formula                                   | Analyses    |
|------------------|-------------|-------------|-------------|------------------------|-----------------|-------------------------------|-----------------|-----------------------------------------------|-------------|
| 3a <sup>a</sup>  | 92-94       | 38          | A           | Α                      | CH,             | CH <sub>3</sub>               |                 | C <sub>8</sub> H <sub>14</sub> O <sub>2</sub> | С, Н        |
| 3b <sup>b</sup>  | 83-84       | 57          | Α           | Α                      | CH <sub>3</sub> | C <sub>6</sub> H,             |                 | $\hat{C}_{13}H_{16}O_{2}$                     | С, Н        |
| 3c <sup>c</sup>  | 119-121     | 58          | Α           | Α                      | C₄Hঁ₅           | C <sub>6</sub> H <sub>5</sub> |                 | $C_{18}H_{18}O_{2}$                           | С, Н        |
| 3d               | 131 - 132   | 44          | Α           | Α                      | CH              | $p - Cl - C_6 H_4$            |                 | $C_{13}H_{15}O_{2}Cl$                         | C, H, Cl    |
| 3e               | 89.5-95.5   | 60          | Α           | Α                      | C₄Hঁ₅           | $p-Cl-C_{6}H_{4}$             |                 | $C_{18}H_{17}O_{2}Cl$                         | C, H, Cl    |
| 3f               | 168 - 171   | 50          | Α           | Α                      | 4-Pyridyl       | $p-Cl-C_6H_4$                 |                 | $C_{17}H_{16}O_{7}NCl$                        | C, H, N, Cl |
| $3g^b$<br>$3h^d$ | 93.5-95     | 52          | Α           | В                      | CH <sub>3</sub> | ĊH,                           |                 | $C_{11}H_{18}O_{2}$                           | C, H        |
| $3h^d$           | 124 - 125.5 | 23          | Α           | В                      | CH <sub>3</sub> | С <sub>6</sub> Й₅             |                 | $C_{16}^{11}H_{20}^{10}O_{2}^{1}$             | С, Н        |
| 3 <b>i</b>       | 110 - 111.5 | 16          | B.          | В                      | C₄Hঁ₅           | C <sub>6</sub> H <sub>5</sub> |                 | $C_{21}H_{22}O_{2}$                           | С, Н        |
| 3j               | 141.5 - 142 | 58.5        | С           | С                      | CH,             | CH                            | CH <sub>3</sub> | $C_{11}H_{19}O_{2}N$                          | C, H, N     |
| 3k               | 180-181     | 43          | С           | С                      |                 | $CH_{3})(CH_{2})_{2}-$        | CH              | $C_{14}H_{24}O_{2}N_{2}$                      | C, H, N     |
| 31               | Oil         | 58          | С           | С                      | CH,             | CH,                           | COC, H,         | $C_{17}H_{21}O_{3}N$                          | C, H, N     |
| 3m               | Oil         | 18          | В           | С                      | $-(CH_2)_2N(CO$ | $(C_6H_5)(CH_2)_2 -$          | COC H           | $C_{20}H_{26}O_{3}N$                          | C, H, N     |


<sup>a</sup> See ref 9. <sup>b</sup> See ref 13b. <sup>c</sup> See ref 17. <sup>d</sup> See ref 16b.

required conversion to the more volatile diester. Diazomethane<sup>12a</sup> was used for this transformation due to the failure of standard exchange methods.<sup>12b</sup> The needed  $\alpha$ -diones 7 (Table III) were prepared by either SeO<sub>2</sub> oxidation<sup>13</sup> of furanones 4 or hydrolysis<sup>14</sup> of the corresponding ketoximes 5. Nitrosation<sup>15</sup> of the furanones 4 provided the ketoximes 5.

The acetylenic diols 3 (Table II) which were prepared by known procedures  $^{16}$  could be cyclized  $^{13,17}$  to the necessary furanone intermediates 4.

Treatment of the diacids 1 (R = H) with CNBr in pyridine<sup>18</sup> as is depicted in Scheme II gave anhydrides 8 (Table IV) cleanly and in good yields. On exposure of the anhydrides to excess amine at 130°, a mixture of diamides 9 (X = O) (Table V) and imides 2 (X = O) (Table IV) was realized. The interconversion of 9 and 2 (X = O) was effected by treatment under the appropriate conditions. Heating 9 under reduced pressure afforded 2, whereas reaction of 2 with excess amine gave 9. Reduction of 2 or 9 (X = O) with LiAlH<sub>4</sub> gave morpholine 2 or diamine 9 (X = H<sub>2</sub>), respectively.


Turning our attention to related furans (Scheme III) reduction of acetylenic diol 3 with 1 equiv of hydrogen,



even over 10% Pd/C catalyst, gave cis diol 10 (Table VI) which could be dehydrated to dihydrofuran 12 (Table VII) or reduced with an additional equivalent of hydrogen to the fully saturated diol 11 (Table VI). Diol 11 could be dehydrated to tetrahydrofuran 13 (Table VII). While dihydrofurans 12 could be epoxidized by treatment with peracid (Table VII), they proved relatively inert to other attempts at functionalization.

**Pharmacology (See Table VIII).** Of the 2,2'-oxybis(propionic acids) (1) prepared, only 1a displayed any hypolipidemic activity. This activity was accompanied by a large weight loss (46%) and the compound was not

| Table III. Furanones 4, Ketoximes 5, and Diketo |
|-------------------------------------------------|
|-------------------------------------------------|



| Table IV. Anhydrides 8 and Morpholines 2 | Table IV. | Anhydrides | 8 and | Morp | holines | 2 |
|------------------------------------------|-----------|------------|-------|------|---------|---|
|------------------------------------------|-----------|------------|-------|------|---------|---|

|            |                        |             | H <sub>3</sub> C |                               | $R_1$<br>$R_2$                     | $H_{3}C \xrightarrow{CH_{3}}{R_{3}} R_{2}$         | 1              |                                                 |                      |
|------------|------------------------|-------------|------------------|-------------------------------|------------------------------------|----------------------------------------------------|----------------|-------------------------------------------------|----------------------|
| Compd      | Mp or bp<br>(mm), °C   | Yield,<br>% | Meth-<br>od      | $\mathbf{R}_{_{1}}$           | R <sub>2</sub>                     | $\mathbf{R}_{\mathfrak{z}}$                        | х              | Emp formula                                     | Analyses             |
| 8a         | Oil                    | 40          | M                | CH <sub>3</sub>               | CH <sub>3</sub>                    |                                                    |                | C <sub>8</sub> H <sub>12</sub> O <sub>4</sub>   | C, H                 |
| 8b<br>8c   | 80-82<br>109-111 (0.1) | 87<br>65    | M<br>M           | С, Н,                         | C₄H̃₅<br>p-Cl-C <sub>6</sub> H₄    |                                                    |                |                                                 | C, H                 |
| 8d         | 110-112                | 75          | M                | CH3<br>C6H3                   | p-Cl-C <sub>6</sub> H <sub>4</sub> |                                                    |                | $C_{13}H_{13}O_4Cl Cl C_{18}H_{15}O_4Cl$        | C, H, Cl<br>C, H, Cl |
| 2a         | 52.5-53.5              | 44          | N                | CH <sub>3</sub>               | $CH_3$                             | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub>      | 0              | $C_{15}H_{15}O_{4}O_{3}$                        | C, H, N              |
| 2 <b>b</b> | 85-90 (0.1)            | 85          | õ                | CH <sub>3</sub>               | CH <sub>3</sub>                    | $C_6H_5CH_2$                                       | H <sub>2</sub> | $C_{15}H_{23}NO^{3}$                            | C, H, N              |
| 2c         | 54-56                  | 56          | Ň                | CH,                           | CH <sub>3</sub>                    | p-Cl-C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | O <sup>2</sup> | $C_{15}H_{18}NO_{3}Cl$                          | C, H, N, Cl          |
| 2d         | 51.5-53                | 58          | ö                | CH,                           | CH <sub>3</sub>                    | p-Cl-C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | $\tilde{H}_2$  | $C_{15}H_{22}NOCl$                              | C, H, N, Cl          |
| 2e         | Oil                    | 4           | Ň                | C₄H,                          | C/H.                               | H                                                  | ō              | $C_{18}H_{17}NO_{3}$                            | C, H, N              |
| 2f         | 169-170                | 8           | N                | C <sub>6</sub> H <sub>5</sub> | C, H,                              | C <sub>6</sub> H <sub>5</sub>                      | 0              | $C_{24}H_{21}NO_{3}$                            | C, H, N              |
| 2g         | 112-113                | 56          | Ν                | C <sub>6</sub> H <sub>5</sub> | C₄H₅                               | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub>      | 0<br>0         | C <sub>25</sub> H <sub>23</sub> NO <sub>3</sub> | C, H, N              |
| 2h         | $224-225.5^{a}$        | 98          | 0                | C <sup>°</sup> H,             | C, H,                              | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub>      | $H_{2}$        | C <sub>25</sub> H <sub>28</sub> NOCl            | C, H, N, Cl          |
| 2i         | 114.5 - 115            | 60          | Ν                | C₄H₄                          | $C_6H_5$                           | p-Cl-C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | 0              | C, H, NO, Cl                                    | C, H, N, Cl          |
| 2j         | 102.5 - 104.5          | 48          | 0                | C <sub>6</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub>      | p-Cl-C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | $H_2$          | C <sub>25</sub> H <sub>26</sub> NOCl            | C, H, N, Cl          |
| 2k         | 215-217 (0.2)          | 40          | Ν                | C <sub>6</sub> H <sub>5</sub> | $p \cdot Cl \cdot C_6 H_4$         | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub>      | 0              | $C_{25}H_{22}NO_{3}Cl$                          | C, H, N, Cl          |

<sup>a</sup> Hydrochloride salt.

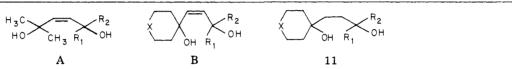
pursued further. Both ketoximes 5b and 5d exhibited weak-moderate serum triglyceride lowering. Imides 2g, 2i, and 2k displayed weak lipid lowering activity, suggesting that the *p*-chloro substituent may enhance activity. This activity was lost on reduction to the corresponding morpholines 2h and 2j.

Diamine 9c, while producing marked triglyceride low-

ering activity at doses as low as 30 mg/kg, produced a significant and proportional weight loss at all dose levels and was dropped from further consideration.

Unsaturated diols 10c and 10d, prepared by reducing the corresponding acetylenic diols 3j and 3k, showed weak and weak-moderate triglyceride lowering activity. Dihydrofuran 12b produced a weak-moderate reduction in

## Table V. Diamines and Diamides 9


|            |                      |             |             |                               | R <sub>3</sub> HN CH <sub>3</sub>  | R <sub>2</sub> NHR <sub>3</sub>                    |                |                                                               |             |
|------------|----------------------|-------------|-------------|-------------------------------|------------------------------------|----------------------------------------------------|----------------|---------------------------------------------------------------|-------------|
|            |                      |             |             |                               | 9                                  | -                                                  |                |                                                               |             |
| Compd      | Mp or bp<br>(mm), °C | Yield,<br>% | Meth-<br>od | $\mathbf{R}_{1}$              | R <sub>2</sub>                     | $\mathbf{R}_{3}$                                   | х              | Emp formula                                                   | Analyses    |
| 9a         | Semisolid            | 56          | N           | CH,                           | CH,                                | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub>      | 0              | C <sub>22</sub> H <sub>28</sub> N <sub>2</sub> O <sub>3</sub> | C, H, N     |
| 9 <b>b</b> | 120.5 - 121.5        | <b>24</b>   | Ν           | CH                            | CH <sub>3</sub>                    | p-Cl-C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | 0              | $C_{22}H_{26}N_{2}O_{3}Cl_{2}$                                | C, H, N, Cl |
| 9c         | $227-228^{a}$        | 97          | 0           | CH                            | CH                                 | $p-Cl-C_{6}H_{4}CH_{2}$                            | $H_{2}$        | $C_{22}H_{32}N_{2}OCl_{4}$                                    | C, H, N, Cl |
| 9d         | Oil                  | 39          | Ν           | C₄H̃₅                         | С <sub>6</sub> Н <sub>5</sub>      | C <sub>6</sub> H <sub>5</sub>                      | 0 <sup>°</sup> | $C_{30}H_{28}N_{2}O_{3}$                                      | C, H, N     |
| 9e         | Oil                  | 33          | Ν           | C <sub>6</sub> H <sub>5</sub> | p-Cl-C <sub>6</sub> H <sub>4</sub> | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub>      | 0              | $C_{32}H_{31}V_{2}O_{3}Cl$                                    | C, H, N, Cl |
| a Dihud    | nachlanida aglt      |             |             |                               |                                    |                                                    |                |                                                               |             |

R1 X

X ÇH₃

<sup>a</sup> Dihydrochloride salt.

Table VI. Unsaturated Diols 10 and Diols 11



| Compd | Mp or bp<br>(mm), °C | Yield,<br>% | Meth-<br>od | Struc-<br>ture<br>type | $\mathbf{R}_{1}$              | $R_2$                                              | х                | Emp formula                                        | Analyses    |
|-------|----------------------|-------------|-------------|------------------------|-------------------------------|----------------------------------------------------|------------------|----------------------------------------------------|-------------|
| 10a   | Oil                  | 44          | Р           | A                      | C <sub>6</sub> H <sub>5</sub> | p-Cl-C,H                                           |                  | $C_{18}H_{19}O_2Cl$                                | C, H, Cl    |
| 10b   | 186-188              | 95          | Р           | Α                      | 4-Pyridyl                     | $p$ -Cl-C $H_{4}$                                  |                  | C <sub>17</sub> H <sub>18</sub> NO <sub>2</sub> Cl | C, H, N, Cl |
| 10c   | $275 - 278^{a}$      | 18          | Р           | В                      | CH,                           | ĊH, Ů                                              | NCH <sub>3</sub> | $C_{10}H_{20}NO_{2}Cl$                             | C, H, N, Cl |
| 10d   | 103-107              | 74          | Р           | В                      | $-(CH_{2}),N(0)$              | CH <sub>3</sub> )(ČH <sub>2</sub> ) <sub>2</sub> - | NCH              | $C_{14}H_{24}N_{2}O_{2}$                           | C, H, N     |
| 10e   | 248 - 250            | 95          | Р           | В                      | -(CH,),N(CC)                  | $OC_6H_5)(CH_2)_2-$                                | NCOČ,H,          | $C_{26}H_{30}N_{2}O_{4}$                           | C, H, N     |
| 10f   | 140 - 150(0.3)       | 90          | Р           | В                      | CH,                           | ĊH,                                                | NCOCH            | $C_{12}H_{21}NO_{3}$                               | C, H, N     |
| 11a   | 93-94                | 45          | Р           |                        | C, Ĕ,                         | C, Ĕ,                                              | CH,              | $C_{21}H_{26}O_{2}$                                | C, H        |
| 11b   | 194-195              | 100         | Р           |                        | -(ČH,),N(                     | CH <sub>3</sub> )(CH <sub>3</sub> ) <sub>2</sub> - | NCH,             | $C_{14}H_{28}N_{2}O_{3}$                           | C, H, N     |
| 11c   | 130-135 (0.3)        | 100         | Р           |                        | CH <sub>3</sub>               | CH <sub>3</sub>                                    | NCOCH3           | C <sub>12</sub> H <sub>23</sub> NO <sub>3</sub>    | C, H, N     |

<sup>a</sup> Hydrochloride salt.

| Table VII. | Dihydrofurans | 12, T | Cetrahydrofurans | 13, a | nd Epoxides 14 |
|------------|---------------|-------|------------------|-------|----------------|
|------------|---------------|-------|------------------|-------|----------------|

|                   | н <sub>а</sub>             |          | R <sub>1</sub> H | H <sub>3</sub> C OR           | R <sub>2</sub> H <sub>3</sub> C      | $R_1$                                |             |
|-------------------|----------------------------|----------|------------------|-------------------------------|--------------------------------------|--------------------------------------|-------------|
|                   |                            | 12       |                  | 13                            | 14                                   |                                      |             |
| Compd             | Mp or bp (mm), $^{\circ}C$ | Yield, % | Method           | $\mathbf{R}_{1}$              | $\mathbf{R}_{2}$                     | Emp formula                          | Analyses    |
| 12a               | 98-100 (15)                | 84       | Q                | CH <sub>3</sub>               | C <sub>6</sub> H <sub>5</sub>        | C <sub>13</sub> H <sub>16</sub> O    | С, Н        |
| 12b               | 128 - 131(0.1)             | 57       | Q                | C <sub>6</sub> H <sub>5</sub> | p-Cl-C <sub>6</sub> H <sub>4</sub>   | $C_{18}H_{17}OCl$                    | C, H, Cl    |
| 12c               | 147 - 149(0.2)             | 70       | Q                | 4-Pyridyl                     | $p-Cl-C_{4}H_{4}$                    | C <sub>17</sub> H <sub>16</sub> NOCl | C, H, N, Cl |
| 13a               | 100-110 (0.2)              | 70       | Ő                | $-(CH_{1}), N(C)$             | $OC\dot{H}_{3})(C\dot{H}_{2})_{2}$ - | $C_{12}H_{21}NO_2$                   | Ċ, H, N     |
| 14a               | 69-70 (0.1)                |          | Q<br>R           | ĊH,                           | C <sub>6</sub> H <sub>5</sub>        | $C_{13}H_{16}O_2$                    | C, H        |
| $14\mathbf{b}^a$  | 112-113.5                  | 42       | R                | 4-Pyridyl                     | p-Cl-C <sub>6</sub> H <sub>4</sub>   | $C_{17}H_{16}NO_2Cl$                 | C, H, N, Cl |
| 14 <b>b</b> 'a    | 111-113                    | 33       | R                | 4-Pyridyl                     | $p-Cl-C_{6}H_{4}$                    | $C_{17}H_{16}NO_{2}Cl$               | C, H, N, Cl |
| $14c^a$           | 132 - 135                  | 38       | R                | C <sub>6</sub> H <sub>5</sub> | p-Cl-C <sub>6</sub> H <sub>4</sub>   | $C_{18}^{17}H_{17}^{10}O_{2}Cl$      | C, H, Cl    |
| 14c' <sup>a</sup> | 157-158                    | 29.5     | R                | C <sub>6</sub> H <sub>5</sub> | $p-Cl-C_6H_4$                        | $C_{18}^{18}H_{17}^{17}O_{2}Cl$      | C, H, Cl    |

<sup>a</sup> Diastereomers.

both serum cholesterol and triglyceride levels. The level of hypolipidemic activity displayed by diol 11c was increased on dehydration to the corresponding tetrahydrofuran 13a. Similarly, in going from dihydrofurans 12 to 3,6-dioxabicyclo[3.1.0] hexanes 14, the level of hypolipidemic activity in all cases increased significantly.

Conclusions

The structural similarities between the 2,2'-oxybis-

(propionic acid) derivatives described in this publication and clofibrate were not sufficient enough to have provided them with hypolipidemic activity. The corresponding imides and furan derivatives, potential prodrugs, i.e., biological precursors to the 2,2'-oxybis(propionic acids), were similarly devoid of a desirable level of hypolipidemic activity. The phenoxy moiety appears to be a necessary component of clofibrate analogues if hypolipidemic activity is to be maintained or improved. Scheme III

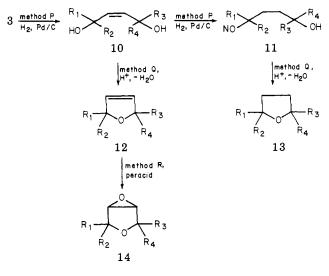



Table VIII. Hypolipidemic Activity<sup>a</sup>

|                                                                                                                                                                                                                                                           |                                                                                                                                                              | a levels,<br>edn                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                    | a levels,<br>edn                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compd                                                                                                                                                                                                                                                     | Choles-<br>terol                                                                                                                                             | Triglyc-<br>eride                                                                                                                                          | Compd                                                                                                                          | Choles-<br>terol                                                                                                                                                                                   | Triglyc-<br>eride                                                                                                                                                                                            |
| 1a           1b           1c           1d           1e           1f           1g           3d           3e           3f           3j           3k           5b           5d           2a           2b           2c           2d           2f           2g | $ \begin{array}{r} +4 \\ 0 \\ -11 \\ +29 \\ +6 \\ -8 \\ +28 \\ +11 \\ +48 \\ +30 \\ +20 \\ +19 \\ -6 \\ -6 \\ +35 \\ -14 \\ -3 \\ -3 \\ -9^{b} \end{array} $ | $ \begin{array}{r} -32 \\ -3 \\ +8 \\ +9 \\ +33 \\ +8 \\ -2 \\ +6 \\ +34 \\ +86 \\ +43 \\ -19 \\ -29 \\ +51 \\ +9 \\ +50 \\ -10 \\ +8 \\ -7b \end{array} $ | 2j<br>2k<br>9c<br>9c<br>10c<br>10d<br>10e<br>10f<br>11a<br>11b<br>11c<br>12a<br>12b<br>12c<br>13a<br>14a<br>14b<br>14b'<br>14c | $ \begin{array}{c} +12 \\ -7^{c} \\ -7^{c} \\ -25^{e} \\ -4 \\ -17^{f} \\ -3 \\ +21 \\ -5 \\ -4 \\ -7 \\ -7 \\ -7 \\ -11^{b} \\ +32 \\ -11^{c} \\ -11^{c} \\ -8^{b} \\ -6^{b} \\ -11 \end{array} $ | $\begin{array}{r} -45 \\ -4^{c} \\ -77^{c} \\ -64^{d} \\ -9^{e} \\ -10 \\ -28^{f} \\ +27 \\ +92 \\ +74 \\ +29 \\ -22 \\ +27 \\ -17^{b} \\ -65 \\ -39^{c} \\ -6^{c} \\ -15^{b} \\ -78^{b} \\ -12 \end{array}$ |
| 2h<br>2i                                                                                                                                                                                                                                                  | 0<br>- 9                                                                                                                                                     | -15<br>-16                                                                                                                                                 | 14c'<br>Clofibrate                                                                                                             | $-12 - 34^{g}$                                                                                                                                                                                     | $+38 - 49^{g}$                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                            | (A)<br>Lifibrate                                                                                                               | - 30 <sup>h</sup>                                                                                                                                                                                  | -50 <sup>h</sup>                                                                                                                                                                                             |

<sup>a</sup> Except where noted a dose of 120 mg/kg per diem for 3 days was administered. See the Experimental Section for details. <sup>b</sup> A dose of 60 mg/kg per diem for 3 days. <sup>c</sup> A dose of 250 mg/kg per diem for 6 days. <sup>d</sup> A dose of 120 mg/kg per diem for 6 days. <sup>e</sup> A dose of 60 mg/kg per diem for 6 days. <sup>f</sup> A dose of 250 mg/kg per diem for 3 days. <sup>g</sup> A dose of 300 mg/kg per diem for 6 days. <sup>h</sup> A dose of 30 mg/kg per diem for 6 days.

## **Experimental Section**

**Biological Methods.** Male albino Wistar Royal Hart rats weighing 160–180 g initially were maintained on a drug-free ground Purina Lab Chow diet for 7 days and then divided into groups of six animals. Each group, with the exception of control, was then given orally 120 mg/kg of body weight per diem of compound for 3 or 6 days. At the end of this period, the animals were anesthetized with sodium hexobarbital and bled from the carotid artery. Serum or plasma samples were collected and 1.0-ml samples of the serum were added to 9.0 ml of redistilled 2propanol. Two autoanalyzer cupsful of a mixture of zeolite-copper hydroxide and Lloydds reagent<sup>19</sup> were added and the mixture was shaken for 1 h. Cholesterol and triglyceride levels were determined simultaneously on the same sample by Technicon N24A<sup>20</sup> (cholesterol) and N-78<sup>19</sup> (triglyceride) methodology. The mean total serum cholesterol levels were then computed, and the hypocholesterolemic activity was expressed as the fall in cholesterol levels as a percentage of the control level. The change in triglyceride levels induced by the drug was computed as a percentage of the control triglyceride levels.

General Comments. Chemistry. The ir spectra were recorded on a Perkin-Elmer Model 257 or 457 spectrometer and <sup>1</sup>H NMR spectra were recorded using either a Varian T-60 or A-60A spectrometer. Chemical shifts ( $\delta$ ) are reported relative to Me<sub>4</sub>Si; coupling constants (*J*) are given in hertz. Melting points were obtained on a Thomas-Hoover capillary melting point apparatus and are uncorrected.

Silica gel (0.063–0.2 mm) was used in preparing column chromatograms and analytical thin-layer chromatography was conducted on precoated  $40 \times 80$  mm plasic sheets of silica gel G with fluorescent indicator. In all workup procedures, the drying process involved swirling over MgSO<sub>4</sub> and filtering prior to evaporation.

All new structures were assigned on the basis of spectral data and combustion analysis. The analyses are within 0.4%. No yields were optimized, and all are reported as isolated yields.

Compounds of type 1, 3, 4, 5, 6, and 7 were prepared according to literature methods  $A^{16b,c}$ ,  $B^{16d}$ ,  $C^{16a}$ ,  $D^{17}$ ,  $E^{13}$ ,  $F^{15}$ ,  $G^9$ ,  $H^{13}$ ,  $I^{14}$ ,  $J^9$ ,  $K^9$ , and  $L^8$ . The pertinent data are summarized in Tables I–III.

Method M. 3,3-Dimethyl-5,5- $R_1,R_2$ -1,4-dioxane-2,6-dione (8). To a solution of diacid 1c (1.99 g, 6.3 mmol) and CNBr (0.88 g, 8.4 mmol) in C<sub>6</sub>H<sub>6</sub> (20 ml) at room temperature, pyridine (1.00 g, 12.6 mmol) was slowly added. After an additional 3 h, the solution was filtered and the filtrate washed with brine and 2 N HCl, dried, and evaporated to give a colorless oil. Crystallization from Et<sub>2</sub>O-petroleum ether gave 1.57 g (87%) of 8a as white crystals: mp 80-82°.

Using the above procedure anhydrides **8b** and **8c** were similarly prepared.

Method N. 4-(p-Chlorobenzyl)-2,2,6,6-tetramethyl-3,5morpholinedione (2c) and N-(p-Chlorobenzyl)-2,2'-oxybis(2-methyl)propionamide (9b). The following experiment is representative of the general technique used to synthesize the 3,5-morpholinediones 2, (X = O) and diamides 9 (X = O).

A mixture of anhydride 8a (9.00 g, 52 mmol) and 4-chlorobenzylamine (50 ml) was heated at 130–140° under N<sub>2</sub> for 18 h. The cooled mixture was partitioned between 2 N HCl and Et<sub>2</sub>O, and the organic layer was washed with brine, dried, and evaporated to give a yellow oil consisting of two components by TLC analysis. Chromatography over silica gel (30:1) with CHCl<sub>3</sub>–MeOH (99:1) as elutent gave in fraction 1 8.65 g (56%) of 3,5-morpholinedione 2c. Recrystallization from Et<sub>2</sub>O–CH<sub>2</sub>Cl<sub>2</sub> gave 2c: mp 54–56°. Fraction 2 gave 5.48 g (24%) of diamide 9b: mp 120.5–121.5°.

Method O. 4-(p-Chlorobenzyl)-2,2,6,6-tetramethylmorpholine (2d). The following experiment is described as a general technique for the conversion of 3,5-morpholinediones 2 (X = O) into morpholines 2 (X = H<sub>2</sub>) and of diamides 9 (X = O) into diamines 9 (X = H<sub>2</sub>).

A solution of 3,5-morpholinedione 2c (1.92 g, 6.5 mmol) in anhydrous Et<sub>2</sub>O (35 ml) was added dropwise to a stirred suspension of LiAlH<sub>4</sub> (0.760 g, 20 mmol) in anhydrous Et<sub>2</sub>O (50 ml). The mixture was refluxed for 3 h and stirred for an additional 18 h at room temperature. The excess hydride was decomposed with saturated Na<sub>2</sub>SO<sub>4</sub> and evaporation gave 1.01 g (58%) of a colorless oil, homogeneous by TLC. Crystallization from a minimum of petroleum ether at  $-5^{\circ}$  gave morpholine 2d as a white solid: mp 51.5–53°.

Method P. Preparation of Unsaturated Diols 10 and Saturated Diols 11. In the typical experiment a 2-5% solution of acetylenic diol 3 in absolute EtOH was stirred with 5% Pd/C (10% by weight) under an atmosphere of H<sub>2</sub>. By monitoring H<sub>2</sub> uptake, preparation of unsaturated diol 10 or saturated diol 13 was affected. Removal of the catalyst by filtration through Celite and evaporation of the filtrate gave the crude diol which was purified by crystallization or distillation (see Table VI for the pertinent data).

Method Q. 2,5-Dihydro-2,2-dimethyl-5-(p-chlorophenyl)-5-phenylfuran (12b). The following experiment is described as a general procedure for the synthesis of dihydrofurans 12 from the unsaturated diols 10.

A solution of 10a (17.5 g, 58 mmol) in toluene (150 ml) was stirred and refluxed with *p*-TsOH (0.1 g) in a flask equipped with a Dean-Stark tube until the water level remained constant (5 h). The cooled solution was washed with 2 N NaOH and brine, dried, and evaporated to give an oil, which on distillation provided 9.4 g (57%) of 12b: mp 98-100° (15 mm).

Method R. Epoxidation of Dihydrofuran 12c. General Epoxidation Procedure. A solution of dihydrofuran 12c (11.4 g, 40 mmol) and *m*-chloroperbenzoic acid (85%, 60 g, 0.3 mol) in CHCl<sub>3</sub> (350 ml) was refluxed under N<sub>2</sub> for 48 h. Upon evaporation to dryness, the residue was partitioned between Et<sub>2</sub>O and H<sub>2</sub>O and the two-phased system treated with NaHSO<sub>3</sub> until no more oxidant could be detected. The aqueous layer was saturated with NaCl and extracted thoroughly with Et<sub>2</sub>O. The combined Et<sub>2</sub>O extracts were dried and evaporate to give three components as indicated by the TLC. Chromatography over silica gel (50:1) eluting with MeOH-CHCl<sub>3</sub> (1:99) sequentially provided 1.85 g (16%) of starting olefin 12c ( $R_f$  0.35), 5.05 g (42%) of epoxide 14b ( $R_f$  0.20), and 3.95 g (33%) of epoxide 14b' ( $R_f$ , 0.15). The epoxides were recrystallized from CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O.

Acknowledgment. The services of the Analytical Section of the Chemistry Department are gratefully acknowledged.

#### **References and Notes**

- D. S. Frederickson, R. I. Levy, and R. S. Lees, N. Engl. J. Med., 276, 34 (1967).
- (2) (a) A. F. Whereat, Exp. Mol. Pathol., 7, 233 (1967); (b) Ann. Intern. Med., 73, 125 (1970).
- (3) W. B. Kannel, T. R. Dawber, A. Kagan, N. Renotskie, and J. Stokes, Ann. Intern. Med., 55, 33 (1961).
- (4) W. L. Bencze, R. Hess, and G. DeStevens, Fortschr. Arzneimittelforsch., 13, 217 (1969).
- (5) Symposium on Atromid, J. Atheroscler. Res., 3, 341 (1963).
- (6) R. I. Levy, S. H. Quarfordt, W. V. Brown, H. R. Sloan, and D. S. Frederickson, Adv. Exp. Med. Biol., 4, 377 (1969).
- E.g. (a) J. M. Grisar, R. A. Parker, T. Kariya, T. R. Blohm, R. W. Fleming, and V. Petrow, J. Med. Chem., 15, 1273

(1972); (b) T. F. Whayne, Jr., and D. T. Witiak, *ibid.*, 16, 228 (1973); (c) J. Fitzgerald, *Klin. Pharmakol. Pharmakother.*, *Zweite*, *Ueberarbeitete Erweiterte Aufl.*, 615 (1973); (d) E. G. Nanzer and H. Nahm, *Arzneim.-Forsch.*, 23, 1353 (1973); (e) S. Sakamoto, K. Yamada, T. Anzai, and T. Wada, *Atherosclerosis*, 18, 109 (1973); (f) Y. Imai, H. Matsumura, S. Tamura, and K. Shiamoto, *ibid.*, 17, 131 (1973).

- (8) (a) I. K. Korobitsyna, L. S. Gurevich, and I. V. Zerova, Zh. Org. Khim., 4, 2020 (1968); (b) J. K. Korobitzyna, L. S. Gureich, and L. L. Rodina, *ibid.*, 5, 567 (1969); (c) R. Hanna and G. Ourisson, Bull. Soc. Chim. Fr., 3742 (1967).
- (9) L. L. Rodina, L. V. Koroleva, and I. K. Korobitsyna, Zh. Org. Khim., 6, 2336 (1970), and references cited therein.
- (10) T. Rull and G. Ourisson, Bull. Soc. Chim. Fr., 1573 (1958).
- (11) E. Tamato, Nippon Kaguka Zasshi, 78, 1293 (1957); Chem. Abstr., 54, 476 (1958).
- (12) (a) H. Cohen and J. D. Mier, *Chem. Ind. (London)*, 349 (1965); (b) E. C. Kendall and B. McKenzie, "Organic Syntheses", Collect. Vol. I, Wiley, New York, N.Y., 1932, p 246.
- (13) (a) I. K. Korobitsyna, Y. K. Yurev, and K. V. Kutznetsova, *Zh. Obshch. Khim.*, 27, 1792 (1957); (b) I. K. Korobitsyna, K. K. Pitvnitskii, and Y. K. Yurev, *ibid.*, 29, 3880 (1959).
- (14) I. Bacso, Sandoz, Inc., unpublished results.
- (15) N. Levin and W. H. Hartarg, "Organic Syntheses", Collect. Vol. III, Wiley, New York, N.Y., 1955, p 191.
- (16) (a) S. Watanabe, K. Suga, and T. Suzuki, Can. J. Chem., 47, 2343 (1969); (b) I. L. Kotlyarevskii, M. S. Schvartsberg, and Z. P. Trotsenko, Zh. Obshch. Khim., 30, 440 (1960); (c) P. Agocs and K. Koczka, Chem. Abstr., 69, 2554g (1968); (d) D. Papa, F. J. Villani, and H. F. Ginsberg J. Am. Chem. Soc., 76, 4446 (1954).
- (17) (a) W. Jasiobedzki and Z. Matacz, *Rocz. Chem.*, 42, 1599 (1968); (b) E. D. Venus-Danilova, V. I. Ryabtseva, and L. A. Gregoreva, *Zh. Obshch. Khim.*, 24, 1380 (1954); (c) E. D. Venus-Danilova and V. I. Ryabtseva, *ibid.*, 20, 2230 (1950).
- (18) T. L. Ho and C. M. Wong, Synth. Commun., 3, 63 (1973).
- (19) G. Kessler and H. Lederer in "Automation in Analytical Chemistry", L. T. Skeggs, Ed., Mediad, New York, N.Y., 1965, p 341.
- (20) W. D. Block, K. J. Jarret, and J. B. Levine in ref 19, p 345.