troleum ether gave the l isomer 24 as colorless crystals: mp 102–104°; yield, 1 g; $[\alpha]^{26}$ D –39.3° (c 2.1, EtOH). Anal. (C₁₇H₁₄O₄) C, H.

Methyl 2-Bromomethyl-4-iodobenzoate. A mixture of methyl 4-iodo-2-methylbenzoate (0.83 g, 3 mmol), NBS (0.53 g, 3 mmol), and benzoyl peroxide (0.07 g) in CCl₄ (20 ml) was refluxed with stirring for 19 h and filtered. The filtrate was washed with 2% NaOH and water and dried. After removal of the solvent, the residue was purified by silica gel chromatography using C₆H₆ and crystallized from n-C₆H₁₄: yield, 0.85 g (76%); mp 67.5–68.5°. Anal. (C₉H₈BrIO₂) C, H.

Methyl 2-Methyl-4-trifluoromethylbenzoate. Methyl 4iodo-2-methylbenzoate (7.0 g, 25 mmol), active Cu¹⁶ (10 g, dried under vacuum at 100–110° for 5 h), and CF₃I (17 g, 87 mmol) in dry DMF (14 ml) were put into a stainless tube which was chilled at -40 to -50°. The sealed tube was heated at 130–140° for 72 h. After cooling, the reaction mixture was shaken with CHCl₃. The washed, dried CHCl₃ extract was concentrated and the residue was separated on silica gel chromatography using C₆H₆-petroleum ether (1:1) as an elute. The oily residue was distilled under reduced pressure to yield a colorless oil of 4.3 g (80%): bp 105–107° (30 mm). Anal. (C₁₀H₉F₃O₂) C, H.

Methyl 2-Bromomethyl-4-trifluoromethylbenzoate. A mixture of methyl 2-methyl-4-trifluoromethylbenzoate (2.18 g, 10 mmol), NBS (1.78 g, 10 mmol), and benzoyl peroxide (0.5 g) in CCl₄ (40 ml) was refluxed for 8 h and treated in the same manner as described above. The crude colorless oil which showed a methylene proton signal at δ 4.99 (s, 2 H) in the NMR spectrum (CDCl₃) was used in the next step without further purification.

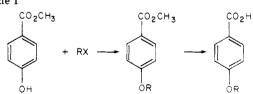
Acknowledgment. Gratitude is due to Drs. N. Koga and G. Ohta for continuous support and pertinent discussion, to the personnel of the analytical section of our Institute for the elemental analyses, and to Miss M. Ohara for assistance with the manuscript.

References and Notes

(1) P. F. Juby, Med. Chem., Ser. Monogr., 13 (1), 92 (1974).

- (2) T. Y. Shen, "Non-steroidal Anti-inflammatory Drugs", Excerpta Medica, Amsterdam, 1965, p 13.
- (3) (a) H. B. Lassman, R. E. Kirby, J. C. Wilker, and W. J. Novick, Jr., *Pharmacologist*, 17, 226 (1975); (b) Hoechst A. G., Belgium Patent 819637 (priority date, Sept 6, 1973).
- (4) Daiichi Seiyaku Co., Belgium Patent 818055 (priority date, July 24, 1973).
- (5) C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol. Med., 111, 544 (1962).
- (6) M. Nakanishi, Y. Maruyama, M. Terasawa, and K. Anami, Jpn. J. Pharmacol., 24 (Suppl.), 140 (1974).
- (7) L. Julou, J. C. Guyonnet, R. Ducrot, M. C. Bardone, J. Y. Detaille, and B. Loffargue, Arzneim.-Forsch., 19, 1198 (1969).
- (8) (a) M. Nakanishi, Y. Maruyama, M. Terasawa, and H. Imamura, Jpn. J. Pharmacol., 22 (Suppl.), 108 (1972); (b) M. Nakanishi, Y. Maruyama, and M. Terasawa, *ibid.*, 23 (Suppl.), 113 (1973).
- (9) R. C. Nickandar, R. J. Kraay, and W. S. Marshall, Fed. Proc., Fed. Am. Soc. Exp. Biol., 30, 563 (1971).
- (10) L. Julou, J. C. Guyonnet, R. Ducrot, C. Garret, M. C. Bardone, G. Maignan, and J. Pasquet, J. Pharmacol., 2, 259 (1971).
- (11) Y. Mizushima, W. Tsukada, and T. Akimoto, J. Pharm. Pharmacol., 24, 781 (1972).
- (12) B. B. Newbold, Br. J. Pharmacol. Chemother., 21, 127 (1963); 35, 487 (1969).
- (13) R. Koster, M. Anderson, and E. J. deBeer, Fed. Proc., Fed. Am. Soc. Exp. Biol., 18, 412 (1959).
- (14) L. O. Randall and J. J. Selitto, Arch. Int. Pharmacodyn. Ther., 111, 409 (1957).
- (15) U. Jahn and R. W. Adrian, Arzneim. Forsch., 19, 36 (1969).
- (16) A. H. Blatt, Ed., "Organic Syntheses", Collect. Vol. II, Wiley, New York, N.Y., 1943, p 446.
- (17) E. C. Fieller, J. R. Stat. S., 7 (Suppl.), 1 (1940).
- (18) J. T. Litchfield, Jr., and F. Wilcoxon, J. Pharmacol. Exp. Ther., 96, 99 (1949).

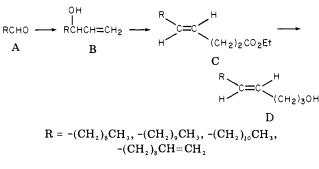
Hypolipidemic Alkoxybenzoic Acids

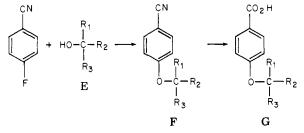

Vern G. DeVries,* Daniel B. Moran, George R. Allen, and Stephen J. Riggi

Lederle Laboratories, A Division of American Cyanamid Company, Pearl River, New York 10965. Received August 18, 1975

The preparation of a series of *p*-alkoxybenzoic acids bearing aromatic ring substituents or modified alkyl chains is described. The compounds were screened in rats for serum sterol and triglyceride-lowering activity.

The serum sterol and triglyceride-lowering properties of the homologous p-(n-alkoxy)benzoic acids have been reported.¹ p-Hexadecyloxybenzoic acid was selected as the most interesting member of this series; however, administration of this compound to dogs was accompanied by undesirable side effects on the central nervous system. In an effort to find a compound lacking this toxicity, the preparation of a variety of *p*-alkoxybenzoic acid analogues was undertaken. Benzoic acids bearing aromatic ring substituents (59-63) or modified alkoxy groups are described here. The latter class includes acids having γ substituted tetradecyloxy (64–69), ω -substituted alkoxy (70-91), branched primary alkoxy (92-94), sec-alkoxy (95-99), and tert-alkoxy groups (100-105). Additionally, olefinic (106-112), acetylenic (113), polyunsaturated (114, 115), and oxygenated (116-120) derivatives are reported.

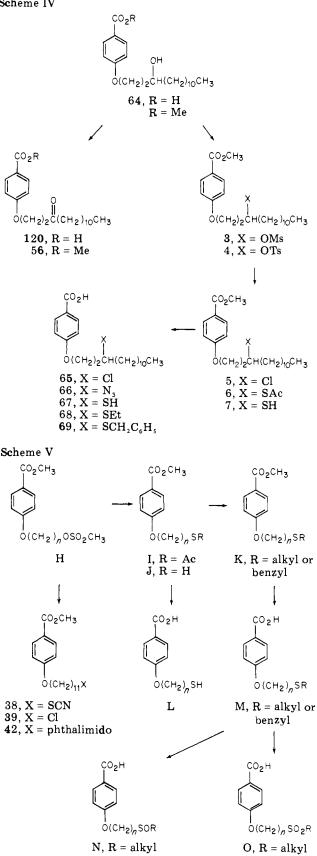

The procedure of greatest utility for the preparation of these analogues involved the alkylation of a phenoxide with the requisite bromide or methanesulfonate (Scheme I). Methyl *p*-hydroxybenzoate (methylparaben) as well as Scheme I


certain ring-substituted methylparabens and p-hydroxybenzoic acids² were the phenoxides alkylated in this manner. The ester products were saponified to yield the corresponding acids. Esters and acids prepared by these procedures (methods A and B) are among those shown in Tables I–IV. These include acids having ring substituents, γ -substituted tetradecyloxy, ω -substituted alkoxy, branched primary alkoxy, and *sec*-alkoxy groups, as well as olefinic, acetylenic, polyunsaturated, and oxygenated chains.

The bromides required for these preparations were obtained by the action of phosphorus tribromide or hy-

drogen bromide on the appropriate alcohol (see Experimental Section) or by borane reduction of ω -bromoalkanoic acids (eq 1). The methanesulfonates (Table V) required for the preparation of a series of unsaturated analogues

$$\frac{\text{Br}(\text{CH}_2)_{n-1}\text{CO}_2\text{H} \to \text{Br}(\text{CH}_2)_n\text{OH}}{n = 12, 15, 16, 18}$$
(1)


were prepared from the corresponding alcohols in the usual way. Several of these unsaturated alcohols were prepared by the sequence of Scheme II. The Grignard addition of vinylmagnesium bromide to various aldehydes A afforded alcohols B which upon heating with triethyl orthoacetate and propionic acid underwent stereoselective Claisen rearrangement³ to trans-olefinic esters C. Lithium aluminum hydride reduction of these esters afforded the desired alcohols D.

An alternate synthesis (method H) was developed to prepare tert-alkoxybenzoic acids. The method (Scheme III) involved nucleophilic aromatic substitution⁴ on pfluorobenzonitrile with the anion derived from a tertalcohol E to yield an intermediate *p*-alkoxybenzonitrile F. The crude nitrile was hydrolyzed to the desired acid G. The required alcohols E were prepared by the addition of Grignard reagents to appropriate ketones. The method of Scheme III was also applied to cyclododecanol and 1and 2-adamantanol (see Table IV).

Additional p-alkoxybenzoic acid analogues were obtained by structural modification of compounds prepared by methylparaben alkylations (Scheme IV). These include certain γ -substituted tetradecyloxy- and ω -substituted alkoxybenzoic acids. Thus, p-(3-hydroxytetradecyloxy)benzoic acid (64) and its methyl ester¹ were oxidized to the corresponding ketones 120 and 56. The methyl ester was also converted to the sulfonates 3 and 4, displacements on which furnished the chloro- 5, acetylthio- 6, and crude azidobenzoates. Treatment of acetylthio ester 6 with sodium methoxide afforded mercapto ester 7, whereas hydrolysis yielded mercapto acid 67. Alkylation of 7 with ethyl iodide and benzyl chloride followed by alkaline hydrolysis of the resulting esters afforded ethylthio- and benzylthiotetradecyloxybenzoic acids 68 and 69, respectively.

The ω -substituted alkoxybenzoic acids were derived from methanesulfonates H of the previously mentioned methyl ω -hydroxybenzoates 8–14 by the methods illus-

trated in Scheme V. Displacement with potassium thioacetate afforded thioesters I whose alkaline hydrolysis yielded mercapto acids L. Alternatively, methanolysis of I afforded mercapto esters J which were converted to (alkylthio)benzoates K by reaction with alkyl or benzyl halides. Alkaline hydrolysis of K gave the (alkylthio)-

		R1	R ₂ R ₃						
Compd		ò	(CH ₂) ₂ CH(CH ₂) _n R ₄			Yield,		
no.	\mathbf{R}_{1}	\mathbf{R}_{2}	R ₃	$\mathbf{R}_{_{+}}$	n	Method	%	Crystn solvent	Mp, C
1	NO ₂	Br			13	A	43	MeCN	57-59
2	Br	Br			13	Α	81	MeCN	52-54
3			OMs		11	С	89	Petr ether	55-57
4			OTs		11	С	38	Petr ether	90-91
5			Cl		11		96	Pentane	45-47
6			SAc		11	D	87	Petr ether	44-47
7			SH		11	\mathbf{E}	69	MeCN	40-41
8				ОН	8	Α	92	Petr ether	81 - 82
9^b				ОН	8		8 9	Petr ether- Et_2O	48 - 50
10^{c}				ОН	8		86	Petr ether-Et.O	31-32
11				ОН	9	Α	77	Petr ether-Et O	84-85
12				ОН	12	Α	81	Petr ether-Et ₂ O	94-96
13				ОН	13	Α	62	Petr ether-Me ₂ CO	93-9 5
14				OH	15	A	63	Hexane-Me ₂ CO	99-100
15				OMs	8	C	88	Hexane-Me CO	73-75
16^{b}				OMs	8	C	88	Petr ether-Et _. O	70-72
17 ^c				OMs	8	C	90	Petr ether-Et O	60-61
18				OMs	9	C	72	Petr ether-Et ₂ O	79-80
19				OMs	12	C	81	Petr ether-Et,O	87-89
20				OMs	13	C	92	Hexane-Me_CO	86-88
21				OMs	15	С	87	Hexane-Me _. CO	93-95
22				OMs	8		84	Petr ether-Et O	51 - 53
23 ^b				OEt	8	D	82	Petr ether-Et _. O	36-37
24				SAc	8	D	54	Petr ether-Et,O	45-47
25 86				SAc SAc	9 12	D D	63 62	Petr ether-Et O	$73-74 \\ 61-62$
26				SAC	$12 \\ 13$	D	82 85	Petr ether-Et ₂ O	84-86
27 28				SAC	15	D	91	Hexane-Me ₂ CO Hexane-Me ₂ CO	87-88
28 29				SH	8	E	96	Petr ether-Et,O	51-53
29 30				SH	12	E	7 5	Heptane	71-73
31				SH	$12 \\ 13$	Ē	83	Petr ether-Et,O	80-81
32				SEt	8	G	62	MeOH	34-36
33				SEt	13	Ğ	98	Hexane	67-71
34				SPr	8	Ğ	84	MeOH	42 - 43
35				SBu	8	Ğ	69	MeOH	41-42
36				SBz	8	Ğ	77	MeOH	58-59
37				SBz	$1\overset{\circ}{2}$	Ğ	45	Hexane	66-69
38				SCN		-	78	Petr ether-Et ₂ O	37-39
39				Cl	8		38	Pentane	41-43
40				NHBu	8		70	Hexane	57-59
41				NHBu·HCl ○	8		71	MeOH	194-196
42					8		71	MeOH	88-9 0
					-		0.0		00.07
44^e				CNHBu HCl	$\frac{7}{13}$		$\frac{82}{62}$	Hexane-Me,CO Petr ether-Et,O	93-95 66-70

Table I.^a p-Alkoxybenzoates

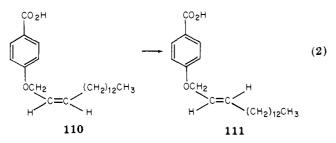
^a Only substituents other than hydrogen are shown under R_1 - R_1 . ^b The compound is an ethyl ester. ^c The compound is an *n*-butyl ester. ^d C: calcd, 69.43; found, 69.85. ^e The compound is a 1-methyl-4-piperidinyl ester and was prepared by

benzoic acids M. Oxidation of these acids with 1 equiv of sodium metaperiodate afforded sulfoxides N while the use of excess periodate led to sulfones O. The 11-thiocyanato-38, 11-chloro- 39, and 11-phthalimidoundecyloxybenzoates 42 were prepared by appropriate displacements on mesylate 15.

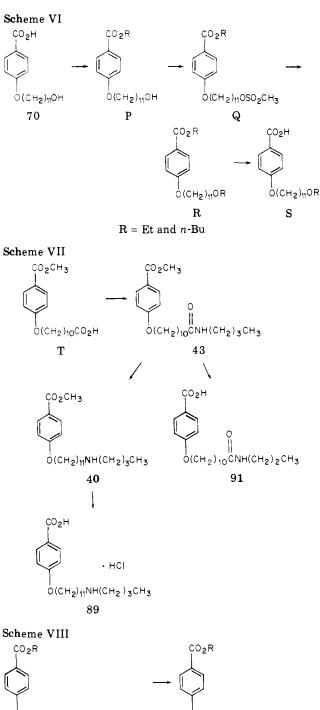
Acid-catalyzed esterification of 70 afforded the ethyl and n-butyl esters P which were then converted to the corresponding methanesulfonates Q. Displacements with the appropriate alkoxide yielded the ethoxyalkyl and butoxyalkyl alkylbenzoates R, hydrolysis of which furnished the corresponding acids (Scheme VI).

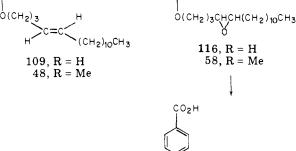
A series of nitrogen-containing alkoxybenzoic acids and esters was synthesized (Scheme VII) from half-ester $T.^5$

Reaction of the mixed anhydride derived from T and isobutyl chloroformate with *n*-butylamine afforded amide 43 which could be selectively hydrolyzed to acid 91. Reduction of 43 with borane afforded the corresponding amine 40. Alkaline hydrolysis then yielded the amino acid, isolated as the hydrochloride salt 89.


Limited studies (Scheme VIII) with *trans*-alkenyloxybenzoic acid 109 or ester 48 indicated that these derivatives could be converted to the corresponding epoxides 116 and 58 by oxidation with *m*-chloroperbenzoic acid. Hydrolysis of 116 afforded the corresponding diol 117.

Finally, the cis-olefinic acid 110, prepared by catalytic hydrogenation of acetylenic acid 113, was isomerized (eq 2) to trans-olefinic acid 111 with sodium nitrite⁶ in dilute


	Ster	ol, ^f dose, % of	diet	Trigly	ceride, ^f dose, %	of diet
Formula	0.1	0.05	0.025	0.1	0.05	0.025
C ₂₄ H ₃₈ BrNO ₅	97 ± 3	93 ± 3	93 ± 3	95 ± 6	101 ± 5	113 ± 2
$C_{24}H_{38}BrO_{3}$	82 ± 3^{h}	94 ± 4	94 ± 5	88 ± 13	103 ± 5	96 ± 5
C ₂₃ H ₃₈ O ₆ S						
$C_{29}H_{42}O_{6}S$	98 ± 3	103 ± 3	102 ± 7	86 ± 12	91 ± 7	91 ± 9
$C_{22}H_{35}ClO_{3}$	84 ± 9	87 ± 5	100 ± 4	45 ± 5^{i}	53 ± 3^{h}	80 ± 3
$C_{24}H_{38}O_4S$	81 ± 6^{h}	89 ± 3^g	94 ± 2	59 ± 4^{i}	70 ± 8^{h}	83 ± 7
$C_{22}H_{36}O_{3}S$	01 - 0					
$C_{19}H_{30}O_{4}$	92 ± 3^{h}	94 ± 1^{h}	94 ± 3^{g}	72 ± 13^{i}	86 ± 8^h	140 ± 10
$C_{20}H_{32}O_{4}$		01 = 1				
$C_{22}H_{36}O_{4}$						
$C_{20}H_{32}O_{4}$						
$C_{20}H_{32}O_4$ $C_{23}H_{38}O_4$	93 ± 3	98 ± 4	96 ± 6	89 ± 8	104 ± 8	98 ± 7
	00 ± 0	U U - 4	00 ± 0	$\mathbf{U} = \mathbf{U}$		
$C_{24}H_{40}O_{4}$						
$ \begin{array}{c} C_{26}^{-1}H_{44}^{-1}O_{4}^{-1}\\ C_{20}H_{32}O_{6}S \end{array} $	91 ± 7	105 ± 6	105 ± 2	72 ± 5^i	81 ± 12	79 ± 8^{h}
$C_{20} \Pi_{32} U_6 S$	91 ± 7	105 ± 0	100 1 2	12 - 0	01 ± 12	10 - 0
C_2 , $H_{34}O_6S$						
$C_{23}H_{38}O_6S$						
$C_{21}H_{34}O_6S$						
$C_{24}H_{40}O_6S$						
$C_{25}H_{42}O_6S$						
$C_{27}H_{46}O_6S$	104 . 0	00 1	0.2	36 ± 8^i	69 ± 5^i	77 ± 6^h
$C_{20}H_{32}O_{4}$	104 ± 3	96 ± 4	93 ± 3	$30 \pm 0^{\circ}$	09 ± 0	11 ± 0
$C_{22}H_{36}O_{4}$	110 . 7	00 . 0	100 1	63 ± 12^{h}	88 ± 13	66 ± 13^{h}
$C_{21}H_{32}O_4S$	113 ± 7	98 ± 6	106 ± 4	65 ± 12^{-1}	00 ± 13	00 ± 15
$C_{22}H_{34}O_{4}S$						
$C_{25}H_{40}O_{4}S$						
$C_{26}H_{42}O_{4}S$						
$C_{28}H_{46}O_{4}S$						
$C_{19}H_{30}O_{3}S$						
$C_{23}H_{38}O_3S$						
$C_{25}H_{40}O_{3}S$	100 ± 3	100 ± 3	110 ± 4	65 ± 7^{h}	74 ± 11	71 ± 4^{g}
$C_{21}H_{34}O_3S$	100 ± 5	100 ± 5	110 ± 4	00 ± 1	14 1 11	11 - 4
$C_{26}H_{44}O_{3}S$						
$C_{22}H_{36}O_{3}S^{d}$	96 ± 3	92 ± 2^{g}	100 ± 3	69 ± 9^g	62 ± 5^h	87 ± 9
$C_{23}H_{38}O_{3}S$ $C_{26}H_{36}O_{3}S$	90 ± 3 87 ± 3 ⁱ	$ \frac{52 \pm 2^{5}}{85 \pm 3^{i}} $	91 ± 6^{g}	58 ± 9^{i}	49 ± 16^{i}	64 ± 9^{i}
$C_{26}H_{30}O_{3}S$ $C_{30}H_{44}O_{3}S$	07 ± 0	00 ± 0	01 ± 0-	00 - 0	10 - 10	UI - U
$C_{20}H_{40}O_{3}S$ $C_{20}H_{29}NO_{3}S$	160 ± 27	102 ± 2	102 ± 7	145 ± 39	94 ± 16	80 ± 14
$C_{19}H_{29}ClO_{3}$	100 ± 27 102 ± 1	102 ± 2 108 ± 4^{g}	102 ± 7 110 ± 4 ^h	41 ± 30^{h}		94 ± 13
$C_{23}H_{39}NO_{3}$	96 ± 5	95 ± 4	102 ± 7	114 ± 8	88 ± 8	104 ± 11
$C_{23}H_{39}NO_{3}$ ·HCl	89 ± 1^h	96 ± 6	102 ± 7 100 ± 2	66 ± 12^{h}	71 ± 11^{h}	104 ± 11 87 ± 11
023113910031101	0 9 ± 1	50 ± 0	100 ± 2	00 - 12	11 - 11	01 - 11
C ₂₇ H ₃₃ NO ₅						
133-· ~ 5						
C ₂₃ H ₃₇ NO ₄	96 ± 5	100 ± 4	99 ± 5	81 ± 7^h	97 ± 19	95 ± 9
C ₂₉ H ₄₉ NO ₃	96 ± 3	87 ± 1^{h}	85 ± 3^{h}	117 ± 8	110 ± 6	100 ± 4


transesterification of ethyl 4-(hexadecyloxy)benzoate (J. D. Albright). f Sterol and triglyceride values shown as percent of control. g Statistically significant, p < 0.10. h Statistically significant, p < 0.01.

In the homologous series of p-(n-alkoxy)benzoic acids from which p-hexadecyloxybenzoic acid was selected,¹ maximum sterol-lowering activity was observed when the alkyl chain contained 12–20 carbons. In the present series of compounds, alkyl chain substituents such as chloro (65) and oximino (57) clearly enhance activity. Alkyl chain substituents such as azido (66), thiol (6, 67, 74–77), and some alkylthio (68, 79, 82, 83) retain activity while other alkylthio (32, 35, 36, 69, 80, 81, 84) substituents diminish activity. Other substituents on the alkyl chain and those substituents in the aryl ring that were examined abolished sterol-lowering activity. Although the effect of alkyl chain branching is variable (92–105) the presence of unsaturation (48, 107–109, 114) apparently has no adverse effect on activity, except when located near either end of the chain (45, 106, 110).

) O(CH₂)₃CH-CH(CH₂)_ЮCH₃ I I OH OH 117

Experimental Section

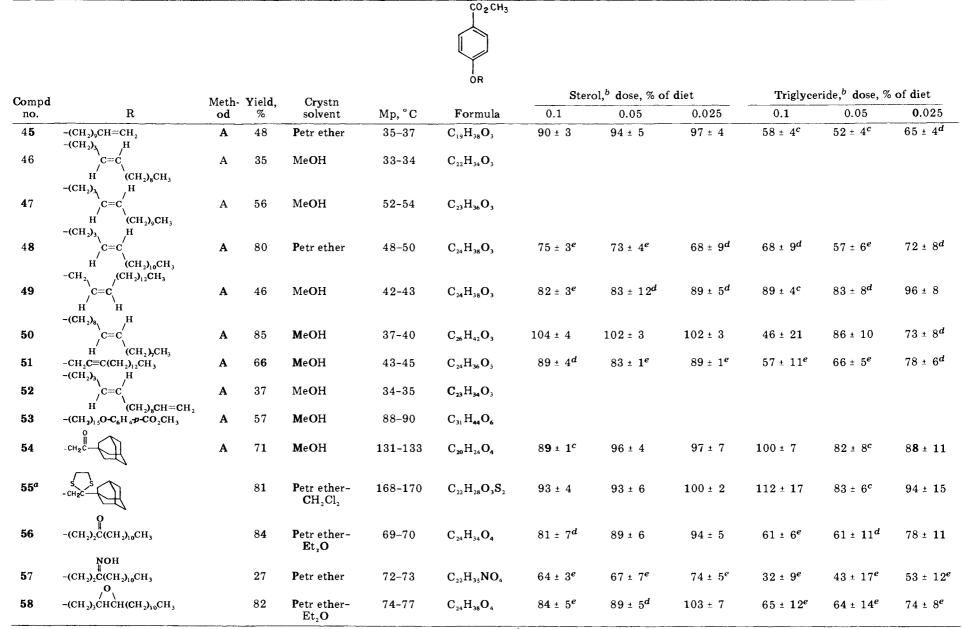
Melting points were determined in open capillary tubes on a Mel-Temp apparatus and are uncorrected. Ultraviolet spectra were determined in methanol solution with a Cary recording spectrophotometer, and infrared spectra were determined in potassium bromide disks or as smears between sodium chloride plates with a Perkin-Elmer spectrophotometer. Proton magnetic resonance spectra were determined with a Varian HA-100 spectrometer using tetramethylsilane as an internal standard. Where details are not reported, the spectra of the compounds were compatible, with the structure assigned. Unless otherwise noted (see footnotes to tables), all compounds gave analytical results for C, H, N. S, Cl, Br, and I, if present. within $\pm 0.4\%$ of theoretical values.

Solutions were dried over anhydrous $MgSO_4$ and where necessary clarified using activated carbon. Evaporations were carried out under reduced pressure.

Farnesyl bromide⁹ and 11-bromo-1-undecane¹⁰ were prepared by the action of phosphorus tribromide on the corresponding alcohol. This procedure was adapted to the preparation of 2bromohexadecane, 3-bromohexadecane, and 4-bromohexadecane which were used without purification. The action of hydrogen bromide on the corresponding alcohol¹¹ afforded cyclododecylmethyl bromide, 1-bromo-3,7,11-trimethyldodecane, and 1bromo-3,7,11,15-tetramethylhexadecane which were also used without characterization.

18-Bromo-1-octadecanol (129). To a stirred solution of 8.77 g (24.2 mmol) of 18-bromooctadecanoic acid (see below) in 70 ml of THF was added dropwise 35 ml of 1 M borane in THF. The solution was stirred for 1 h at ambient temperature, diluted with 1 N NaOH solution, and extracted with Et₂O. The extract was washed with 1 N HCl, dried, and evaporated. The residue was crystallized from hexane to yield 6.47 g (77%) of 129, mp 60–62°. Recrystallization from hexane afforded the analytical sample, mp 60–62°. Anal. (C₁₈H₃₇BrO) C, H, Br.

Other alcohols prepared by this procedure were 12-bromo-1-dodecanol (78%), mp 29–31° (lit.¹² mp 28°), 15-bromo-1pentadecanol (90%), mp 64–66° (lit.¹³ mp 59–60°), and 16bromo-1-hexadecanol (92%), mp 54–56° (lit.¹⁴ mp 53–54°). The required 18-bromooctadecanoic acid¹⁵ was obtained by the peroxide-catalyzed addition¹⁶ of hydrogen bromide to 17-octadecenoic acid.¹⁷ 15-Bromopentadecanoic acid¹⁵ and 16bromopentadecanoic acid¹⁵ were prepared by the action of 30% HBr in AcOH on the corresponding hydroxyalkanoic acids.¹⁷


1-Tetradecen-3-ol (130). A mixture of 4.80 g (0.200 g-atom) of magnesium and 100 ml of THF was stirred while 14.2 ml (22.0 g, 0.200 mol) of vinyl bromide was added at a rate such that moderate reflux (dry ice cooled condenser) was maintained. The mixture was stirred an additional 30 min and then a solution of 36.8 g (0.200 mol) of dodecanal in 20 ml of Et₂O was added dropwise. The mixture was stirred under reflux (water-cooled condenser) for 3 h and allowed to cool. After treatment with 30 ml of saturated NH₄Cl solution, the mixture was filtered and the filtrate dried and evaporated. Distillation of the residual oil afforded 15.7 g (37%) of 130, bp 120–126° (2 mm) [lit.¹⁸ bp 144–146° (11 mm)].

Also prepared by this procedure were 1-dodecen-3-ol (131) [54%; bp 105–125° (0.3 mm) [lit.¹⁸ bp 122–122.5° (?)]. Anal. (C₁₂H₂₄O) C, H], 1-tridecen-3-ol (132) [48%; bp 105–107° (1 mm). Anal. (C₁₃H₂₆O) C, H], and 1,12-tridecadien-3-ol (133) [45%; bp 100–103° (0.3 mm). Anal. (C₁₃H₂₄O) C, H].

Ethyl trans-4-Hexadecenoate (134). A mixture of 19.8 g (93.5 mmol) of 130, 107 g (659 mmol) of triethyl orthoacetate, and 1.0 ml of propionic acid was stirred at 140° (bath) for 1 h while 30 ml of distillate was collected.³ After removal of volatile material in vacuo, the residue was distilled to yield 23.1 g (88%) of 134, bp 149–153° (1 mm). Anal. ($C_{18}H_{34}O_2$) C, H.

Also prepared by this procedure were ethyl trans-4-tetradecenoate (135) [86%; bp 150° (2 mm). Anal. ($C_{16}H_{30}O_2$) C, H], ethyl trans-4-pentadecenoate (136) [80%; bp 130° (1 mm). Anal. ($C_{17}H_{32}O_2$) C, H], and ethyl trans-4,14-pentadecadienoate (137) [86%; bp 160° (5 mm). Anal. ($C_{17}H_{30}O_2$) C, H].

trans-4-Hexadecen-1-ol (138). A solution of 21.9 g (77.8 mmol) of 134 in 80 ml of THF was added dropwise to a stirred suspension of 10.0 g (260 mmol) of LiAlH₄ in 80 ml of THF and the resulting mixture was stirred for 3 h under reflux. Excess hydride was decomposed by the dropwise addition of saturated sodium potassium tartarate solution and the mixture was filtered. The filtrate was dried and evaporated and the residual oil crystallized

^a Prepared from 54 by treatment with BF₃·Et₂O and 1,2-ethanedithiol in the usual manner. ^b Sterol and triglyceride values are shown as percent of control. ^c Statistically significant, p < 0.10. ^d Statistically significant, p < 0.05. ^e Statistically significant, p < 0.01.

Table III.^a p-Alkoxybenzoic Acids

$R_1 \xrightarrow{CO_2H} R_2$		CO ₂ H		<i>p</i> -Aiko	JXyDenzo	Jie Acius						
		R. R.			R	R ₂	H ₂) [∂] ₹4					
R ₃			Compd			Ŕ ₃			Math	Wald		
	Compd		-	P	R	P	p	n			Crystn solvent	Mn °Cb
Compa Meth-Yield,	Compd Meth-Yield.	$Compd \qquad \qquad$				IV.3	<u> </u>					······
Compa Meth-Yield, no. R. R. R. R. n od % Crystn solvent Mp.°C ^b	Compd Meth-Yield.	$Compd \qquad \qquad$	$\begin{array}{c} 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 99\\ 91\\ \end{array}$	Cl NO ₂ Cl I Me	Cl I Me	OH Cl N, SH SEt SBz	OH OMe OEt OBu SH SH SH SH SH SEt SEt SEt SET SET SBu SBz SBz SBz SBz SBz SBz SO,Et NHBu+HCl CO ₂ H CC(=O)NHBu	$\begin{array}{c}13\\13\\13\\13\\13\\11\\11\\11\\11\\11\\11\\11\\11\\1$	A B A A B B B B B B B B B B B B B B B B	$\begin{array}{c} 76\\ 84\\ 73\\ 98\\ 70\\ 77\\ 94\\ 91\\ 856\\ 50\\ 60\\ 94\\ 45\\ 925\\ 925\\ 925\\ 30\\ 53\\ 43\\ 87\\ 996\\ 56\\ 80\\ 73\\ 87\\ 996\\ 56\\ 80\\ 73\\ 87\\ 975\\ 87\\ 72\\ \end{array}$	AcOH Petr ether-Et ₂ O Petr ether-Et ₂ O Petr ether-Et ₂ O Petr ether-Et ₂ O Petr ether-Me ₂ CO Me ₂ CO Petr ether-Et ₂ O Petr ether-Et ₂ O MeCN MeOH Hexane-Me ₂ CO Me ₂ CO Petr ether-Et ₂ O Petr ether MeOH	$\begin{array}{c} 105-107^c\\ 100-101^d\\ 73, 81-82^e\\ 107-108\\ 89-90\\ 118-119\\ 130-134\\ 99-100\\ 113-116\\ 71-79\\ 68-70\\ 111-113\\ 103-105\\ 93-94, 106-108\\ 78-80, 107-108\\ 108-110\\ 103-105, 133\\ 118-120, 129-130\\ 116-119, 129\\ 116-118, 124-125\\ 83-85, 117-119\\ 102-104, 109-110\\ 80-82, 117-118\\ 83-85, 117-118\\ 62-63, 106-107\\ 75-77, 108-109\\ 125-127\\ 106-107\\ 143-145\\ 129-130\\ 190-192\\ 169-170\\ 141-143\end{array}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							В			
no.R.R.R.nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et2O $100-101^d$ 61ClCl13A73Petr ether-Et2O $73, 81-82^e$ 62III13A98Petr ether-Et2O $100-101^d$ 63MeMe13A98Petr ether-Et2O $107-108$ 64OH11B77Petr ether-Me2O $118-119$ 65Cl11B94Me2O $130-134$ 66N,11B91Petr ether-Et2O $99-100$ 67SH11F85Petr ether-Et2O $71-79$ 69SBz11B50Petr ether-Et2O $71-79$ 69SBz11B50Petr ether-Et2O $103-105$ 70OH8B94Petr ether-Et2O $93-94, 106-108$ 73OBu8B95Petr ether-Et2O $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_CO $118-120, 129-130$ 77SH13F30Me2O $116-119, 129$ 78SH13F50Me2O $116-119, 125$ <td>Meth- Yield,no.R,R,R,R,nod%Crystn solventMp, °C^b59Cl13A76AcOH$105-107^c$60NO213B84Petr ether-Et_2O$100-101d$61ClCl13A73Petr ether-Et_2O$107-108$62II13A98Petr ether-Et_2O$107-108$63MeMe13A70AcOH$89-90$64OH11B77Petr ether-Me_2CO$118-119$65Cl11B94$Me_2CO$$30-134$66N311B91Petr ether-Et_2O$99-100$67SH11F85Petr ether-Et_2O$113-116$68SEt11B96Petr ether-Et_2O$71-79$69SBz11B50Petr ether-Et_2O$103-105$72OH8B60Et_2O$111-113$71OMe8B95Petr ether-Et_2O$93-94, 106-108$73OBu8B95Petr ether-Et_2O$93-94, 106-108$74SH8F92MeCN$108-110$75SH9F65MeOH$103-105, 133$76SH12F95Hexane-Me_2CO$118-120, 129-130$77SH13F30Me_2CO<</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Б В</td> <td></td> <td></td> <td></td>	Meth- Yield,no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101d$ 61ClCl13A73Petr ether-Et_2O $107-108$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94 Me_2CO $30-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Et_2O $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $103-105$ 72OH8B60Et_2O $111-113$ 71OMe8B95Petr ether-Et_2O $93-94, 106-108$ 73OBu8B95Petr ether-Et_2O $93-94, 106-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$ 77SH13F30Me_2CO<	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							Б В			
no.R,R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_0 $100-101^d$ 61ClCl13A73Petr ether-Et_0 $73, 81-82^e$ 62II13A98Petr ether-Et_0 $107-108$ 63MeMe13A70AcOH89-9064OH11B97Petr ether-Me_CO $118-119$ 65Cl11B94Me_CO $130-134$ 66N,11B91Petr ether-Et_0 $99-100$ 67SH11F85Petr ether-Me_CO $113-116$ 68SEt11B96Petr ether-Et_0 $71-79$ 69SBz11B94Petr ether-Et_0 $103-105$ 72OH8B94Petr ether-Et_0 $93-94, 106-108$ 74SH8F92MeCN $103-105, 133$ 76SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_CO $118-120, 129-130$ 77SH13F30Me_CO $116-118, 124-125$ 79SEt8B43Petr ether-Et_O $83-85, 117-119$ 80SEt13B87Petr ether-Et_O $83-85, 117-118$	CompdMeth-Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO,13B84Petr ether-Et,O $100-101^d$ 61ClCl13A73Petr ether-Et,O $100-101^d$ 61ClCl13A98Petr ether-Et,O $107-108$ 63Me13A70AcOH89-9064OH11B77Petr ether-Me ₂ CO $118-119$ 65Cl11B94Me ₂ CO $130-134$ 66N,11FF5Petr ether-Et,O $99-100$ 67SH11F85Petr ether-Et,O $71-79$ 69SBz11B96Petr ether-Et,O $71-79$ 69SBz11B50Petr ether-Et,O $103-105$ 72OH8B60Et,O $111-113$ 71OMe8B95Petr ether-Et,O $78-80, 107-108$ 74SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me,CO $118-110, 129-130$ 77SH13F30Me ₂ CO $116-118, 124-125$ 79SEt8B99MeOH $80-82, 117-118$ 81SFr899MeOH $80-82, 117-118$ <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
no.R,R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_0 $100-101^d$ 61ClCl13A73Petr ether-Et_0 $100-101^d$ 61ClCl13A98Petr ether-Et_20 $73, 81-82^e$ 62III13A98Petr ether-Et_20 $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B97Petr ether-Et_20 $130-134$ 66N,11B91Petr ether-Et_20 $99-100$ 67SH11F85Petr ether-Et_20 $71-79$ 69SBz11B96Petr ether-Et_10 $71-79$ 69SBz11B50Petr ether-Et_10 $71-79$ 69SBz11B50Petr ether-Et_20 $93-94, 106-108$ 71OMe8B94Petr ether-Et_20 $73-80, 107-108$ 73OBu8B95Petr ether-Et_20 $73-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $116-119, 129$ 78SH12F95Hexan	CompdMeth-Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO,13B84Petr ether-Et,O $100-101^d$ 61ClCl13A73Petr ether-Et,O $100-101^d$ 61ClCl13A98Petr ether-Et,O $107-108$ 63Me13A70AcOH89-9064OH11B77Petr ether-Me ₂ CO $118-119$ 65Cl11B94Me ₂ CO $130-134$ 66N,11FF5Petr ether-Et,O $99-100$ 67SH11F85Petr ether-Et,O $71-79$ 69SBz11B96Petr ether-Et,O $71-79$ 69SBz11B50Petr ether-Et,O $103-105$ 72OH8B60Et,O $111-113$ 71OMe8B95Petr ether-Et,O $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH12F95Hexane-Me_2CO $118-110, 129-130$ 76SH12F95Hexane-Me_2CO $118-119, 129-130$ 75SH12F95Hexane-Me_2CO $118-116-118, 124-125$ 79SEt8899MeCH $80-8$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	82				SBu	8	З			83-85, 117-118
no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^{c}$ 60NO213B84Petr ether-Et_0 $100-101^{d}$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^{e}$ 62III13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH89-9064OH11B97Petr ether-Me_2O $118-119$ 65Cl11B94Me_3O $130-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Et_2O $99-100$ 68SEt11B90Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $113-116$ 70OH8B94Petr ether-Et_2O $93-94, 106-108$ 71OMe8B95Petr ether-Et_2O $93-94, 106-108$ 73OBu8B95Petr ether-Et_2O $93-94, 106-108$ 74SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me,CO $118-119, 129-130$ 77SH13F30Me,CO $116-118, 124-125$ 79SEt8B43Petr et	CompdMeth-Yield, odMeth-Yield, %Mp, °Cb 59 Cl13A76AcOH $105-107^c$ 60 NO213B84Petr ether-Et 0 $100-101^d$ 61 ClCl13A73Petr ether-Et 0 $73, 81-82^e$ 62 II13A73Petr ether-Et 0 $100-101^d$ 63 Me13A70AcOH $89-90$ 64 OH11B77Petr ether-Et 0 $118-119$ 65 Cl1111B94Me, CO $130-134$ 66 N,11B91Petr ether-Et 0 $99-100$ 67 SH11F85Petr ether-Et 0 $71-79$ 69 SBz11B96Petr ether-Et 0 $71-79$ 69 SBz11B50Petr ether-Et 0 $71-79$ 69 SBz11B50Petr ether-Et 0 $71-79$ 70 OH8B94Petr ether-Et 0 $73-80, 107-108$ 73 OBu8B95Petr ether-Et 0 $73-80, 107-108$ 74 SH8F92MeCN $108-110$ 75 SH12F95Hexane-Me, CO $118-120, 129-130$ 76 SH12F95Hexane-Me, CO $118-10, 129-130$ 77 SH13F30Me, CO $118-119, 129$ <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^{c}$ 60NO213B84Petr ether-Et_0 $100-101^{d}$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^{e}$ 62III13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH89-9064OH11B97Petr ether-Me_2O $118-119$ 65Cl11B94Me_3O $130-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Et_2O $99-100$ 68SEt11B90Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $113-116$ 70OH8B94Petr ether-Et_2O $93-94, 106-108$ 71OMe8B95Petr ether-Et_2O $93-94, 106-108$ 73OBu8B95Petr ether-Et_2O $93-94, 106-108$ 74SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me,CO $118-119, 129-130$ 77SH13F30Me,CO $116-118, 124-125$ 79SEt8B43Petr et	CompdMeth-Yield, odMeth-Yield, %Mp, °Cb 59 Cl13A76AcOH $105-107^c$ 60 NO213B84Petr ether-Et 0 $100-101^d$ 61 ClCl13A73Petr ether-Et 0 $73, 81-82^e$ 62 II13A73Petr ether-Et 0 $100-101^d$ 63 Me13A70AcOH $89-90$ 64 OH11B77Petr ether-Et 0 $118-119$ 65 Cl1111B94Me, CO $130-134$ 66 N,11B91Petr ether-Et 0 $99-100$ 67 SH11F85Petr ether-Et 0 $71-79$ 69 SBz11B96Petr ether-Et 0 $71-79$ 69 SBz11B50Petr ether-Et 0 $71-79$ 69 SBz11B50Petr ether-Et 0 $71-79$ 70 OH8B94Petr ether-Et 0 $73-80, 107-108$ 73 OBu8B95Petr ether-Et 0 $73-80, 107-108$ 74 SH8F92MeCN $108-110$ 75 SH12F95Hexane-Me, CO $118-120, 129-130$ 76 SH12F95Hexane-Me, CO $118-10, 129-130$ 77 SH13F30Me, CO $118-119, 129$ <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
no.R,R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^{c}$ 60NO213B84Petr ether-Et,O $100-101^{d}$ 61ClCl13A73Petr ether-Et,O $100-101^{d}$ 61ClCl13A98Petr ether-Et,O $107-108$ 63MeMe13A98Petr ether-Et,O $1107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B97Petr ether-Me,CO $118-119$ 65Cl11B94Me,CO $130-134$ 66N,11B91Petr ether-Et,O $99-100$ 67SH11F85Petr ether-Et,O $71-79$ 69SBz11B90Petr ether-Et,O $71-79$ 69SBz11B94Petr ether-Et,O $113-116$ 70OH8B94Petr ether-Et,O $71-79$ 71OMe8B95Petr ether-Et,O $93-94,106-108$ 73OBu8B95Petr ether-Et,O $78-80,107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105,133$ 76SH12F95Hexane-Me,CO $118-120,129-130$ <	CompdMeth-Yield, odMp, °Cb $no.$ R,R,R,nod%Crystn solventMp, °Cb 59 Cl13A76AcOH $105-107^c$ 60 NO213B84Petr ether-Et,O $100-101^d$ 61 ClCl13A73Petr ether-Et,O $73, 81-82^e$ 62 II13A73Petr ether-Et,O $107-108$ 63 Me13A70AcOH $89-90$ 64 OH11B77Petr ether-Et,O $118-119$ 65 Cl11IB94Me,CO $130-134$ 66 N,11B91Petr ether-Et,O $99-100$ 67 SH11F85Petr ether-Et,O $71-79$ 69 SBz11B50Petr ether-Et,O $71-79$ 69 SBz11B50Petr ether-Et,O $103-105$ 72 OH8B94Petr ether-Et,O $103-105$ 72 OEt8B94Petr ether-Et,O $73-80, 107-108$ 73 OBu8B95Petr ether-Et,O $73-80, 107-108$ 74 SH8F92MeCN $108-110$ 75 SH9F65MeOH $103-105, 133$ 76 SH12F95Hexane-Me,CO $118-119, 129-130$ 77 SH<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
no.R,R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^{c}$ 60NO213B84Petr ether-Et,O $100-101^{d}$ 61ClCl13A73Petr ether-Et,O $100-101^{d}$ 61ClCl13A98Petr ether-Et,O $107-108$ 63MeMe13A98Petr ether-Et,O $1107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B97Petr ether-Me,CO $118-119$ 65Cl11B94Me,CO $130-134$ 66N,11B91Petr ether-Et,O $99-100$ 67SH11F85Petr ether-Et,O $71-79$ 69SBz11B90Petr ether-Et,O $71-79$ 69SBz11B94Petr ether-Et,O $113-116$ 70OH8B94Petr ether-Et,O $71-79$ 71OMe8B95Petr ether-Et,O $93-94,106-108$ 73OBu8B95Petr ether-Et,O $78-80,107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105,133$ 76SH12F95Hexane-Me,CO $118-120,129-130$ <	CompdMeth-Yield, odMp, °Cb $no.$ R,R,R,nod%Crystn solventMp, °Cb 59 Cl13A76AcOH $105-107^c$ 60 NO213B84Petr ether-Et,O $100-101^d$ 61 ClCl13A73Petr ether-Et,O $73, 81-82^e$ 62 II13A73Petr ether-Et,O $107-108$ 63 Me13A70AcOH $89-90$ 64 OH11B77Petr ether-Et,O $118-119$ 65 Cl11IB94Me,CO $130-134$ 66 N,11B91Petr ether-Et,O $99-100$ 67 SH11F85Petr ether-Et,O $71-79$ 69 SBz11B50Petr ether-Et,O $71-79$ 69 SBz11B50Petr ether-Et,O $103-105$ 72 OH8B94Petr ether-Et,O $103-105$ 72 OEt8B94Petr ether-Et,O $73-80, 107-108$ 73 OBu8B95Petr ether-Et,O $73-80, 107-108$ 74 SH8F92MeCN $108-110$ 75 SH9F65MeOH $103-105, 133$ 76 SH12F95Hexane-Me,CO $118-119, 129-130$ 77 SH<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	81				SPr	8	в	99	MeOH	80-82, 117-118
no.R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_Q $100-101^d$ 61ClCl13A73Petr ether-Et_Q $100-101^d$ 61ClCl13A73Petr ether-Et_Q $100-101^d$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N,11F85Petr ether-Et_Q $99-100$ 67SH11F85Petr ether-Et_Q $113-116$ 68SEt11B96Petr ether-Et_Q $113-116$ 68SEt11B96Petr ether-Et_Q $103-105$ 70OH8B60Et_Q $111-113$ 71OMe8B94Petr ether-Et_Q $93-94, 106-108$ 73OBu8B95Petr ether-Et_Q $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$ 77SH13F30Me_2CO $116-118, 124-125$ 79SE	Meth- Yield,no.R,R,R,nod $\%$ Crystn solventMp, °C ^b 59Cl13A76AcOH105-107 ^c 60NO213B84Petr ether-Et,O100-101 ^d 61ClCl13A73Petr ether-Et,O73, 81-82 ^e 62III13A98Petr ether-Et,O107-10863MeMe13A98Petr ether-MercO118-11965Cl11B97Petr ether-Et,O99-9064OH11B77Petr ether-Et,O99-10065Cl11B94Me_CO113-13466N311F85Petr ether-Et,O71-7969SBz11B96Petr ether-Et,O71-7969SBz11B50Petr ether-Et,O13-10570OH8B94Petr ether-Et,O103-10572OEt8B45Petr ether-Et,O103-10574SH8F92MeCN108-11075SH9F65MeOH103-105, 13376SH12F95Hexane-Me_CO118-120, 129-13077SH13F30Me_CO116-118, 124-12579SEt8B43Petr ether-Et_O83-85, 117-119 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>81</td> <td></td> <td></td> <td></td> <td>SPr</td> <td>8</td> <td>В</td> <td>99</td> <td>MeOH</td> <td>80-82, 117-118</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	81				SPr	8	В	99	MeOH	80-82, 117-118
no.R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_Q $100-101^d$ 61ClCl13A73Petr ether-Et_Q $100-101^d$ 61ClCl13A73Petr ether-Et_Q $100-101^d$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N,11F85Petr ether-Et_Q $99-100$ 67SH11F85Petr ether-Et_Q $113-116$ 68SEt11B96Petr ether-Et_Q $113-116$ 68SEt11B96Petr ether-Et_Q $103-105$ 70OH8B60Et_Q $111-113$ 71OMe8B94Petr ether-Et_Q $93-94, 106-108$ 73OBu8B95Petr ether-Et_Q $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$ 77SH13F30Me_2CO $116-118, 124-125$ 79SE	Meth- Yield,no.R,R,R,nod $\%$ Crystn solventMp, °C ^b 59Cl13A76AcOH105-107 ^c 60NO213B84Petr ether-Et,O100-101 ^d 61ClCl13A73Petr ether-Et,O73, 81-82 ^e 62III13A98Petr ether-Et,O107-10863MeMe13A98Petr ether-MercO118-11965Cl11B97Petr ether-Et,O99-9064OH11B77Petr ether-Et,O99-10065Cl11B94Me_CO113-13466N311F85Petr ether-Et,O71-7969SBz11B96Petr ether-Et,O71-7969SBz11B50Petr ether-Et,O13-10570OH8B94Petr ether-Et,O103-10572OEt8B45Petr ether-Et,O103-10574SH8F92MeCN108-11075SH9F65MeOH103-105, 13376SH12F95Hexane-Me_CO118-120, 129-13077SH13F30Me_CO116-118, 124-12579SEt8B43Petr ether-Et_O83-85, 117-119 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
no.R.R.R.nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et.0 $100-101^d$ 61ClCl13A73Petr ether-Et.0 $100-101^d$ 61ClCl13A73Petr ether-Et.0 $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N311F85Petr ether-Et.0 $99-100$ 67SH11F85Petr ether-Et.0 $113-116$ 68SEt11B96Petr ether-Et.0 $71-79$ 69SBz11B50Petr ether-Et.0 $68-70$ 70OH8B94Petr ether-Et.0 $93-94, 106-108$ 71OMe8B94Petr ether-Et.0 $93-94, 106-108$ 73OBu8B95Petr ether-Et.0 $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$ 77SH13F30Me_2CO $116-118, 124-125$ <td< td=""><td>Meth- Yield, no.Meth- Yield, $rescape rescape resc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Meth- Yield, no.Meth- Yield, $rescape rescape resc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
no.R.R.R.nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et2O $100-101^d$ 61ClCl13A73Petr ether-Et2O $73, 81-82^e$ 62III13A98Petr ether-Et2O $100-101^d$ 63MeMe13A98Petr ether-Et2O $107-108$ 64OH11B77Petr ether-Me2OO $118-119$ 65Cl11B94Me2OO $130-134$ 66N,11B91Petr ether-Et2O $99-100$ 67SH11F85Petr ether-Et2O $71-79$ 69SBz11B50Petr ether-Et2O $71-79$ 69SBz11B50Petr ether-Et2O $103-105$ 70OH8B94Petr ether-Et2O $93-94, 106-108$ 73OBu8B95Petr ether-Et2O $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_CO $118-120, 129-130$ 77SH13F30Me2O $116-119, 129$ 78SH13F50Me2O $116-119, 125$ <td>Meth- Yield,no.R,R,R,R,nod%Crystn solventMp, °C^b59Cl13A76AcOH$105-107^c$60NO213B84Petr ether-Et_2O$100-101d$61ClCl13A73Petr ether-Et_2O$107-108$62II13A98Petr ether-Et_2O$107-108$63MeMe13A70AcOH$89-90$64OH11B77Petr ether-Me_2CO$118-119$65Cl11B94Me_2CO$30-134$66N311B91Petr ether-Et_2O$99-100$67SH11F85Petr ether-Et_2O$113-116$68SEt11B96Petr ether-Et_2O$71-79$69SBz11B50Petr ether-Et_2O$103-105$72OH8B60Et_O$111-113$71OMe8B95Petr ether-Et_2O$93-94, 106-108$73OBu8B95Petr ether-Et_2O$78-80, 107-108$74SH8F92MeCN$108-110$75SH9F65MeOH$103-105, 133$76SH12F95Hexane-Me_2CO$118-120, 129-130$77SH13F30Me_2CO<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td></td><td></td><td>B</td><td></td><td></td><td></td></td>	Meth- Yield,no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101d$ 61ClCl13A73Petr ether-Et_2O $107-108$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $30-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Et_2O $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $103-105$ 72OH8B60Et_O $111-113$ 71OMe8B95Petr ether-Et_2O $93-94, 106-108$ 73OBu8B95Petr ether-Et_2O $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$ 77SH13F30Me_2CO <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>B</td> <td></td> <td></td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							B			
no.R.R.R.nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et2O $100-101^d$ 61ClCl13A73Petr ether-Et2O $73, 81-82^e$ 62III13A98Petr ether-Et2O $100-101^d$ 63MeMe13A98Petr ether-Et2O $107-108$ 64OH11B77Petr ether-Me2OO $118-119$ 65Cl11B94Me2OO $130-134$ 66N,11B91Petr ether-Et2O $99-100$ 67SH11F85Petr ether-Et2O $71-79$ 69SBz11B50Petr ether-Et2O $71-79$ 69SBz11B50Petr ether-Et2O $103-105$ 70OH8B94Petr ether-Et2O $93-94, 106-108$ 73OBu8B95Petr ether-Et2O $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_CO $118-120, 129-130$ 77SH13F30Me2O $116-119, 129$ 78SH13F50Me2O $116-119, 125$ <td>Meth- Yield,no.R,R,R,R,nod%Crystn solventMp, °C^b59Cl13A76AcOH$105-107^c$60NO213B84Petr ether-Et_2O$100-101d$61ClCl13A73Petr ether-Et_2O$107-108$62II13A98Petr ether-Et_2O$107-108$63MeMe13A70AcOH$89-90$64OH11B77Petr ether-Me_2CO$118-119$65Cl11B94Me_2CO$30-134$66N311B91Petr ether-Et_2O$99-100$67SH11F85Petr ether-Et_2O$113-116$68SEt11B96Petr ether-Et_2O$71-79$69SBz11B50Petr ether-Et_2O$103-105$72OH8B60Et_O$111-113$71OMe8B95Petr ether-Et_2O$93-94, 106-108$73OBu8B95Petr ether-Et_2O$78-80, 107-108$74SH8F92MeCN$108-110$75SH9F65MeOH$103-105, 133$76SH12F95Hexane-Me_2CO$118-120, 129-130$77SH13F30Me_2CO<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td></td><td></td><td></td><td>в</td><td></td><td></td><td></td></td>	Meth- Yield,no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101d$ 61ClCl13A73Petr ether-Et_2O $107-108$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $30-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Et_2O $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $103-105$ 72OH8B60Et_O $111-113$ 71OMe8B95Petr ether-Et_2O $93-94, 106-108$ 73OBu8B95Petr ether-Et_2O $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$ 77SH13F30Me_2CO <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>в</td> <td></td> <td></td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							в			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Meth- Yield,no.R.R.R.nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et.0 $100-101^d$ 61ClCl13A73Petr ether-Et.0 $73, 81-82^e$ 62II13A98Petr ether-Et.0 $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_cCO $130-134$ 66N311B91Petr ether-Et.0 $71-79$ 69SEt11B96Petr ether-Et.0 $71-79$ 69SBz11B50Petr ether-Et.0 $68-70$ 70OH8B60Et.0 $111-113$ 71OMe8B94Petr ether-Et.0 $93-94, 106-108$ 73OBu8B95Petr ether-Et.0 $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_CO $118-120, 129-130$ 77SH13F30Me_cCO $116-119, 129$	$\begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Meth- Yield,no.R.R.R.nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et.0 $100-101^d$ 61ClCl13A73Petr ether-Et.0 $73, 81-82^e$ 62II13A98Petr ether-Et.0 $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_cCO $130-134$ 66N311B91Petr ether-Et.0 $99-100$ 67SH11F85Petr ether-Et.0 $99-100$ 68SEt11B96Petr ether-Et.0 $71-79$ 69SBz11B50Petr ether-Et.0 $68-70$ 70OH8B60Et.0 $111-113$ 71OMe8B94Petr ether-Et.0 $93-94, 106-108$ 73OBu8B95Petr ether-Et.0 $78-80, 107-108$ 74SH8F92MeCN $108-110$ 75SH9F65MeOH $103-105, 133$ 76SH13F30Me_cCO $116-119, 129$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
no.R.R.R.R.nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^{c}$ 60NO213B84Petr ether-Et 2O $100-101^{d}$ 61ClCl13A73Petr ether-Et 2O $73, 81-82^{e}$ 62III13A98Petr ether-Et 2O $100-101^{d}$ 63MeMe13A70AcOH89-9064OH11B77Petr ether-Me_2CO $113-134$ 65Cl11B94Me_2CO $30-134$ 66N311B91Petr ether-Et 2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et 2O $71-79$ 69SBz11B50Petr ether-Et 2O $68-70$ 70OH8B94Petr ether-Et 2O $103-105$ 72OEt8B94Petr ether-Et 2O $93-94, 106-108$ 73OBu8B95Petr ether-Et 2O $78-80, 107-108$ 74SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$	CompdMeth- Yield, nMeth- Yield, Crystn solventMp, °Cb 59 Cl13A76AcOH $105-107^c$ 60 NO213B84Petr ether-Et 20 $100-101^d$ 61 ClCl13A73Petr ether-Et 20 $73, 81-82^e$ 62 III13A98Petr ether-Et 20 $107-108$ 63 MeMe13A70AcOH $89-90$ 64 OH11B77Petr ether-Me2CO $118-119$ 65 Cl11B94Me2CO $130-134$ 66 N,11B91Petr ether-Et 20 $91-100$ 67 SH11F85Petr ether-Et 20 $113-116$ 68 SEt11B96Petr ether-Et 20 $71-79$ 69 SBz11B50Petr ether-Et 20 $68-70$ 70 OH8B60Et.O111-113 71 OMe8B94Petr ether-Et 20 $93-94, 106-108$ 73 OBu8B95Petr ether-Et 20 $78-80, 107-108$ 74 SH8F92MeCN $108-1105, 133$ 76 SH12F95Hexane-Me2CO $118-120, 129-130$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
no.R.R.R.R.nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^{c}$ 60NO213B84Petr ether-Et 2O $100-101^{d}$ 61ClCl13A73Petr ether-Et 2O $73, 81-82^{e}$ 62III13A98Petr ether-Et 2O $100-101^{d}$ 63MeMe13A70AcOH89-9064OH11B77Petr ether-Me_2CO $113-134$ 65Cl11B94Me_2CO $30-134$ 66N311B91Petr ether-Et 2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et 2O $71-79$ 69SBz11B50Petr ether-Et 2O $68-70$ 70OH8B94Petr ether-Et 2O $103-105$ 72OEt8B94Petr ether-Et 2O $93-94, 106-108$ 73OBu8B95Petr ether-Et 2O $78-80, 107-108$ 74SH9F65MeOH $103-105, 133$ 76SH12F95Hexane-Me_2CO $118-120, 129-130$	CompdMeth- Yield, nMeth- Yield, Crystn solventMp, °Cb 59 Cl13A76AcOH $105-107^c$ 60 NO213B84Petr ether-Et 20 $100-101^d$ 61 ClCl13A73Petr ether-Et 20 $73, 81-82^e$ 62 III13A98Petr ether-Et 20 $107-108$ 63 MeMe13A70AcOH $89-90$ 64 OH11B77Petr ether-Me2CO $118-119$ 65 Cl11B94Me2CO $130-134$ 66 N,11B91Petr ether-Et 20 $91-100$ 67 SH11F85Petr ether-Et 20 $113-116$ 68 SEt11B96Petr ether-Et 20 $71-79$ 69 SBz11B50Petr ether-Et 20 $68-70$ 70 OH8B60Et.O111-113 71 OMe8B94Petr ether-Et 20 $93-94, 106-108$ 73 OBu8B95Petr ether-Et 20 $78-80, 107-108$ 74 SH8F92MeCN $108-1105, 133$ 76 SH12F95Hexane-Me2CO $118-120, 129-130$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										116-119, 129
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield, rMeth- Yield, Crystn solventMp, °Cb $10. R_1 R_2 R_3 R_4 n$ n n n d $\%$ $Crystn solvent$ $Mp, °Cb$ 59 Cl 13 A 76 $AcOH$ $105-107^c$ 60 NO_2 13 B 84 Petr ether-Et $_2O$ $100-101^d$ 61 Cl Cl 13 A 73 Petr ether-Et $_2O$ $107-108$ 62 I I $I3$ A 98 Petr ether-Et $_2O$ $107-108$ 63 MeMe $I3$ A 70 $AcOH$ $89-90$ 64 OH $I1$ B 77 Petr ether-Me $_2CO$ $118-119$ 65 Cl $I1$ B 94 Me_2CO $130-134$ 66 N_3 $I1$ B 91 Petr ether-Et $_2O$ $99-100$ 67 SH $I1$ F 85 Petr ether-Et $_2O$ $113-116$ 68 SEt $I1$ B 96 Petr ether-Et $_2O$ $71-79$ 69 SBz $I1$ B 50 Petr ether-Et $_2O$ $71-79$ 70 OH 8 B 94 Petr ether-Et $_2O$ $103-105$ 72 OEt 8 B 94 Petr ether-Et $_2O$ $78-80, 107-108$ 73 OBu 8 B 95 Petr ether-Et $_2O$ $78-80, 107-108$ 74 SH 8 F 92 $MeCH$ $103-105, 133$ <td>$\begin{array}{c c c c c c c } & &$</td> <td></td>	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield, rMeth- Yield, Crystn solventMp, °Cb $10. R_1 R_2 R_3 R_4 n$ n n n d $\%$ $Crystn solvent$ $Mp, °Cb$ 59 Cl 13 A 76 $AcOH$ $105-107^c$ 60 NO_2 13 B 84 Petr ether-Et $_2O$ $100-101^d$ 61 Cl Cl 13 A 73 Petr ether-Et $_2O$ $107-108$ 62 I I $I3$ A 98 Petr ether-Et $_2O$ $107-108$ 63 MeMe $I3$ A 70 $AcOH$ $89-90$ 64 OH $I1$ B 77 Petr ether-Me $_2CO$ $118-119$ 65 Cl $I1$ B 94 Me_2CO $130-134$ 66 N_3 $I1$ B 91 Petr ether-Et $_2O$ $99-100$ 67 SH $I1$ F 85 Petr ether-Et $_2O$ $113-116$ 68 SEt $I1$ B 96 Petr ether-Et $_2O$ $71-79$ 69 SBz $I1$ B 50 Petr ether-Et $_2O$ $71-79$ 70 OH 8 B 94 Petr ether-Et $_2O$ $103-105$ 72 OEt 8 B 94 Petr ether-Et $_2O$ $78-80, 107-108$ 73 OBu 8 B 95 Petr ether-Et $_2O$ $78-80, 107-108$ 74 SH 8 F 92 $MeCH$ $103-105, 133$ <td>$\begin{array}{c c c c c c c } & &$</td> <td>76</td> <td></td> <td></td> <td></td> <td>SH</td> <td>12</td> <td>\mathbf{F}</td> <td>95</td> <td>Hexane-Me₂CO</td> <td></td>	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	76				SH	12	\mathbf{F}	95	Hexane-Me ₂ CO	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield,no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^{c}$ 60NO213B84Petr ether-Et.2O $100-101^{d}$ 61ClCl13A73Petr ether-Et.2O $73, 81-82^{e}$ 62II13A78Petr ether-Et.2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N311B91Petr ether-Et.2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et.2O $71-79$ 69SBz11B50Petr ether-Et.2O $68-70$ 70OH8B94Petr ether-Et.2O $103-105$ 72OEt8B94Petr ether-Et.2O $93-94, 106-108$ 73OBu8B95Petr ether-Et.2O $78-80, 107-108$ 74SH8F92MeCN $108-110$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							F.			
no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^{c}$ 60NO,13B84Petr ether-Et_O $100-101^{d}$ 61ClCl13A73Petr ether-Et_O $73, 81-82^{e}$ 62II13A98Petr ether-Et_O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N,11B91Petr ether-Et_O $99-100$ 67SH11F85Petr ether-Et_O $113-116$ 68SEt11B96Petr ether-Et_O $68-70$ 70OH8B94Petr ether-Et_O $68-70$ 71OMe8B94Petr ether-Et_O $93-94, 106-108$ 72OEt8B45Petr ether-Et_O $78-80, 107-108$	CompdMeth-Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH89-9064OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $30-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Et_2O $71-79$ 69SBz11B96Petr ether-Et_2O $68-70$ 70OH8B60Et_2O $103-105$ 71OMe8B94Petr ether-Et_2O $93-94, 106-108$ 73OBu8B95Petr ether-Et_2O $78-80, 107-108$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
no.R,R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^{c}$ 60NO,13B84Petr ether-Et_O $100-101^{d}$ 61ClCl13A73Petr ether-Et_O $73, 81-82^{e}$ 62II13A98Petr ether-Et_O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N,11B91Petr ether-Et_O $99-100$ 67SH11F85Petr ether-Et_O $113-116$ 68SEt11B96Petr ether-Et_O $68-70$ 70OH8B94Petr ether-Et_O $68-70$ 71OMe8B94Petr ether-Et_O $93-94, 106-108$ 72OEt8B45Petr ether-Et_O $78-80, 107-108$	CompdMeth-Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH89-9064OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $30-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Et_2O $71-79$ 69SBz11B96Petr ether-Et_2O $68-70$ 70OH8B60Et_2O $103-105$ 71OMe8B94Petr ether-Et_2O $93-94, 106-108$ 73OBu8B95Petr ether-Et_2O $78-80, 107-108$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	74				SH	8	\mathbf{F}	92	MeCN	108-110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et.Q $100-101^d$ 61ClCl13A73Petr ether-Et.Q $73, 81-82^e$ 62II13A98Petr ether-Et.Q $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N_311B91Petr ether-Et.Q $99-100$ 67SH11F85Petr ether-Et.Q $71-79$ 69SEt11B96Petr ether-Et.Q $71-79$ 70OH8B60Et.O $111-113$ 71OMe8B94Petr ether-Et.Q $93-94, 106-108$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							D			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N_311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $71-79$ 70OH8B60Et_1O $111-113$ 71OMe8B94Petr ether-Et_2O $103-105$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							R			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N_311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $68-70$ 70OH8B60Et_1O $111-113$ 71OMe8B94Petr ether-Et_2O $103-105$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							в		Petr ether-Et ₂ O	93-94, 106-108
no.R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62III13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N311B91Petr ether-Et_2O99-10067SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $68-70$ 70OH8B60Et.O $111-113$	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N_311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $68-70$ 70OH8B60Et.O111-113	$\begin{array}{c ccccc} Compd & Meth-Yield, \\ \hline no. & R, & R_2 & R_3 & R_4 & n & od & \% & Crystn solvent & Mp, ^{\circ}C^b \\ \hline 59 & Cl & & 13 & A & 76 & AcOH & 105-107^c \\ \hline 60 & NO_2 & & 13 & B & 84 & Petr ether-Et_2O & 100-101^d \\ \hline 61 & Cl & Cl & & 13 & A & 73 & Petr ether-Et_2O & 73, 81-82^e \\ \hline 62 & I & I & & 13 & A & 98 & Petr ether-Et_2O & 107-108 \\ \hline 63 & Me & Me & & 13 & A & 70 & AcOH & 89-90 \\ \hline 64 & OH & & 11 & B & 77 & Petr ether-Me_2CO & 118-119 \\ \hline 65 & Cl & & 11 & B & 94 & Me_2CO & 130-134 \\ \hline 66 & N_3 & & 11 & B & 91 & Petr ether-Et_2O & 99-100 \\ \hline 67 & SH & & 11 & F & 85 & Petr ether-Et_2O & 99-100 \\ \hline 67 & SH & & 11 & B & 96 & Petr ether-Et_2O & 71-79 \\ \hline 69 & SBz & & 11 & B & 50 & Petr ether-Et_2O & 71-79 \\ \hline 70 & OH & 8 & B & 60 & Et_2O & 111-113 \\ \hline \end{array}$								-		
no.R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62III13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N311B91Petr ether-Et_2O99-10067SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $68-70$ 70OH8B60Et.O $111-113$	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N_311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et_2O $68-70$ 70OH8B60Et.O111-113	$\begin{array}{c ccccc} Compd & Meth-Yield, \\ \hline no. & R, & R_2 & R_3 & R_4 & n & od & \% & Crystn solvent & Mp, ^{\circ}C^b \\ \hline 59 & Cl & & 13 & A & 76 & AcOH & 105-107^c \\ \hline 60 & NO_2 & & 13 & B & 84 & Petr ether-Et_2O & 100-101^d \\ \hline 61 & Cl & Cl & & 13 & A & 73 & Petr ether-Et_2O & 73, 81-82^e \\ \hline 62 & I & I & & 13 & A & 98 & Petr ether-Et_2O & 107-108 \\ \hline 63 & Me & Me & & 13 & A & 70 & AcOH & 89-90 \\ \hline 64 & OH & & 11 & B & 77 & Petr ether-Me_2CO & 118-119 \\ \hline 65 & Cl & & 11 & B & 94 & Me_2CO & 130-134 \\ \hline 66 & N_3 & & 11 & B & 91 & Petr ether-Et_2O & 99-100 \\ \hline 67 & SH & & 11 & F & 85 & Petr ether-Et_2O & 99-100 \\ \hline 67 & SH & & 11 & B & 96 & Petr ether-Et_2O & 71-79 \\ \hline 69 & SBz & & 11 & B & 50 & Petr ether-Et_2O & 71-79 \\ \hline 70 & OH & 8 & B & 60 & Et_2O & 111-113 \\ \hline \end{array}$							В			
no.R,R,R,R,nod%Crystn solventMp, °Cb59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62II13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Me_CO $113-116$ 68SEt11B96Petr ether-Et_2O $71-79$ 69SBz11B50Petr ether-Et,O $68-70$	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62III13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N_311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Me_CO $113-116$ 68SEt11B96Petr ether-Et_O $71-79$ 69SBz11B50Petr ether-Et_O $68-70$	$\begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $							в			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et2O $100-101^d$ 61ClCl13A73Petr ether-Et2O $73, 81-82^e$ 62III13A98Petr ether-Et2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N311B91Petr ether-Et2O $99-100$ 67SH11F85Petr ether-Me_CO $113-116$ 68SEt11B96Petr ether-Et2O $71-79$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				502	лч		D			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et2O $100-101^d$ 61ClCl13A73Petr ether-Et2O $73, 81-82^e$ 62III13A98Petr ether-Et2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N311B91Petr ether-Et2O $99-100$ 67SH11F85Petr ether-Me_CO $113-116$ 68SEt11B96Petr ether-Et2O $71-79$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69			SBz		11	в	50	Petr ether-Et O	68-70
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et_2O $100-101^d$ 61ClCl13A73Petr ether-Et_2O $73, 81-82^e$ 62III13A98Petr ether-Et_2O $107-108$ 63MeMe13A70AcOH89-9064OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N_311B91Petr ether-Et_2O $99-100$ 67SH11F85Petr ether-Me_2CO $113-116$	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$							В			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CompdMeth- Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et.2O $100-101^d$ 61ClCl13A73Petr ether-Et.2O $73, 81-82^e$ 62III13A98Petr ether-Et.2O $107-108$ 63MeMe13A70AcOH $89-90$ 64OH11B77Petr ether-Me_2CO $118-119$ 65Cl11B94Me_2CO $130-134$ 66N ₃ 11B91Petr ether-Et.2O $99-100$	$\begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compd Meth-Yield, no. R, R, R, n od % Crystn solvent Mp, °C ^b 59 Cl 13 A 76 AcOH $105-107^c$ 60 NO2 13 B 84 Petr ether-Et ₂ O $100-101^d$ 61 Cl Cl 13 A 73 Petr ether-Et ₂ O $73, 81-82^e$ 62 I I 13 A 98 Petr ether-Et ₂ O $107-108$ 63 Me Me 13 A 70 AcOH $89-90$ 64 OH 11 B 77 Petr ether-Me ₂ CO $130-134$	$\begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $				SH						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Compd Meth-Yield, no. R, R, R, n od % Crystn solvent Mp, °C ^b 59 Cl 13 A 76 AcOH 105-107 ^c 60 NO2 13 B 84 Petr ether-Et ₂ O 100-101 ^d 61 Cl Cl 13 A 73 Petr ether-Et ₂ O 73, 81-82 ^e 62 I I 13 A 98 Petr ether-Et ₂ O 107-108 63 Me Me 13 A 70 AcOH 89-90 64 OH 11 B 77 Petr ether-Me ₂ CO 118-119	$\begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $							B			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Compd Meth-Yield, no. R, R, R, n od % Crystn solvent Mp, °C ^b 59 Cl 13 A 76 AcOH 105-107 ^c 60 NO2 13 B 84 Petr ether-Et ₂ O 100-101 ^d 61 Cl Cl 13 A 73 Petr ether-Et ₂ O 73, 81-82 ^e 62 I I 13 A 98 Petr ether-Et ₂ O 107-108 63 Me Me 13 A 70 AcOH 89-90 64 OH 11 B 77 Petr ether-Me ₂ CO 118-119	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	65			Cl		11	В	94	Me,CO	130-134
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Compd Meth-Yield, no. R, R, R, n od % Crystn solvent Mp, °C ^b 59 Cl 13 A 76 AcOH 105-107 ^c 60 NO2 13 B 84 Petr ether-Et ₂ O 100-101 ^d 61 Cl Cl 13 A 73 Petr ether-Et ₂ O 73, 81-82 ^e 62 I I 13 A 98 Petr ether-Et ₂ O 107-108 63 Me Me 13 A 70 AcOH 89-90	$\begin{array}{c c c c c c } \hline & & & & & & & & & & & & & & & & & & $				ОН				77	Petr ether-Me ₂ CO	118-119
no. R, R, R, n od % Crystn solvent Mp, °C ^b 59 Cl 13 A 76 AcOH 105-107 ^c 60 NO ₂ 13 B 84 Petr ether-Et ₂ O 100-101 ^d 61 Cl Cl 13 A 73 Petr ether-Et ₂ O 73, 81-82 ^e 62 I I 13 A 98 Petr ether-Et ₂ O 107-108	Compd Meth-Yield, no. R, R, R, n od % Crystn solvent Mp, °C ^b 59 Cl 13 A 76 AcOH 105-107 ^c 60 NO2 13 B 84 Petr ether-Et 2O 100-101 ^d 61 Cl Cl 13 A 73 Petr ether-Et 2O 73, 81-82 ^e 62 I I 13 A 98 Petr ether-Et 2O 107-108	$\begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$		wie	wie				A			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CompdMeth-Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et2O $100-101^d$ 61ClCl13A73Petr ether-Et2O $73, 81-82^e$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et ₂ O $100-101^d$	CompdMeth-Yield,no.R,R,R,nod%Crystn solventMp, °C ^b 59Cl13A76AcOH $105-107^c$ 60NO213B84Petr ether-Et ₂ O $100-101^d$	$\begin{array}{c c c c c c } \hline Compd & & & & & & & & & & & & & & & & & & &$										
no.R,R,R,nod%Crystn solventMp, $^{\circ}C^{b}$ 59Cl13A76AcOH105-107^{c}		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Cl							
no. R, R, R, R, n od % Crystn solvent Mp, $^{\circ}C^{b}$	CompdMeth-Yield,no.R,R,R, R_3 R, n od \mathcal{M} Crystn solventMp, $^{\circ}C^b$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$										
$\begin{array}{ccc} & & & & & & \\ \hline & & & & & \\ no. & R_1 & R_2 & R_3 & R_4 & n & od & \% & Crystn solvent & Mp, °C^b \end{array}$	Compd Meth-Yield.	$Compd \qquad \qquad$	5 9	Cl				13	Α	76	AcOH	105-107 ^c
Compa Meth-Yield,	Compd Meth-Yield.	$Compd \qquad \qquad$				103	IV.4	11	u	/0		мр, с
Compd Š	Compd		-	R	R	R	P	п			Crystn solvert	Mn °C ^b
		O(CH ₂) ₂ CH(CH ₂) ₂ R ₄	Compd			К3			Meth-	Vield		
· 2						d l						
· 2												
· 2												
					1							
· 2					ÇÇ	0 ₂ н						
R ₁ R ₂						<u> </u>	·			····		
R ₁ R ₂		CO ₂ H	Table III.	p-Aiko	JXyDenzo	Sie Acius						

^a Only substituents other than hydrogen are shown under R₁-R₄. ^b Many p-akoxybenzoic acids are mesomorphic and double melting points were observed. ^c G. W. Gray and B. Jones, ^J. Chem. Soc., 2536 (1954), report mesomorphic transition temperatures for this compound. ^d J. Jaeken and M. A. de Ramaix, German Patent 1 146 751 (April 4, 1963),

from petroleum ether to yield 14.3 g (77%) of 138. Anal. ($C_{16}H_{32}O$) C, H.

Also prepared by this procedure were *trans*-4-tetradecen-1-ol (139) [71%, bp 106–111° (0.05 mm). Anal. ($C_{14}H_{28}O$) C: calcd, 79.18; found, 78.69. H: calcd, 13.29; found, 12.85], *trans*-4-pentadecen-1-ol (140) [80%; bp 110–120° (0.1 mm); NMR (CDCl₃) δ 5.46 (2, m, CH_a=CH_b, $J_{a,b} = 16$ Hz) [CDCl₃–Eu(fod)₃ added]. Anal. ($C_{15}H_{30}O$) C, H], and *trans*-4,14-pentadecadien-1-ol (141) [73%; bp 115° (0.5 mm). Anal. ($C_{15}H_{28}O$) C, H].

Methyl p-(11-Hydroxyundecyloxy)benzoate (8) (Method A). The following experiment illustrates a general procedure used to prepare esters and acids of Tables I–III.

A solution of 2.51 g (10.0 mmol) of 11-bromoundecan-1-ol, 1.52 g (10.0 mmol) of methylparaben, and 540 mg (10.0 mmol) of sodium methoxide in 35 ml of MeOH was protected from moisture by a tube filled with anhydrous calcium sulfate and stirred under reflux for 3 days. The mixture was partitioned between H_2O and Et_2O (or an alternate organic solvent) and the organic layer was separated, washed with 1 N HCl, dried, and evaporated. Crystallization afforded 2.97 g (92%) of 8 (Table I).

p-(10-Undecenyloxy)benzoic Acid (106) (Method B). The following experiment illustrates a general method used to prepare carboxylic acids of Tables III and IV.

A solution of 22.0 g (72.2 mmol) of 45 (esters required as starting materials for method B but not shown in Tables I and II were prepared by method A and used without characterization) in 200 ml of EtOH was treated with 10 ml of 10 N NaOH solution and stirred under reflux for 1 h. The mixture was partitioned between

 CH_2Cl_2 (or an alternate organic solvent) and H_2O and the organic layer was separated, dried, and concentrated. Crystallization afforded 11.0 g (53%) of 106 (Table IV).

Methyl p-[11-(Methanesulfonyloxy)undecyloxy]benzoate (15) (Method C). The following experiment illustrates a general procedure used to prepare esters of Table I.

A solution of 53.8 g (0.167 mol) of 8 and 25.5 ml (37.8 g, 0.332 mol) of methanesulfonyl chloride in 500 ml of pyridine was stirred for 1 h at ambient temperature and poured into ice-water. The resulting solid was collected and partitioned between CH₂Cl₂ and H₂O. The organic layer was separated, dried, and evaporated. Crystallization yielded 58.5 g (88%) of 15 (Table I).

Methyl p-[16-(Acetylthio)hexadecyloxy]benzoate (27) (Method D). The following experiment illustrates a general procedure used to prepare esters of Table I.

A mixture of 18.0 g (38.2 mmol) of 20, 13.0 g (114 mmol) of potassium thioacetate, and 500 ml of Me₂CO was protected from moisture and stirred under reflux for 16 h. The solvent was evaporated and the residual solid was partitioned between Et_2O (mixtures of alternate organic solvents were used in some reactions) and H₂O. The organic layer was separated, dried, and evaporated. Crystallization afforded 14.7 g (85%) of 27 (Table I).

Methyl p-(11-Mercaptoundecyloxy)benzoate (29) (Method E). The following experiment illustrates a general method used to prepare esters of Table I.

A solution of 1.00 g (2.62 mmol) of 24 in 30 ml of MeOH was treated with 3.0 ml of 1 M sodium methoxide in MeOH. The

	Ste	rol, ^f dose, % of	diet	Trigly	of diet	
Formula	0.1	0.05	0.025	0.1	0.05	0.025
C ₂₃ H ₃₇ ClO ₃	103 ± 3	97 ± 4	108 ± 10	75 ± 14	87 ± 8	69 ± 8^h
$C_{23}H_{37}NO_{5}$	103 ± 6	101 ± 3	95 ± 3	122 ± 19	120 ± 8	93 ± 10
$C_{23}H_{36}Cl_2O_3$	103 ± 4	105 ± 3	98 ± 2	103 ± 20	89 ± 14	100 ± 5
$C_{23}H_{36}I_{2}O_{3}$	93 ± 3	85 ± 5^{h}	94 ± 2	105 ± 5	86 ± 9	96 ± 6
$C_{2}H_{42}O_{3}$	97 ± 9	89 ± 4^{g}	78 ± 2^{i}	82 ± 7	79 ± 4^g	68 ± 16^{h}
$C_{21}H_{34}O_{4}$	116 ± 3	112 ± 3	105 ± 5	53 ± 8^{i}	60 ± 6^i	$69 = 10^{i}$
$C_{1}H_{1}ClO_{1}$	60 ± 2^{i}	69 ± 4^{i}	72 ± 4^{i}	47 ± 6^{i}	53 ± 6^{i}	59 ± 6^i
$C_{21}^{T}H_{33}^{T}N_{3}O_{3}^{T}$	76 ± 4^{h}	89 ± 10	105 ± 5	55 ± 17^{h}	60 ± 7^{h}	98 ± 13
$\mathbf{C}_{21}^{T}\mathbf{H}_{34}^{T}\mathbf{O}_{3}\mathbf{S}^{T}$	83 ± 9^{g}	89 ± 6	94 ± 3	47 ± 19	53 ± 5^{i}	76 ± 6
$C_{23}^{T}H_{38}^{T}O_{3}^{T}S$	83 ± 3^i	93 ± 4^{g}	95 ± 6	44 ± 17^i	74 ± 8^{h}	68 ± 7^{i}
$C_{28}H_{40}O_{3}S$	92 ± 3	100 ± 5	109 ± 3	69 ± 8^{g}	79 ± 8	92 ± 6
$C_{18}^{20}H_{28}O_{4}^{3}$	113 ± 8	106 ± 6	91 ± 3	81 ± 16	93 ± 13	83 ± 10^{h}
$C_{19}^{10}H_{30}^{20}O_{4}^{2}$	97 ± 7	90 ± 1	79 ± 19	64 ± 13^{h}	53 ± 13^{i}	80 ± 6^g
C.,H.,O.	95 ± 1	109 ± 5	103 ± 3	63 ± 7^{i}	73 ± 10^{i}	66 ± 10^{i}
$C_{22}H_{30}O_{4}$ $C_{18}H_{28}O_{3}S$ $C_{19}H_{30}O_{3}S$	97 ± 3	81 ± 4^{i}	75 ± 7^{i}	55 ± 6^i	67 ± 12^{i}	74 ± 7^h
C,"H,"O,S	80 ± 6^{h}	$\overline{74} \pm 6^h$	44 ± 16^{i}	44 ± 16^{i}	47 ± 13^{i}	61 ± 14^{h}
C, H, O,S	79 ± 5^i	81 ± 7^{i}	$88 \pm 3^{\overline{i}}$	26 ± 7^{i}	46 ± 18^{i}	61 ± 15^{i}
$C_{22}H_{36}O_{3}S$	82 ± 2^{i}	81 ± 5^{i}	100 ± 3	40 ± 5^{i}	42 ± 3^{i}	56 ± 10^{i}
$C_{23}^{22}H_{38}^{\infty}O_{3}S$	$\overline{83} \pm \overline{4}^i$	82 ± 4^i	82 ± 3^{i}	37 ± 4^i	35 ± 4^{i}	51 ± 7^{i}
$C_{25}H_{42}O_{3}S$						
C.,H.,O.S	76 ± 2^{i}	70 ± 6^{i}	74 ± 1^{i}	48 ± 11^{i}	56 ± 3^{i}	60 ± 7^i
C, H, O,S	90 ± 2^h	88 ± 3^i	89 ± 2^{i}	45 ± 1^{i}	48 ± 3^{i}	59 ± 7^{i}
C, H, O,S	86 ± 7^{h}	94 ± 2^{g}	96 ± 5	42 ± 8^{i}	43 ± 4^{i}	61 ± 21^{g}
$C_{25}H_{42}O_{3}S$ $C_{21}H_{34}O_{3}S$ $C_{22}H_{36}O_{3}S$ $C_{23}H_{36}O_{3}S$	76 ± 1^i	$\overline{76} \pm \overline{3}^{i}$	70 ± 6^{i}	60 ± 17^{i}	53 ± 17^{i}	60 ± 9^i
$C_{3}H_{34}O_{3}S$	77 ± 2^{i}	75 ± 6^i	88 ± 8^{g}	41 ± 10^i	55 ± 9^i	71 ± 7^{h}
$C_{29}H_{42}O_{3}S$	82 ± 3^{i}	101 ± 4	109 ± 1	37 ± 5^{i}	50 ± 4^{i}	70 ± 2^{i}
$C_{2}H_{4}O_{4}S$	102 ± 4	97 ± 4	102 ± 2	44 ± 7^{i}	54 ± 8^{i}	83 ± 22
$C_{3}H_{42}O_{3}S$	94 ± 2	81 ± 3^{i}	89 ± 3^{h}	55 ± 7^{i}	80 ± 1^{i}	87 ± 7^{g}
$C_{22}^{23}H_{36}^{4}O_{5}^{4}S$	94 ± 2	95 ± 4	91 ± 9	57 ± 23^{h}	69 ± 10^{i}	81 ± 10^{g}
$C_{3}H_{4}O_{5}S$	89 ± 5^{h}	83 ± 2^{i}	90 ± 5	60 ± 6^i	61 ± 10^{i}	70 ± 11^{i}
C ₂₂ H ₃₇ NO ₃ ·HCl	100 ± 6	104 ± 2	98 ± 4	100 ± 6	103 ± 4	119 ± 5
C, ,H, O,	94 ± 2	100 ± 3	96 ± 6	100 ± 6	135 ± 7	118 ± 10
C ₂₂ ¹⁰ H ₃₅ NO ₄	88 ± 2^{h}	96 ± 2	99 ± 3	85 ± 5^{g}	87 ± 10	93 ± 8

report mp 98°. ^e Footnote c reports mp 60.5° for this compound. ^f Sterol and triglyceride values are shown as percent of control. ^g Statistically significant, p < 0.10. ^h Statistically significant, p < 0.01.

mixture was stirred for 30 min at ambient temperature, acidified with 1.0 ml of AcOH, and poured on ice. The solid was collected and dried to yield 0.85 g (96%) of 29 (Table I).

p-(15-Mercaptopentadecyloxy)benzoic Acid (76) (Method F). The following experiment illustrates a general procedure used to prepare carboxylic acids of Table III.

A mixture of 3.56 g (8.15 mmol) of 26, 25 ml of 10 N NaOH, and 100 ml of EtOH was stirred under reflux for 1 h and then acidified with 6 N HCl. An Et₂O extract of the mixture was dried and evaporated to yield 2.95 g (95%) of 76 (Table III).

Methyl p-[11-(Ethylthio)undecyloxy]benzoate (32) (Method G). The following experiment illustrates a general procedure used to prepare esters of Table I.

A solution of 0.34 g (1.0 mmol) of 29 and 60 mg (1.1 mmol) of sodium methoxide in 20 ml of MeOH was stirred under reflux of 1 h and allowed to cool. After the addition of 0.10 ml (0.19 g, 1.2 mmol) of iodoethane, stirring under reflux was resumed and continued for 18 h. The mixture was concentrated and partitioned between Et₂O and ice-water. The organic layer was separated, dried, and evaporated. Crystallization of the residual oil afforded 0.23 g (62%) of 32 (Table I).

p-(1,1-Dimethyldodecyloxy)benzoic Acid (100) (Method H). The following experiment illustrates a general procedure used to prepare acids of Table IV.

A suspension of 1.24 g (31.8 mg-atoms) of freshly cut potassium metal in 95 ml of THF was stirred under an argon atmosphere while 6.82 g (31.8 mmol) of 2-methyl-2-tridecanol¹⁹ was added. The mixture was protected from moisture by a tube filled with anhydrous calcium sulfate and stirred under reflux for 18 h. A solution of 3.86 g (31.8 mmol) of *p*-fluorobenzonitrile in 16 ml of THF was added dropwise and reflux was continued for 24 h. The mixture was cautiously diluted with H₂O and Et₂O and the organic layer was separated, washed with 1 N NaOH solution and 1 N HCl, dried, and evaporated to yield the intermediate *p*-(1,1-dimethyldodecyloxy)benzonitrile as a yellow oil.

A mixture of the oil, 6.00 g (92.8 mmol) of KOH, and 100 ml of ethylene glycol was stirred under reflux for 18 h, allowed to cool, and partitioned between Et_2O , MeOH, and H_2O . The aqueous layer was separated and acidified with concentrated HCl. The mixture was extracted with Et_2O and the combined extracts were dried and evaporated. Crystallization yielded 3.13 g (30%) of 100 (Table IV).

Methyl p-(3-Oxotetradecyloxy)benzoate (56). The red solution prepared by the addition of 3.00 g (30.0 mmol) of CrO₃ to a stirred solution of 5 ml of pyridine in 150 ml of CH₂Cl₂ was stirred for 15 min at ambient temperature and then treated with a solution of 1.82 g (5.00 mmol) of methyl p-(3-hydroxytetradecyloxy)benzoate¹ in 10 ml of CH₂Cl₂. After 15 min, the supernatant liquid was decanted, washed with 1 N NaOH solution and 1 N HCl, dried, and evaporated. Crystallization afforded 1.52 g (84%) of 56 (Table II). Carboxylic acid 120 (Table IV) was also prepared by this procedure. Oxime 57 (Table II) was prepared from 56 in the usual manner.

Methyl p-(11-Chloroundecyloxy)benzoate (39). A mixture of 1.0 g (2.5 mmol) of 15, 0.53 g (13 mmol) of LiCl, and 5 ml of DMF was stirred under reflux for 17 h, poured into ice-water,

Compd		Meth-	Yield,	Crystn		OR	Stero	ol, ^b dose, % o	diet	Triglyceride, ^b dose, % of diet		of diet
no.	R	od	%	solvent	Mp, $^{\circ}\mathrm{C}^a$	Formula	0.1	0.05	0.025	0.1	0.05	0.025
92	-(CH ₂) ₂ CH(CH ₂ CH ₂ CH ₂ CH ₂ CH) ₂ CH ₃	В	26	MeCN	55-57	$C_{22}H_{36}O_{3}$	87 ± 12	73 ± 6^e	81 + 3 ^e	26 ± 21 ^e	72 ± 19^d	72 ± 4^e
93	СН ₃ СН ₃ -(CH ₂) ₂ CH(CH ₂ CH ₂ CH ₂ CH ₂ CH) ₃ CH ₃ СН ₃ СН ₃	В	22	Et ₂ O- MeCN	39 -41	$C_{27}H_{46}O_{3}$	71 ± 6 ^e	84 ± 2^e	87 ± 5 ^e	72 ± 10^e	104 ± 13	110 / 8
94	-CH2CH(CH2)1	В	30	Et_2O	176 - 177	$\mathbf{C}_{29}\mathbf{H}_{30}\mathbf{O}_{3}$	101 ± 3	105±3	104 ± 5	160±6	130 ± 5	123 ± 7
95	-CH(CH ₂) ₁₃ CH ₃	В	33	EtÕH	79-81	$C_{23}H_{38}O_{3}$	84 ± 5^d	85 ± 5^d	9 0 t 7	70 ± 6 ^e	72 ± 6 ^e	92 ± 11
96	сн ₃ -сн(сн ₂₎₁₂ сн ₃ сп,сн ₃	в	19	Petr ether	48-50	$C_{23}H_{38}O_{3}$	85 ± 3°	86±3 ^c	82 ± 5^d	75 + 23	78 ± 23	83 ± 6 ^c
97	-ÇH(CH ₂) ₃₁ CH ₃	В	25	Petr ether	37-38	$C_{23}H_{38}O_3$	$74 + 3^{c}$	76 ± 7^d	$78 \cdot 3^d$	53 ± 6^e	62 ± 11^{e}	70 ± 10^{e}
98	CH ₂ CH ₂ CH ₂ CH ₃	Н	10	MeOH	1 6 5–16 9	$\mathbf{C}_{19}\mathbf{H}_{28}\mathbf{O}_3$	86 + 3 ^d	94 + 4	87 ± 4^d	87 + 9	81 ± 1 3	97 ± 4
99	Ð	Н	6	MeOH	257-260	$C_{47}H_{20}O_3$	9 6 ± 2	92 + 3	$88 \in 2^c$	88 + 8	82 ± 1 4	$79 + 5^d$
1 00	СН ₃ -С(СН ₂) ₁₀ СН ₃ -СП ₃	14	30	MeOH	80-82	$\mathbf{C}_{21}\mathbf{H}_{34}\mathbf{O}_{3}$	83 ± 2^{c}	88 + 6 ^e	$90 \in 8^{\mathbf{c}}$	63 ± 14 ^e	80 + 21	74×9^c
101	$\begin{array}{c} \mathbf{C}\mathbf{H}_{3} \\ -\mathbf{C}_{1}\mathbf{C}\mathbf{C}\mathbf{H}_{2})_{c_{1}}\mathbf{C}\mathbf{H}_{3} \\ \mathbf{C}\mathbf{H}_{3} \\ \mathbf{C}\mathbf{H}_{4} \end{array}$	Н	19	MeOH	76-77	$\mathbf{C}_{12}\mathbf{H}_{36}\mathbf{O}_{3}$	97 ±4	90 + 8	100 ± 1	8 7 ± 11	79 ± 7	77 / 7
102	$-\mathbf{C}(\mathbf{CH}_{2})_{12}\mathbf{CH}_{3}$ $-\mathbf{CH}_{3}$ \mathbf{CH}_{3} \mathbf{CH}_{3}	H	2 0	MeOH	87-88	$\mathbf{C}_{23}\mathbf{H}_{38}\mathbf{O}_{3}$	100 ± 3	120 + 8	92 ± 6	83 ± 9	105 ± 16	127 = 16
1 0 3	-С(СН ₂),4СН ₃ -С, СН ₃ СН ₃ СН ₃	Н	17	MeOH	71-72	$\mathbf{C}_{25}\mathbf{H}_{42}\mathbf{O}_{3}$	96 ± 4	112 ± 3	101 ± 5	100 ± 8	111 + 5	103 + 5
1 0 4	СН ₂ СН ₂ СН ₃ СН ₂ СН ₃	Н	7	MeOH	44-45	$C_{25}H_{42}O_{3}$	102 ± 4		100 ± 3	94 ± 6		94 - 12
105	Ð.	Н	25	MeOH	228-23 0	$\boldsymbol{C}_{32}\boldsymbol{H}_{20}\boldsymbol{O}_{3}$	88 ± 5^c	87 ± 2^d	9 0 ± 8	85 ± 17	89 ± 8	85 ± 8

CO2H

10 6	-(CH ₂) ₉ CH=CH ₂	в	53	Hexane- Me ₂ CO	75-82, 119-120	$C_{18}H_{36}O_{3}$	86 ± 8 ^d	99 ± 3	10 0 ± 6	60 ± 11 ^e	81 ± 6^{e}	82 ± 4 ^e
1 0 7	-(CH ₂) ₃ , H C=C H (CH ₂) ₈ CH ₃	В	78	Hexane	92-93, 133-134	$C_{21}H_{32}O_3$	77 ± 3 ^e	73 ± 1 ^e	87 ± 6 ^d	87 ± 6	89 ± 11	89 ± 6
10 8	-(CH ₂) ₃ H C=C H (CH ₂) ₉ CH ₃	В	87	Hexane	84-86, 131-132	$C_{22}H_{34}O_{3}$	79 ± 2 ^e	92 ± 4 ^c	92 ± 6 ^c	92 ± 10	76 ± 6 ^e	72 ± 6^d
109	-(CH ₂) ₃ / C=C / H / CH ₂) ₁₀ CH ₃	В	44	Petr ether	94–95, 131–132	$C_{23}H_{36}O_{3}$	69 ± 7 ^e	67 ± 8 ^e	75 ± 7 ^e	59 ± 4^e	76 ± 8 ^c	76 ± 9 ^c
1 10	$-CH_{2} \downarrow C=C \downarrow CH_{2} \downarrow_{12}CH_{3}$		78	Hexane	97-99	$C_{23}H_{36}O_{3}$	90 ± 5^d	87 ± 2 ^e	95 ± 3	60 ± 12^e	79 ± 8^c	88 ± 7
111	$-CH_2 H C = C H CH_2)_{12}CH_3$ $-(CH_2)_{8} H$		33	Hexane	104-106, 126-127	$C_{23}H_{36}O_{3}$	81 ± 4 ^e	85 ± 5 ^e	106 ± 2	46 ± 36 ^e	57 ± 18 ^e	45 ± 10^{e}
112	$\begin{array}{c} \begin{array}{c} & & \\ $	В	35	Hexane- Me,CO	$84-86,\ 105-106$	$C_{25}H_{40}O_3$						
113	$-CH_2C = C(CH_2)_1 CH_3$ -(CH_2)_3, H	В	74	Hexane	112-113	$C_{23}H_{34}O_{3}$	82 ± 2 ^e	88 ± 3 ^e	98 ± 4	75 ± 10^d	65 ± 7^e	96 ± 4
114	C = C' H (CH ₂) ₈ CH=CH ₂	В	87	Hexane	73-74, 127-128	$C_{22}H_{32}O_{3}$	74 ± 3^{e}	87 ± 6^e	92 ± 7	83 ± 11	$96~\pm~6$	83 ± 4^c
115	$-CH_2CH = C(CH_2CH_2CH = C)_2CH_3$	В	39	Petr ether	82-85	$C_{22}H_{30}O_{3}$	87 ± 10	102 ± 7	108 ± 3	133 ± 8	111 ± 10	131 ± 9
116	CH ₃ CH ₃ -(CH ₂) ₃ CHCH(CH ₂) ₁₀ CH ₃		84	Petr ether- Et_2O	99–100, 131–132	$C_{23}H_{36}O_4$	85 ± 3^e	85 ± 4^{e}	90 ± 3^d	55 ± 9	52 ± 8^{e}	74 ± 13^{d}
117	О -(CH ₂) ₃ снсн(CH ₂) ₁₀ CH ₃ НО ОН		49	Hexane- EtOAc	144–145	$C_{23}H_{38}O_{5}$	83 ± 7 ^d	86 ± 2 ^{<i>d</i>}		55 ± 10^{e}	60 ± 4 ^{<i>d</i>}	
118	-CH2C	В	57	Me ₂ CO	196-199	$C_{19}H_{22}O_4$	92 ± 4	99 ± 4	93 ± 2	113 ± 2	101 ± 4	90 ± 2
119	-(CH ₂) ₁₅ 0-CO ₂ H	в	45	AcOH	222-225	$C_{29}H_{40}O_{6}$	94 ± 2	103 ± 4	97 ± 1	51 ± 1^{d}	77 ± 10^c	64 ± 11 ^e
12 0	Ο -(CH ₂) ₂ C(CH ₂) ₁₀ CH ₃		45	Et ₂ O- Me ₂ CO	122-124	$C_{21}H_{32}O_4$	92 ± 7	89 ± 7	89 ± 3	74 ± 10^{d}	75 ± 6 ^d	84 ± 12

^a Many *p*-alkoxybenzoic acids are mesomorphic and double melting points were observed. ^b Sterol and triglyceride values are shown as percent of control. ^c Statistically significant, p < 0.10. ^d Statistically significant, p < 0.05. ^e Statistically significant, p < 0.01.

Hypolipidemic Alkoxybenzoic Acids

		37:11	ROSO ₂ CH ₃			
Compd no.	R	Yield, %	Crystn solvent	Mp, $^{\circ}C^{b}$	Formula	Analyses
	-(CH ₂) ₃ /H					
121	$\mathbf{C} = \mathbf{C} \mathbf{C} \mathbf{H}_{2} \mathbf{C} \mathbf{H}_{3}$	99	Hexane	Oil	$C_{15}H_{30}O_{3}S$	С, Н, S
100	-(CH ₂) ₃ H	0.0		011		
122	H ^{C=C} (CH ₂) ₉ CH ₃	96	Pentane	Oil	$C_{_{16}}H_{_{32}}O_{_3}S$	H, S; C^c
123	-(CH ₂) ₃ H	53	Petr ether	Oil	0 11 0 0	
123	$\mathbf{H}^{\mathbf{C}=\mathbf{C}}_{(\mathbf{CH}_2)_{10}\mathbf{CH}_3}$	55	retr ether	OII	$C_{17}H_{34}O_{3}S$	C, H, S
124	-(CH ₂) ₁₄ CH=CH ₂ -(CH ₂) ₁₄ CH=CH ₂ -(CH ₂) ₈ , H	80	Petr ether	46-48	$C_{_{17}}H_{_{34}}O_{_3}S$	С, Н, S
125		57	Petr ether	36-37	$C_{19}H_{38}O_{3}S$	C, H, S
126	$H (CH_2)_7 CH_3$ $-CH_2 C \equiv C (CH_2)_{12} CH_3$	66	Petr ether	32-34	C ₁₇ H ₃₂ O ₃ S	C, H, S
	-(CH ₂) ₃ H					
127		99	Pentane	Oil	$C_{16}H_{30}O_{3}S$	H, S; \mathbf{C}^d
128	$\frac{\mathrm{H}}{\mathrm{-(CH}_{2})_{8}\mathrm{CH}=\mathrm{CH}_{2}}$	67	Hexane	76-77	$C_{17}H_{34}O_6S_2$	C, H, S

^a The methanesulfonates of Table V were prepared by method C or the procedure of R. K. Crossland and K. L. Servis, J. Org. Chem., 35, 3195 (1970). ^b Compounds described as oils were crystallized but subsequently melted at or below room temperature. ^c C: calcd, 63.11; found, 62.48. ^d C: calcd, 63.53; found. 64.00.

and filtered. An Et₂O solution of the crude product was filtered to remove insolubles and evaporated. Crystallization from pentane afforded 0.32 g (38%) of **39**, mp 41-43° (Table_I). Similarly prepared was methyl p-(3-chlorotetradecyloxy)benzoate (5), mp 45-47° (Table I).

Methyl p-(11-Thiocyanatoundecyloxy)benzoate (38). A mixture of 1.0 g (2.5 mmol) of 15, 1.22 g (12.5 mmol) of KSCN, and 5.0 ml of DMF was stirred for 17 h under reflux, poured on crushed ice, and filtered. Crystallization afforded 0.70 g (78%) of 38, mp 35–37° (Table I).

Methyl p-(11-Phthalimidoundecyloxy)benzoate (42). A mixture of 1.0 g (2.5 mmol) of 15, 2.32 g (12.5 mmol) of potassium phthalimide, and 30 ml of DMF was heated on a steam bath for 24 h, poured on ice, and filtered. The solid was collected and crystallized from petroleum ether-Et₂O to yield 0.80 g (71%) of 42, mp 82-86° (Table I).

p-[11-(n-Butylsulfinyl)undecyloxy]benzoic Acid (85). A mixture of 0.22 g (1.1 mmol) of NaIO₄, 0.38 g (1.0 mmol) of 82, 1.0 ml of H₂O, and 20 ml of MeOH was stirred under reflux for 20 min and filtered while hot. The filtrate was allowed to cool and the resulting precipitate was collected to yield 0.32 g (80%) of 85, mp 125–127° (Table III). Similarly prepared from 80 was p-[16-(ethylsulfinyl)hexadecyloxy]benzoic acid (86), mp 106–107° (Table III).

p-[11-(n-Butylsulfonyl)undecyloxy]benzoic Acid (87). A mixture of 0.38 g (1.0 mmol) of 82, 1.1 g (5.0 mmol) of NaIO₄, 5 ml of H₂O, and 20 ml of MeOH was stirred under reflux for 18 h and filtered while hot. The filtrate was allowed to cool and the precipitate collected to yield 0.28 g (68%) of 87, mp 140–143° (Table III). Similarly prepared from 80 was p-[16-(ethylsulfonyl)hexadecyloxy]benzoic acid (88), mp 129–130° (Table III).

Ethyl p-(11-Hydroxyundecyloxy)benzoate (9). A mixture of 2.7 g (8.7 mmol) of 70, 0.5 ml of concentrated H₂SO₄, and 400 ml of EtOH was stirred for 3 days under reflux and then evaporated. The residue was partitioned between ice-water and Et₂O and the organic layer was separated, washed with 1 N NaOH solution, dried, and evaporated to yield 2.59 g (89%) of 9, mp 48-50° (Table I).

Similarly prepared was *n*-butyl *p*-(11-hydroxyundecyloxy)benzoate (10), mp 31-32° (Table I).

Ethyl p-(11-Ethoxyundecyloxy)benzoate (23). To the solution formed by adding 3.44 g (0.145 g-atom) of sodium metal to 280 ml of EtOH was added 15.6 g (37.6 mmol) of 16. The mixture was stirred for 6 days under reflux and evaporated. The residue was triturated with ice-water and collected by filtration. An Et₂O solution of the product was dried and evaporated to yield

11.2 g (82%) of 23, mp 35-37° (Table I).

Similarly prepared from 17 was *n*-butyl p-(*n*-butoxyundecyloxy)benzoate which was used without characterization to prepare 73. Also prepared by this procedure from 15 was methyl p-(methoxyundecyloxy)benzoate (22), mp 51-53° (Table I).

Methyl p-[10-(n-Butylcarbamoyl)decyloxy]ben zoate (43). A solution of 33.6 g (0.100 mol) of 11-(p-carboxyphenoxy)undecenoic acid⁵ and 14.0 ml (10.2 g, 0.101 mol) of triethylamine in 300 ml of THF was stirred at 0° while 13.2 ml (13.7 g, 0.100 mol) of isobutyl chloroformate was added during 5 min. The mixture was stirred for 45 min and then treated with a solution of 10.0 ml (7.64 g, 0.105 mol) of *n*-butylamine in 200 ml of THF while a temperature of 0° was maintained. The mixture was stirred for 2 h at ambient temperature and filtered. The solid was washed with Et₂O and the filtrate and washings were evaporated. Crystallization of the residue afforded 32.1 g (82%) of 43, mp 92–94° (Table I).

Methyl p-[11-(n-Butylamino) undecyloxy]benzoate (40). A solution of 20.0 g (51.1 mmol) of 43 in 400 ml of THF was treated with 184 ml of 0.5 M borane in THF at ambient temperature. The solution was stirred for 16 h under reflux, allowed to cool, and acidified with 15 ml of saturated methanolic HCl solution. The mixture was stirred for 1 h under reflux and then partitioned between 500 ml of CH₂Cl₂, 200 ml of H₂O, and 20 ml of MeOH. The lower layer was separated, combined with a 100-ml CH₂Cl₂ extract of the upper layer, dried, and evaporated. Crystallization afforded 15.1 g (71%) of 41, mp 192–196° (Table I).

A mixture of 5.00 g (12.2 mmol) of 41, 125 ml of CH_2Cl_2 , and 125 ml of 0.1 N NaOH was shaken and the lower layer was separated, dried, and evaporated. Crystallization afforded 3.20 g (70%) of 40, mp 57-59° (Table I).

p-(4,5-Epoxyhexadecyloxy)benzoic Acid (116). A solution of 2.46 g (12.1 mmol) of 85% *m*-chloroperbenzoic acid in 50 ml of CH₂Cl₂ was added dropwise to a refluxing solution of 3.60 g (10.0 mmol) of 109 in 100 ml of CH₂Cl₂ and reflux was continued for 18 h. The solution was washed with 10% Na₂S solution and 1 N HCl, dried, and evaporated. Crystallization afforded 3.16 g (84%) of 116, mp 99-100° and 131-132° (Table IV).

Similarly prepared from 48 was methyl p-(4,5-epoxyhexadecyloxy)benzoate (58), mp 74-77° (Table II).

p-(4,5-Dihydroxyhexadecyloxy)benzoic Acid (117). A solution of 1.50 g (4.00 mmol) of 116, 1.0 ml of concentrated H₂SO₄, and 40 ml of H₂O in 30 ml of EtOH was stirred for 18 h under reflux. The mixture was diluted with water and extracted with Et₂O. The dried extract was evaporated and the residue crystallized to yield 770 mg (49%) of 117, mp 144-145° (Table

Table VI

	% of diet	Sterol	Tri- glyceride
Clofibrate	0.3	81 ± 5	4 2 ± 8
Boxidine	0.005	60 ± 3	55±6
<i>p</i> -Hexadecyloxybenzoic acid	0.1	74 ± 4	46 ± 7
p-Hexadecyloxybenzoic acid	0.05	83 ± 3	6 2 ± 6
<i>p</i> -Hexadecyloxybenzoic acid	0.0 2 5	89 ± 4	58 ± 8

IV).

p-(cis-2-Hexadecenyloxy)benzoic Acid (110). A mixture of 1.80 g (5.03 mmol) of 113, 200 mg of 5% Pd-BaSO₄, and 50 ml of pyridine was shaken under 40 psi of hydrogen for 10 min. The mixture was diluted with CH₂Cl₂ and filtered. The filtrate was evaporated and an Et₂O solution of the residue was washed with 1 N HCl, dried, and evaporated. Crystallization afforded 1.42 g (78%) of 110: mp 97-99° (Table IV); NMR (CDCl₃-Me₂SO) δ 5.70 (2, m, CH=CH).

p-(trans-2-Hexadecenyloxy)benzoic Acid (111). To 3.00 g (8.33 mmol) of molten 110 was added 0.11 ml of 6 M HNO₃ and 0.17 ml of 2 M NaNO₂ solution.⁶ The mixture was stirred at 110° under an argon atmosphere for 36 h, allowed to cool, and partitioned between H₂O and CH₂Cl₂. The organic layer was dried and evaporated and the residue was crystallized to yield 1.00 g (33%) of 111: mp 104–106 and 126–127° (Table IV); NMR (CDCl₃–Me₂SO) δ 5.70 (1, s, =:CH_a), 5.83 (1, s, =:CH_b) (J_{ab} = 16 Hz).

Biological Methods. Male CFE rats (Carworth Farms) weighing 140–150 g were allocated to experimental groups, eight animals per control group and four animals per test group. The compounds to be tested were added to ground commercial rat chow at levels of 0.1, 0.05, and 0.025% (w/w) by dissolving the compound in methanol-chloroform (1:3 v/v), adding this solution to the feed, mixing, and allowing the solvents to evaporate. Control groups were given food treated with the solvents alone. Animals were allowed food and water ad libitum for 6 days after which they were killed in a fed state and bled. Serum sterols⁷ and triglycerides⁸ were measured using a Technicon autoanalyzer.

The serum sterol and triglyceride values in Table VI and in Tables I-IV are shown as percent of control values and are expressed as the mean for the test group plus or minus the standard error for the group, $\bar{X} \pm SE$. The significance level (p)was determined using Student's t test. The mean and standard error for the test groups and those for the control groups, respectively, were used to calculate t. Control groups averaged 75 \pm 3 mg % serum sterol and 85 \pm 6 mg % serum triglyceride. Clofibrate (ethyl p-chlorophenylisobutyrate) and boxidine [1-[2-[4'-(trifluoromethyl)-4-biphenylyloxy]ethyl]pyrrolidine] were used as positive controls. Values for *p*-hexadecyloxybenzoic acid¹ are shown for reference. Compounds which lowered serum sterol to 85% of control values or serum triglyceride to 75% of control values were selected for further study.

Acknowledgment. We are indebted to Messrs. L. Brancone and W. Fulmor and their staffs for microanalyses and spectral data. Several of the intermediates were prepared by Dr. P. J. Kohlbrenner and his associates. Technical assistance was provided by Miss L. Will, Mr. D. Bull, Mr. E. Locke, and Mr. C. VanBrunt.

References and Notes

- H. J. Albers, S. J. Riggi, F. L. Bach, and E. Cohen, U.S. Patent 3716644 (Feb 13, 1973).
- (2) G. W. K. Cavill, J. Soc. Chem. Ind., London, 64, 212 (1945).
- (3) W. S. Johnson, L. Werthenmann, W. R. Bartlett, T. J. Brocksom, T. Li, D. J. Faulkner, and M. R. Petersen, J. Am. Chem. Soc., 92, 741 (1970).
- (4) J. F. Bunnett and R. E. Zahler, Chem. Rev., 49, 273 (1951).
- (5) J. Jaeken, Belgium Patent 601 938 (Sept 29, 1961); Chem. Abstr., 60, 14653 (1964).
- (6) S. Chang and T. K. Miwa, J. Am. Oil Chem. Soc., 49, 422 (1972).
- (7) (a) P. Trinder, Analyst, 77, 321 (1952); (b) A. Zlafkin, B. Zak, and A. J. Boyle, J. Lab. Clin. Med., 41, 486 (1953).
- (8) G. Kesster and H. Lederer, "Automation in Analytical Chemistry", L. T. Skeggs, Ed., Mediad, New York, N.Y., 1965, p 341.
- (9) G. Lucius, Chem. Ber., 93, 2663 (1960).
- (10) R. Toubiana and J. Asselineau, Ann. Chim. (Paris), 7, 593 (1962).
- (11) E. E. Reid, J. R. Ruhoff, and R. E. Burnett, "Organic Syntheses", Collect. Vol. II, Wiley, New York, N.Y., 1943, p 246.
- (12) F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 8, 2270 (1965).
- (13) P. Chuit, Helv. Chim. Acta, 9, 264 (1926).
- (14) P. Chuit and J. Hausser, Helv. Chim. Acta, 12, 850 (1929).
- (15) P. Chuit and J. Hausser, Helv. Chim. Acta, 12, 463 (1929).
- (16) R. Ashton and J. C. Smith, J. Chem. Soc., 435 (1934).
- (17) (a) R. Kapp and A. Knoll, J. Am. Chem. Soc., 65, 2062 (1943); (b) M. S. R. Nair, H. H. Mathur, and S. C. Bhattacharyya, *Tetrahedron*, 19, 905 (1963); (c) S. Hunig and W. Eckardt, Chem. Ber., 95, 2493 (1962).
- (18) F. Pueschel, Tenside, 4 (10), 320 (1967); Chem. Abstr., 67, 116504e (1967).
- (19) K. Kaku, R. Oda, and S. Arisue, *Rikagaku Kenkyusho Iho*, 22, 357 (1943); *Chem. Abstr.*, 41, 6419 (1947).